
LA-UR-25-26049
Approved for public release; distribution is unlimited.

Title: A Python Tool for Reconstructing MCNP6 Particle Histories from an HDF5 PTRAC File

Author(s): Weaver, Colin Andrew
Vaquer, Pablo Andres

Intended for: 2025 MCNP User Symposium, 2025-07-07/2025-07-10 (Los Alamos, New Mexico, UNITED
STATES)

Issued: 2025-08-04 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

A Python Tool for Reconstructing MCNP6 Particle
Histories from an HDF5 PTRAC File
C.A. Weaver and P.A. Vaquer
2025 MCNP User Symposium
July 9, 2025

LA-UR-25-26049

Managed by Triad National Security, LLC,for the U.S. Department of Energy’s NNSA. 7/9/2025

Abstract

A Python tool for converting the MCNP6 HDF5 PTRAC file to a list of Python trees is
presented. The particle trees store MCNP6 simulated events for each history using
parent-child relationships, which ensures that branching processes are accurately
reproduced. A variety of post-processing scripts are presented and used in
conjunction with the Python particle trees to make special tallies that are currently
not available in the MCNP6 software and visualize the particle tracks.

7/9/2025 | 2

Table of Contents

Overview

Special Tallies

Visualization

Conclusions

7/9/2025 | 3

Overview

7/9/2025 | 4

PTRAC: Particle Track Output

The PTRAC card generates an output file of user-filtered particle events referred
to as a particle track file. Adding a FILE=HDF5 entry will produce an HDF5 output
file...

— MCNP® Code Version 6.3.1 Theory & User Manual [1]

7/9/2025 | 5

Particle Trees

• The MCNP6 HDF5 [2] PTRAC file stores events in the order that they occured in
the Monte Carlo random walk. Different histories may be out of order, if the
MCNP6 input file is executed in parallel, but this does not affect the order of
within-history events

• Bank events are transported after their progenitor is tracked to termination. The
PTRAC file does not store progenitor information and it is not known a priori which
event made the bank event

• A Python tool is developed with the anytree library to construct “particle trees”
that accurately preserve the MCNP6 branching processes

• Bank events are connected to their progenitor event by matching the (x, y, z)
coordinates of the bank event to the progenitor event. The same applies to source
events in a KCODE problem

7/9/2025 | 6

Scope and Limitations

The standalone implementation of this tool is called PyTrac (Python PTRAC).
Disclaimer: This name may change when it migrates to the MCNP Python package.

Fixed Source
from pytrac import PyTrac

pytrac = PyTrac('ptrac.h5')

k-Eigenvalue

from pytrac import PyTrac

pytrac = PyTrac('ptrac.h5',

kcode=True)

• PyTrac has been developed and
tested for neutron transport

• It successfully reconstructs the Monte
Carlo random walk with branching
processes for both fixed-source and
k-eigenvalue problems

• It does not work for problems that use
the “condensed history” Monte Carlo
method or similar methods that do not
record progenitor events in the
PTRAC file

7/9/2025 | 7

Special Tallies

7/9/2025 | 8

Source Sensitivity Coefficients

Consider an alternative form of Taylor’s
series:

f(x)− f(a)

f(a)
=

∞∑
n=1

Sn

(
x− a

a

)n

,

where the n-th order sensitivity
coefficient is

Sn ≡ an

n!

f (n)(a)

f(a)
.

Example, evaporation energy spectrum:

p(E) = CE exp(−E/a)

Thermal Surface Flux with 10% Error

Response 0.07858 ± 0.15574

Order 1 -0.94652 ± 0.20611
Order 2 0.78699 ± 0.21912

Propag. Unc. -0.86783

Fast Surface Flux with 10% Error

Response 1.17835 ± 0.02738

Order 1 0.05086 ± 0.04856
Order 2 -0.16130 ± 0.04956

Propag. Unc. 0.03473

7/9/2025 | 9

PyTrac for Source Sensitivity Coefficients

from pytrac import PyTrac

from pytrac.processors.source_sensitivity import SourceSensitivity

pytrac = PyTrac('ptrac.h5')

sen = SourceSensitivity(

pytrac,

sensitivity_filters={

"material_id": [1],

"cell_id": [10],

"particle_type": [1],

"source_type": [40],

"order": [1,2]

