
LA-UR-24-31167
Approved for public release; distribution is unlimited.

Title: Docker Containers for MCNP® Development

Author(s): Zukaitis, Anthony J.

Intended for: Report

Issued: 2024-10-21 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

Docker Containers for MCNP®

development

Anthony J. Zukaitis

LA-UR-24-31167
October 17, 2024

1 Introduction

Containers are a revolutionary technology in software development and deployment that provides a
lightweight, portable environment for ensuring consistency across multiple computing environments.
In anticipation of the MCNP [1] 6.3.1 release, two Docker [2] container images have been released
on DockerHub [3] for general use. The MCNP source code is not included in the images, and users
are still required to obtain it through RSICC [4]. The images produced by Docker are compliant
with the OCI (Open Container Initiative) standards [5], ensuring compatibility with other container
engines such as Podman [6] or Kubernetes’ CRI-O [7].

Initially, the images are stored under the author’s personal space on DockerHub (docker.io/azukaitis),
but they will be relocated to a dedicated MCNP group space once approved. In the future, they
will also be available through the registry feature of the https://github.com/lanl/mcnp-containers
project.

The use of Docker provides a pre-configured environment for building and running MCNP,
ensuring reproducibility of results across various host architectures. This significantly improves
consistency when running MCNP on different systems. Notably, executables and installers from
the Docker images have successfully passed the MCNP development branch testing suite on x86-64
architectures, including Windows, macOS, and Linux operating systems.

Furthermore, testing has demonstrated compatibility with macOS Docker in emulation mode
on the latest Apple Mac M2 Ultra hardware, ensuring robust support even on the latest platforms.

In this document, we will provide a step-by-step guide to using the Docker images across multiple
platforms. Additionally, we will present performance numbers for building and running the MCNP
test suite.

Docker Containers for MCNP® development
Los Alamos National Laboratory Page i
Docker Containers for MCNP® development
Los Alamos National Laboratory Page i
Docker Containers for MCNP® development
Los Alamos National Laboratory Page i

https://github.com/lanl/mcnp-containers

2 Container Image Overview

Before diving into the specifics of the MCNP container image, it’s essential to define some key
terminology related to containers to avoid confusion.

1. Container Instantiation (or Container Runtime): This refers to the process of running
a container from an existing container image. This involves creating a new instance of the
container, which is then managed by the container engine.

2. Container Image: A container image is a pre-packaged template that includes the appli-
cation code, dependencies, and other necessary components. It is used to create instances of
containers.

3. Image Builder: The image builder is the tool responsible for creating a container image from
a set of instructions or a base image. Popular image builders include Dockerfile, Buildah [8],
and Kaniko [9].

4. Container Engine (or Runtime Environment): A container engine is the runtime envi-
ronment that allows containers to run on a host system. Popular container engines include
Docker, Podman, rkt, and cri-o. The container engine ensures process isolation, manages
resources, and provides networking support.

2.1 Dependencies

The base layer of the MCNP developer image is built upon the CentOS 7 image. Although CentOS
7 is an older Linux distribution, it is required for compatibility with our LANL Red Hat 7 servers.
This CentOS image serves as the foundation, representing a minimal Linux environment stripped
down to reduce its size.

To create the base image, we used the yum package manager to install basic system utilities
necessary for building additional software. If a package did not exist, it was compiled from source
and installed within the image. An example Dockerfile is attached in Appendix A.

The following key packages were included in the container image:

• gcc/g++/gfortran 11.3.0

• cmake 3.28.3

• OpenMPI 4.1.1

• HDF5 1.14.2

• python 3.12.3

• lyx (git hash: 16660d12) for compiling the MCNP manual

• qt 6.3.2

• Intel Classic 2021.9.0

Docker Containers for MCNP® development
Los Alamos National Laboratory Page 2-1
Docker Containers for MCNP® development
Los Alamos National Laboratory Page 2-1
Docker Containers for MCNP® development
Los Alamos National Laboratory Page 2-1

Figure 2-1: Two runs reported on our CDash server for the intel installer on a host machine (mccoy) as well as inside a
minimized base CentOS 7 image (runner-wnb...)

