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Motivation for Using Functional Expansion Tallies

• Accuracy is vital for
many radiation transport
applications

• Monte Carlo (MC) codes
are the most accurate,
but they are expensive
for fine meshes

• Functional Expansion
Tallies (FETs) yield
smoother, lower-variance
results with far fewer
degrees of freedom 0.0 0.2 0.4 0.6 0.8 1.0

Radius (cm)

0.4

0.5

0.6

0.7

0.8

0.9

Re
ac

tio
n 

Ra
te

 (#
/s

)
Analytical reaction-rate distribution
9th-order FET reconstruction
Tallied using 25 spatial bins
95% confidence interval

7/9/2025 | 2



Theory: Functional Expansion Tallies (FETs)

• An FET expands a quantity of interest in a chosen basis

• Step 1: A Monte Carlo simulation tallies spatial moments of the quantity of interest

• Step 2: After the simulation, the moments are used to reconstruct a functional distribution

R(r) ≈
N∑

m=0

am bm(r) (1)

R(r) functional expansion of the reaction rate

r position within a sphere

am mth expansion coefficient

bm(r) mth basis function evaluated at r
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Spatial Moments in Spherical Geometry

Recall that “Step 1” in the FET procedure involves tallying spatial moments of the reaction
rate in Monte Carlo

• The analytical expression for the spatial moment of the reaction rate is

⟨R⟩n = 4π
∫ R

0
R(r)bn(r) r2 dr (2)

⟨R⟩n nth spatial moment of reaction rate

R(r) true (unknown) reaction-rate distribution

bn(r) nth basis function, evaluated at radius r

r radial distance from the sphere’s center, r =
√

x2 + y2 + z2

R sphere’s radius
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Approximate Spatial Moments in Spherical Geometry

After substituting the functional expansion R(r) =
N∑

m=0

am bm(r) into the spatial-moment

integral, ⟨R⟩n = 4π
∫ R

0 R(r)bn(r) r2 dr , the nth moment becomes

⟨R⟩n ≈
N∑

m=0

am 4π
∫ R

0
bm(r)bn(r) r2 dr (3)

⟨R⟩n approximate nth spatial moment of the reaction rate

am expansion coefficients (unknowns to be solved)

bm(r), bn(r) basis functions evaluated at radius r

r radial distance from sphere’s center, r =
√

x2 + y2 + z2

R sphere’s radius
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Monte Carlo collision estimator

The Monte Carlo collision estimator for spatial moments of reaction rate is

⟨R⟩n ≈ 1
W

∑
i∈I

bn(r)wi , (4)

⟨R⟩n is the nth spatial moment of the reaction rate, R
bn(r) nth basis function, evaluated at r

r radial distance from sphere’s center, r =
√

x2 + y2 + z2

wi particle weight for the i th collision
W total starting weight of all particles

I set of all collision events within a volume
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Solving for Expansion Coefficients
Linear system for the coefficients am:

I00 I01 · · · I0N
I10 I11 · · · I1N
...

...
. . .

...
IN0 IN1 · · · INN


︸ ︷︷ ︸

I


a0
a1
...

aN


︸ ︷︷ ︸

a⃗

=


⟨R⟩0
⟨R⟩1

...
⟨R⟩N


︸ ︷︷ ︸

M⃗

For spherical geometry, the matrix elements are

Imn = 4π
∫ R

0
bm(r)bn(r) r2 dr

M⃗ spatial moments tallied during the MC run

I geometry-dependent moment matrix (analytic for chosen basis)

a⃗ unknown expansion coefficients (solved by I−1M⃗)
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Collision-Based FET Workflow

1. MCNP6.3.1 records every collision in a PTRAC file (position, weight, etc.).
2. Python package tallies moments using basis functions bn(r) = rn

3. Assemble linear system I⃗a = M⃗
4. Solve for a⃗ and evaluate R(r) on a fine grid
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Python Implementation of Collision-Based FETs
import h5py

import numpy as np

import matplotlib.pyplot as plt

ptrac_file = "ptrac.h5"

size = 1

order = 9

nps = 1e8

print("Loading ptrac data")

h5file = h5py.File(ptrac_file, "r")

data = [h5file["ptrack/Collision"][i] for i in

["x", "y", "z", "weight"]]

print("Done!\n")

# Convert coordinates of collisions to "r"

x, y, z, weights = data

r = np.sqrt(x**2 + y**2 + z**2)

print("Tallying moments and building matrix")

moments = np.zeros(order+1)

matrix = np.zeros((order+1, order+1))

for m in range(order+1):

moments[m] = np.sum(weights * r ** m)

moments[m] /= nps

for n in range(order+1):

matrix[m, n] = 3/(3+n+m) * size ** (n+m)

print("Done!\n")

# Replace last moment with boundary condition

matrix[-1, :] = 0

matrix[-1, 1] = 1

moments[-1] = 0

print("Computing FET coefficients")

coeffs = np.linalg.solve(matrix, moments)

print("Done!\n")

# Create spatial grid for plot

x_grid = np.linspace(0, size, int(1e6))

print("Computing reaction-rate distribution")

reaction_rates = np.zeros_like(x_grid)

for n in range(order+1):

reaction_rates += coeffs[n] * x_grid ** n

print("Done!\n")