}

)

thermal =

lambda p: 2.5e-8 < p.energy < 1e-6

and p.surface_id == 100

sen.calculate_sensitivity(thermal)

sen.calculate_error(0.1)

fast =

lambda p: 0.001 < p.energy < 10

and p.surface_id == 100

sen.calculate_sensitivity(fast)

sen.calculate_error(0.1)

7/9/2025 | 10

Adjoint-based Feynman-Y Calculations
Figures provided by R.T. Johnson

Ongoing doctoral research is studying how the MCNP software can be used to
calculate stochastic neutron transport moments and Feynman-Y values.

0 2 4 6 8 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

M
om

en
ts

Moments
First Analytical Moment
Second Analytical Moment
First MC Adjoint Moment
Second MC Adjoint Moment

Stochastic neutron transport moments

0 100 200 300 400 500
Time Gate (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Y

Feynman-Y

Analytic Feynman-Y
List-Mode Feynman-Y
Forward Adjoint Feynman-Y

Feynman-Y time-gate profile

7/9/2025 | 11

Visualization

7/9/2025 | 12

PyTrac for Terminal Visualization

from pytrac import PyTrac

from pytrac.processors.print_trees import print_trees

pytrac = PyTrac('ptrac.h5')

print_trees(

pytrac.tree_root_nodes,

print_particle_fields=['reaction_type'],

particle_filter=lambda p: p.reaction_type == 16

)

pytrac = PyTrac('ptrac.h5', kcode=True)

print_trees(

pytrac.tree_root_nodes,

print_particle_fields=['cell_id', 'energy']

)

7/9/2025 | 13

Terminal Output for a Fixed-Source Problem

SRC: reaction_type=None

+-- COL: reaction_type=16 [FILTER]

|-- COL: reaction_type=2

| +-- SUR: reaction_type=None

| +-- TER: reaction_type=None

+-- BNK: reaction_type=2

+-- COL: reaction_type=2

+-- COL: reaction_type=2

+-- COL: reaction_type=2

+-- COL: reaction_type=2

+-- SUR: reaction_type=None

+-- TER: reaction_type=None

7/9/2025 | 14

Terminal Output for a k-Eigenvalue Problem
SRC: cell_id=10, energy=0.0745

+-- COL: cell_id=10, energy=0.0740

+-- COL: cell_id=10, energy=0.0735

+-- COL: cell_id=10, energy=0.0728

|-- COL: cell_id=10, energy=0.0720

| |-- COL: cell_id=10, energy=0.0718

| | +-- COL: cell_id=10, energy=0.0714

| | +-- COL: cell_id=10, energy=0.0703

| | +-- COL: cell_id=10, energy=0.0703

| | +-- TER: cell_id=10, energy=0.0703

| +-- SRC: cell_id=10, energy=2.5896

| +-- COL: cell_id=10, energy=2.5759

| +-- COL: cell_id=10, energy=2.5749

| +-- COL: cell_id=10, energy=2.5678

| +-- COL: cell_id=10, energy=2.5678

| +-- TER: cell_id=10, energy=2.5678

+-- SRC: cell_id=10, energy=0.7702

+-- COL: cell_id=10, energy=0.3962

+-- COL: cell_id=10, energy=0.3951

+-- COL: cell_id=10, energy=0.0240

+-- COL: cell_id=10, energy=0.0240

+-- TER: cell_id=10, energy=0.0240

7/9/2025 | 15

PyTrac for Unstructured Mesh Generation

from pytrac import PyTrac

from pytrac.processors.reconum import reconum

pytrac = PyTrac('ptrac.h5')

cell_ids = [10, 20]

for cell_id in cell_ids:

reconum(

pytrac.tree_root_nodes,

cell_id = cell_id

)