All packages were installed in /usr/local within the container image, and their respective
versions or git hashes were stored in the install path. To ensure proper integration of these tools,
environment variables such as LD_LIBRARY_PATH, CMAKE_PREFIX_PATH, and C_INCLUDE_PATH were
updated to include the appropriate paths.

By default, the user’s shell environment is set to source the intel_setvars.sh script, which
configures the environment variables required for the Intel compilers.

This image was able to not only pass all tests but also build the MCNP installers in multiple
configurations. These installers produced inside of the container, were tested on external hardware
as well as inside a minimal container. Two of the testing results for one of the installers on an
external linux host and inside a minimal container are shown in Figure 2-1.

ii

3 MCNP developer container usage

By default, the username within the container is set to be mcnp-developer. This mcnp-developer
user has administrator privileges and can do passwordless sudo commands within the container.
This means that once one has instantiated a container, they are free to install or build any packages
desired. Any modifications within the container will not modify the MCNP developer image. If
using a modified version of the container image is desired from an instantiated container, the "docker
commit" command can be used to save your modified version of the MCNP developer image.

The default compiler environment in the developer image is intel classic 2021.9.0. To use the
gcc 11.3.0 compiler, set the following environment compiler flags:

• CC=gcc

• CXX=g++

• FC=gfortran

In order to run problems or tests, install the mcnp data on the host using the MCNP data
manager [10] and set the DATAPATH environent variable to the install location on the host.

Podman has also shown to be a viable open source product developed by Redhat. If Podman is
desired, all of the following examples should work seemlessly by switching the docker command to
podman.

3.1 Container Usage on Linux

Docker is best installed using the the native package manager for your linux distribution. Although
the MCNP developer docker image is centos based, the host linux distribution is irrelevant.

Once Docker or Podman is installed, use the "docker pull" command to download the MCNP
6.3.1 developer image.� �
bash> docker pull docker.io/azukaitis/mcnp-developer-centos7-openmpi:6.3.1
6.3.1: Pulling from azukaitis/mcnp-developer-centos7-openmpi
93485e7767db: Already exists
f1f85fab4d91: Already exists
fd27e14ade45: Pull complete
Digest: sha256:685de73ada466b3e6b7e27041ec55d4e0274440c734f202cfac162b1da88ba38
Status: Downloaded newer image for azukaitis/mcnp-developer-centos7-openmpi:6.3.1
docker.io/azukaitis/mcnp-developer-centos7-openmpi:6.3.1� �

From time to time, these images will be updated as bugs are addressed and features are added.
Therefore the hashes of the layers and checksum may change over time.

A good practice for using Docker and the MCNP developer image is to create a unique working
directory in the users home directory on the host system (mywork). In this directory, copy the
MCNP source code into that directory.� �
bash> cd $HOME
bash> mkdir mywork
bash> cp -r my-MCNP-source-code $HOME/mywork/MCNP� �

The container will be started with the following flags keeping in mind that your home directory
in the container will be /home/mcnp-developer:

• xhost +localhost: allows the localhost access to the X server.

Docker Containers for MCNP® development
Los Alamos National Laboratory Page 3-1
Docker Containers for MCNP® development
Los Alamos National Laboratory Page 3-1
Docker Containers for MCNP® development
Los Alamos National Laboratory Page 3-1

MCNP developer container usage

• -it: interactve and assign a tty

• –-rm : remove the container once exited

• –-volume $DATAPATH:/mcnpdata : mounts the host mcnp data directory to /mcnpdata
inside the container.

• –-env DATAPATH=/mcnpdata : sets the DATAPATH environment variable inside the con-
tainer to /mcnpdata inside the container.

• –-env DISPLAY=host.docker.internal:0 : sets the DISPLAY environment variable to a special
value that Docker uses to forward X11 display fuctionality.

• –-name mcnp-container : sets the name of the container to mcnp-container.

• –-volume $HOME/mywork:/home/mcnp-developer/mywork : mounts your unique working
directory mywork in the /home/mcnp-developer/mywork directory inside the container.