# Plot FET reaction rate distribution

plt.plot(x_grid, reaction_rates)

plt.xlabel(r"Radial Distance (cm)")

plt.ylabel(r"Reaction Rate (#/s)")

plt.show()

Download here:
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import h5py
import numpy as np
import matplotlib.pyplot as plt

ptrac_file = "ptrac.h5"
size = 1 
order = 9 
nps = 1e8 

print("Loading ptrac data")
h5file = h5py.File(ptrac_file, "r")
data = [h5file["ptrack/Collision"][i] for i in 
         ["x", "y", "z", "weight"]]
print("Done!\n")

# Convert coordinates of collisions to "r"
x, y, z, weights = data 
r = np.sqrt(x**2 + y**2 + z**2)

print("Tallying moments and building matrix")
moments = np.zeros(order+1) 
matrix = np.zeros((order+1, order+1))
for m in range(order+1):
    moments[m] = np.sum(weights * r ** m) 
    moments[m] /= nps
    for n in range(order+1):
        matrix[m, n] = 3/(3+n+m) * size ** (n+m)
print("Done!\n")

# Replace last moment with boundary condition 
matrix[-1, :] = 0
matrix[-1, 1] = 1
moments[-1] = 0

print("Computing FET coefficients")
coeffs = np.linalg.solve(matrix, moments)
print("Done!\n")

# Create spatial grid for plot 
x_grid = np.linspace(0, size, int(1e6))

print("Computing reaction-rate distribution")
reaction_rates = np.zeros_like(x_grid)
for n in range(order+1):
    reaction_rates += coeffs[n] * x_grid ** n
print("Done!\n")

# Plot FET reaction rate distribution
plt.plot(x_grid, reaction_rates)
plt.xlabel(r"Radial Distance (cm)")
plt.ylabel(r"Reaction Rate (#/s)")
plt.show()



Analytical Verification Problem

Analytical Problem Description:
• Sphere (R = 1) in a vacuum
• Partially scattering medium (Σs = Σa = 0.5)
• Isotropic source uniformly distributed in sphere (Q = 1)
• Reference analytic solution derived during last year’s MCNP sympsoium:

– C. A. Weaver and M. E. Rising, “Studying the Random Number Generators in MCNP6
using an Analytic Benchmark,” Tech. Rep. LA-UR-24-28791, Los Alamos National
Laboratory, Los Alamos, NM, USA (Aug. 2024)

Simulation Description:
• MCNP6.3.1, simple ace.pl, and Python post-processor
• 100 million particle histories
• PTRAC file with only collision events

– ∼ 80 million collisions
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MCNP6 Input File for Analytical Verification Problem

Analytical sphere problem

1 100 1 -10 imp:n=1

2 0 10 imp:n=0

10 so 1

sdef rad=d1

si1 0 1. $ 0 to 1 cm

sp1 -21 2 $ power law sampling for sphere

sb1 -21 -0.5 $ just for variance reduction

xs100 99001.01c 1e+06 99001.01c 0 1 1 16 0 0 2.5301e-08

m100 99001.01c 1 $ generated by simple_ace.pl

nps 1e8

ptrac file=hdf5 flushnps=1e7 event=col $ only save collisions

phys:n j 1000 $ analog capture below 1 GeV
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Analytical Verification Results
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FET solution is over 10× better than than best binned tally!

FET Order L2 Error Norm
1 1.78 × 10−1

2 2.49 × 10−2

3 1.03 × 10−2

4 4.82 × 10−3

5 2.53 × 10−3

6 2.00 × 10−3

7 1.21 × 10−3

8 8.84 × 10−4

9 7.49 × 10−4

10 1.14 × 10−3

20 1.70 × 10−3

30 1.53 × 10−3

Blue font = Minimum error

# Spatial Bins L2 Error Norm
10 1.96 × 10−2

25 8.23 × 10−3

100 1.43 × 10−2

250 3.27 × 10−2

1000 5.19 × 10−2

2500 1.13 × 10−1

10000 1.91 × 10−1

Blue font = Minimum error
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BeRP-Ni Benchmark

Problem Description
• Sphere of plutonium in an asymmetrical experimental setup
• Uniformly distributed spontaneous-fission source
Simulation Description
• MCNP 6.3.1 with Python post-processor
• 2 million particle histories
• PTRAC file containing only collision events

– ∼1.47 billion collisions
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MCNP6 Geometry for BeRP-Ni Experiment
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BeRP-Ni Benchmark Results
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Conclusions & Future Work

Conclusions:
• Collision-based FETs reconstruct smooth reaction-rate fields with 10× lower error

than conventional bins
• Post-processing overhead is negligible relative to MCNP6 run time
• Framework generalizes to any tally-able quantity and geometry
• Slab and cylindrical geometry FETs will be presented at the

2025 American Nuclear Society Winter Meeting in Washington D.C.

Future Work:
• Integrate into MCNP Python package
• Propagate statistical uncertainties to provide confidence intervals
• Embed FET logic directly into MCNP source code
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Questions?

Thank you!

vaquer@lanl.gov
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