7/9/2025 | 16

ParaView [3] Visualization of Two Nested Spheres

7/9/2025 | 17

PyTrac for Particle Track Visualization

from pytrac import PyTrac

from pytrac.processors import make_vtp_and_pvtp_files, make_pvd_file

pytrac = PyTrac('ptrac.h5')

vtp_files, pvtp_files = make_vtp_and_pvtp_files(pytrac, "vtk_tracks")

make_pvd_file(vtp_files, "tracks.pvd")

make_pvd_file(pvtp_files, "total_tracks.pvd")

• VTP: A VTK PolyData file
– Contains tracks for single particle history

• PVTP: A Parallel VTK PolyData file
– Contains tracks for particle histories 1 through N
– Simply references a set of VTP files

• PVD: A ParaView Data collection file
– Used for stepping through a series of datasets/snapshots
– Partically useful for time-dependent simulations
– Simply references a set of files (VTP, PVTP, etc.)

7/9/2025 | 18

ParaView Visualization of Particle Tracks

7/9/2025 | 19

PyTrac to Visualize Tracks in k-Eigenvalue Problems

Step 1: Run MCNP with KCODE card to generate a SRCTP file
> mcnp6 i=mcnp_input_file.inp tasks 12

Step 2: Add a PTRAC card to the same input file and run MCNP again using
existing SRCTP as initial guess
> mcnp6 i=mcnp_input_file.inp src=srctp tasks 12

Step 3: Use PyTrac with kcode=True

from pytrac import PyTrac

from pytrac.processors import make_vtp_and_pvtp_files, make_pvd_file

pytrac = PyTrac('ptrac.h5', kcode=True)

vtp_files, pvtp_files = make_vtp_and_pvtp_files(pytrac, "vtk_tracks")

make_pvd_file(vtp_files, "tracks.pvd")

make_pvd_file(pvtp_files, "total_tracks.pvd")

7/9/2025 | 20

PyTrac to Make Movies for Visualizing Tracks

from pytrac import PyTrac

from pytrac.processors import make_vtp_and_pvtp_files, make_pvd_file

import pyvista as pv

import imageio

Load the ptrac.h5 file and create VTP files

pytrac = PyTrac('ptrac.h5', max_nps=200)

vtp_files, pvtp_files = make_vtp_and_pvtp_files(pytrac, "vtk_tracks")

Create a plotter and specify as camera view

pv.start_xvfb()

plotter = pv.Plotter(off_screen=True)

plotter.camera_position = [

(0, -250, 0), # camera location

(0, 0, 0), # focal point

(0, 0, 1) # "upwards" direction

]

images = []

Loop through each VTP file and save a screenshot

for vtp_file in vtp_files:

mesh = pv.read(vtp_file)

plotter.add_mesh(mesh)

img = plotter.screenshot()

images.append(img)

Write the images to a GIF file

imageio.mimsave("animated.gif", images, duration=0.05)

7/9/2025 | 21

Conclusions

7/9/2025 | 22

Summary and Outlook

• The MCNP6 HDF5 PTRAC file is used to reproduce the Monte Carlo random walk
of a particle history with branching processes

• This is useful for making special tallies that are currently unavailable in the MCNP
software and visualizing problems

• The standalone instance of this tool is called PyTrac but the intent is to relocate it
to the new MCNP Python package under a more generic name

7/9/2025 | 23

References

[1] Joel A. Kulesza et al. MCNP® Code Version 6.3.1 Theory & User Manual.
Tech. rep. LA-UR-24-24602, Rev. 1. Los Alamos, NM, USA: Los Alamos
National Laboratory, May 2024. DOI: 10.2172/2372634. URL:
https://www.osti.gov/biblio/2372634.

[2] The HDF Group. Hierarchical Data Format, version 5. URL:
https://github.com/HDFGroup/hdf5.

[3] Utkarsh Ayachit. The ParaView Guide: A Parallel Visualization Application.
Clifton Park, NY, USA: Kitware, Inc., 2015. ISBN: 1930934300.

7/9/2025 | 24

https://doi.org/10.2172/2372634
https://www.osti.gov/biblio/2372634
https://github.com/HDFGroup/hdf5

Questions?

Thank you!

caweaver@lanl.gov

vaquer@lanl.gov

7/9/2025 | 25

	Overview
	Special Tallies
	Visualization
	Conclusions
	References