Using this command with the "–-" flags can be repeated multiple times with out worry about
creating multiple containers and needing to manage them. This is for pure convenience for the
examples in this report.� �
bash> xhost +localhost
bash> docker run -it --rm \

--volume $DATAPATH:/mcnpdata \
--env DATAPATH=/mcnpdata \
--env DISPLAY=host.docker.internal:0 \
--name mcnp-container \
--volume $HOME/mywork:/home/mcnp-developer/mywork \
docker.io/azukaitis/mcnp-developer-centos7-openmpi:6.3.1 /bin/bash

:: initializing oneAPI environment ...
bash: BASH_VERSION = 4.2.46(2)-release
args: Using "$@" for setvars.sh arguments:

:: compiler -- latest
:: debugger -- latest
:: dev-utilities -- latest
:: mpi -- latest
:: tbb -- latest
:: oneAPI environment initialized ::

[mcnp-developer@8db90d07c665 ~]$� �
On Windows, the DOS and Powershell environments have different ways to dereference envi-

ronment variables. Therefore the docker run command must be modified to do so. In addition, the
continue line character is different. For example in DOS, the command would be:� �
bash> docker run -it --rm ^

--volume %DATAPATH%:/mcnpdata ^
--env DATAPATH=/mcnpdata ^
--env DISPLAY=host.docker.internal:0 ^
--name mcnp-container ^
--volume %HOME%/mywork:/home/mcnp-developer/mywork ^
docker.io/azukaitis/mcnp-developer-centos7-openmpi:6.3.1 /bin/bash

:: initializing oneAPI environment ...
bash: BASH_VERSION = 4.2.46(2)-release
args: Using "$@" for setvars.sh arguments:

:: compiler -- latest

Docker Containers for MCNP® development
3-2 Page Los Alamos National Laboratory

Docker Containers for MCNP® development
3-2 Page Los Alamos National Laboratory

Docker Containers for MCNP® development
3-2 Page Los Alamos National Laboratory

MCNP developer container usage

:: debugger -- latest
:: dev-utilities -- latest
:: mpi -- latest
:: tbb -- latest
:: oneAPI environment initialized ::

[mcnp-developer@8db90d07c665 ~]$� �
(On Windows, xhost is not available as part of the Windows versions of the X11 server)

Next we will use cmake to configure, build, and run the regressions suite as one normally
would [11]. This is the 6.3.0 build guide since the 6.3.1 build guide has not been released at this
time. In the example below, extranious output is replaced with "***".� �
[mcnp-developer@8db90d07c665 ~]$ cd mywork/MCNP
[mcnp-developer@8db90d07c665 ~]$ mkdir build; cd build
[mcnp-developer@f3849f55a536 build]$ cmake ../MCNP -DCMAKE_BUILD_TYPE=Release
-- CMAKE_BUILD_TYPE is Release
-- The C compiler identification is Intel 2021.9.0.20230302
-- The CXX compiler identification is Intel 2021.9.0.20230302
-- The Fortran compiler identification is Intel 2021.9.0.20230302
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done

-- Configuring done (43.9s)
-- Generating done (2.8s)
-- Build files have been written to: /home/mcnp-developer/mywork/MCNP/build
[mcnp-developer@8db90d07c665 ~]$ make -j $(nproc)

[100%] Linking CXX static library libmcnp_Fortran.a
[100%] Built target mcnp_Fortran
[100%] Building Fortran object CMakeFiles/mcnp.dir/Source/src/main.F90.o
[100%] Linking Fortran executable MCNP
[100%] Built target mcnp
[mcnp-developer@8db90d07c655 ~]$ ctest -j $(nproc) -R regression
Test project /home/mcnp-developer/mywork/MCNP/build

Start 79: mcnp.regression.inp07.initialize
Start 93: mcnp.regression.inp09.initialize

Start 406: mcnp.regression.inp155.produces.inp155r.h5

1508/1510 Test #406: mcnp.regression.inp155.produces.inp155r.h5
... Passed 0.01 sec

1509/1510 Test #405: mcnp.regression.inp155.diff.inp155m.inp155.mctl
.. Passed 0.04 sec

1510/1510 Test #404: mcnp.regression.inp155.diff.inp155o.inp155.outp
.. Passed 0.05 sec

100% tests passed, 0 tests failed out of 1510� �
It is noted here that we use the container’s "nproc" command to determine the number of jobs

to build and test with. This ensures we are using the maximum number of resources allocated to
the container. On systems with many cores and mounted file systems, the number may be needed
to be set explicitly to something smaller. Using Docker on the MacOS operating system, one may
also have to increase the amount of memory allotted to the container in the Docker->Settings-
>Resources menu. This is to account for the amount of memory the intel compiler requires per job
during compilation.

Once the MCNP executable is built, one can simply add the full path of the directory to the
PATH environment variable. To run your executable.� �
[mcnp-developer@8db90d07c665 ~]$ export PATH=/home/mcnp-developer/mywork/MCNP/build:$PATH
[mcnp-developer@8db90d07c665 ~]$ which MCNP
~/mywork/MCNP/build/MCNP� �
Docker Containers for MCNP® development
Los Alamos National Laboratory Page 3-3
Docker Containers for MCNP® development
Los Alamos National Laboratory Page 3-3
Docker Containers for MCNP® development
Los Alamos National Laboratory Page 3-3

To run your personal input files, the container will need access to them from the host. This
is most easily accomplished by putting them into the mounted "mywork" directory. Or to keep
the MCNP source code separate, one could just mount an additional directory from the host that
contains the input files. In this example, we copied inp04.inp to the mywork directory on the host.� �
[mcnp-developer@7a4d4d997d8d mywork]$ MCNP i=inp04.inp

Code Name & Version = MCNP, 6.3.1, development
Copyright Triad National Security, LLC/LANL/DOE - see LICENSE file

_/ _/ _/_/_/ _/ _/ _/_/_/ _/_/_/
// _/_/ _/ _/_/ _/ _/ _/ _/

_/ _/ _/ _/ _/ _/ _/ _/_/_/ _/_/_/
_/ _/ _/ _/ _/_/ _/ _/ _/

_/ _/ _/_/_/ _/ _/ _/ _/_/

MCNP ver=6.4.0, ld=06/12/24 09/19/24 10:23:05
Source version = devel-679dad5c3e

comment. Physics models disabled.
comment. using random number generator 1, initial seed = 19073486328125

ctm = 0.00 nrn = 1206364
dump 2 on file runtpe.h5 nps = 1000 coll = 46182
tally data written to file mctal
mcrun is done� �

3.2 VSCode

During testing, we also were able to integrate the container with VSCode with the Remote Develop-
ment extension. Using the "Other containers" pulldown menu, select the container. Then select the
right arrow to connect to the existing container that was created with the commands above. Next
open the folder inside the container where your MCNP source code is located. Once connected, just
start a terminal and issue your cmake and ctest commands.

iv

4 Performance

The performance of various components of the developer workflow has been broken down into the
following subsections. When comparing these results, please note that the host system’s LANL
required endpoint protection/security solutions, such as Nessus, CrowdStrike Falcon, and other
security software may impact performance.

4.1 Windows

On the Windows platform, we used Docker version 20.10.7 to run our experiments. The host system
was running on a dual socket Intel Xeon Platinum processor with 88 cores in total. The results of
our experiments are presented in Table 4-1. We compared the timing performance of building and
testing MCNP between the host system and the Docker container environment. These numbers
should be taken with a grain of salt as the Intel Windows compiler and Intel Linux compiler are
completely different entities.

Step command Host Container
Configure cmake ../ 130s 51s
Build cmake –build . – -j 44 143s 98s
All Tests ctest -j 44 960s 586s

Table 4-1: Timing comparisons between the host and Docker container environments for building MCNP onWindows.

Overall, our results show that the Docker continer environment was faster than the host system
in terms of building and testing MCNP.

4.2 Linux

On the Linux platform, we used Docker version 1.13.1 to run our experiments. The host system
was running on a dual socket Intel Xeon Platinum 8160 processor with 88 cores in total.

The results of our experiments are presented in Table 4-2. We compared the timing performance
of building and testing MCNP between the host system and the Docker container environment.

Step command Host Container
Configure cmake ../ 58s 57s
Build cmake –build . – -j 88 94s 94s
All Tests ctest -j 88 343s 360s

Table 4-2: Timing comparisons between the host and Docker container environments for building MCNP on Linux.

Here, it was measured that the Docker container environment performed similarly to the host
system in terms of building MCNP, but only slightly slower when running tests.

4.3 MacOS M2 Ultra

On the MacOS platform, we used Docker version 20.10.7 to run our experiments. The host system
was running on an Apple ARM M2 ultra processor with 23 cores in total. We used the MCNP

Docker Containers for MCNP® development
Los Alamos National Laboratory Page 4-1
Docker Containers for MCNP® development
Los Alamos National Laboratory Page 4-1
Docker Containers for MCNP® development
Los Alamos National Laboratory Page 4-1

https://www.tenable.com/products/nessus
https://www.crowdstrike.com/products/falcon/

developer image to build and test our code. This capability fills a large need when one wants to
develop on the Mac since the Intel compiler does not support the Mac M(x) architechture. Using
Dockers internal emulation mode, all of the tests past and performance is good. Since there was
no host software dependency stack for intel to compare with, we used the homebrew[12] package
manager on the host to install the GNU compiler suite and other necessary dependencies.

The results of our experiments are presented in Table 4-3. We measured the timing performance
of building and testing MCNP using the Docker x86-64 emulation capability. In general, the GNU
compiler is always much faster than the Intel compiler since it tends to optimize muych less. None
the less, the x86 emulated intel container times are comparable to the host Windows intel timings
with only half of the cores.

Step command Intel Container Host GNU compiler
Configure cmake ../ 67s 33s
Build cmake –build . – -j 22 131s 54s
All Tests ctest -j 22 1020s 360s

Table 4-3: Timing comparisons of building MCNP on MacOS using Docker container between the Intel Compiler in the mcnp
developer container and the GNU compiler suite on the host.

ii

5 Conclusions

Overall, our experience with the Docker container engine system was quite pleasing. We found that
taking a capability designed to be isolated and integrating it with the host can be managed with
a few developer-side scripts. The X11 graphics side has been inconsistent across all platforms in
recent years, but we were rewarded by seeing it finally have a consistent interface now.

In addition to our technical accomplishments, we also noted some key considerations for users
of Docker and containerization technologies. For example, the Docker licensing structure can be
complex, which may be a concern for those seeking open-source solutions. In such cases, Podman
is an excellent alternative to Docker.

Moreover, on Windows platforms, having both Podman and Docker installed on the same sys-
tem can be challenging due to how Windows manages the underlying virtual machines needed for
these capabilities. Therefore, careful consideration should be given to the choice of installing both
containerization technologies.

Looking ahead, our future work will focus on transitioning away from production Red Hat
legacy support and modern Linux distributions to enable native package managers to handle many
dependencies. This effort will also involve creating multi-platform images that directly support
both ARM and x86 architectures. To achieve this goal, we plan to migrate MCNP from the Intel
compiler to the GCC compiler.

By taking these steps, we aim to improve the performance, efficiency, and maintainability of our
containerized applications, while also ensuring compatibility with a broader range of platforms and
architectures.

Docker Containers for MCNP® development
Los Alamos National Laboratory Page i
Docker Containers for MCNP® development
Los Alamos National Laboratory Page i
Docker Containers for MCNP® development
Los Alamos National Laboratory Page i

References

[1] Joel Aaron Kulesza et al. MCNP® Code Version 6.3.0 Theory & User Manual. Tech. rep.
LA-UR-22-30006, Rev. 1. Los Alamos, NM, USA: Los Alamos National Laboratory, Sept.
2022. doi: 10.2172/1889957. url: https://www.osti.gov/biblio/1889957.

[2] Docker, Inc. Docker Documentation. Accessed: 2024-09-04. 2024. url: https://docs.docker.
com/.

[3] Inc. Docker. Docker Hub: The World’s Leading Service for Finding and Sharing Container
Images. Accessed: 2024-09-16. 2024. url: https://hub.docker.com.

[4] Radiation Safety Information Computational Center. RSICC: Collecting, Analyzing, and Dis-
seminating Radiation Transport and Safety Software. Accessed: 2024-09-16. 2024. url: https:
//rsicc.ornl.gov.

[5] Open Container Initiative. Open Container Initiative: Image Specification. https://specs.
opencontainers.org/image-spec. Accessed: 2024-09-04. 2024.

[6] Inc. Red Hat. Podman: A Tool for Managing OCI Containers and Pods. Accessed: 2024-09-16.
2024. url: https://podman.io.

[7] Kubernetes. Accessed: 2024-09-16. https://kubernetes.io/.

[8] Inc. Red Hat. Buildah: A tool that facilitates building OCI container images. https://github.
com/containers/buildah. Accessed: 2024-09-26. 2024.

[9] Google LLC. Kaniko: Build Container Images In Kubernetes. https://github.com/GoogleContainerTools/
kaniko. Accessed: 2024-09-26. 2024.

[10] Colin James Josey and Jeremy Lloyd Conlin. LANL Nuclear Data Manager Format Specifi-
cation v1.0. Tech. rep. LA-UR-22-28306. Los Alamos, NM, USA: Los Alamos National Labo-
ratory, Aug. 2022. doi: 10.2172/1880470. url: https://www.osti.gov/biblio/1880470.

[11] Jeffrey S. Bull et al. MCNP® Code Version 6.3.0 Build Guide. Tech. rep. LA-UR-22-32851,
Rev. 1. Los Alamos, NM, USA: Los Alamos National Laboratory, Dec. 2022. doi: 10.2172/
1906011. url: https://www.osti.gov/biblio/1906011.

[12] Homebrew Team. Homebrew: The Missing Package Manager for macOS (or Linux). Available
at: https://brew.sh/. 2024.

https://doi.org/10.2172/1889957
https://www.osti.gov/biblio/1889957
https://docs.docker.com/
https://docs.docker.com/
https://hub.docker.com
https://rsicc.ornl.gov
https://rsicc.ornl.gov
https://specs.opencontainers.org/image-spec
https://specs.opencontainers.org/image-spec
https://podman.io
https://kubernetes.io/
https://github.com/containers/buildah
https://github.com/containers/buildah
https://github.com/GoogleContainerTools/kaniko
https://github.com/GoogleContainerTools/kaniko
https://doi.org/10.2172/1880470
https://www.osti.gov/biblio/1880470
https://doi.org/10.2172/1906011
https://doi.org/10.2172/1906011
https://www.osti.gov/biblio/1906011
https://brew.sh/

A Appendix A - Dockerfiles

Below is the latest Dockerfile used to create the mcnp-developer-centos7-openmpi image 6.1.3. This
was used to build the images before the end of life of CentOS 7. After this date, the images were
patched by hand to fix deprecated yum mirrors. When the original image was built from this
dockerfile, it depended upon on the the Software Collections (SCL) repository which appears to
be no longer supported. The image has been subsequentally patched to disable this repository and
others that refer to to the disabled repository site mirrorlist.centos.org.

FROM --platform=linux/amd64 centos:7 as base

Ensure proxies are set correctly
ARG http_proxy
ENV http_proxy $http_proxy
ENV HTTP_PROXY $http_proxy
ARG https_proxy
ENV https_proxy $https_proxy
ENV HTTPS_PROXY $https_proxy
ARG no_proxy
ENV no_proxy $no_proxy

RUN yum update -y

RUN yum install -y centos-release-scl \
nc epel-release gcc \
coreutils grep util-linux-ng procps-ng \
findutils psmisc sed gawk which sudo perl \
sudo file patchelf bzip2 wget

RUN yum update -y \
&& yum install -y \

rh-git218-git \
rh-git218-git-lfs

ENV PKG=/opt/rh/rh-git218/root
ENV PATH=${PKG}/usr/bin:$PATH
ENV LD_LIBRARY_PATH=${PKG}/usr/lib64:${PKG}/usr/lib:${LD_LIBRARY_PATH}
ENV MANPATH=${PKG}/usr/share/man:$MANPATH
RUN git --version
RUN git-lfs --version

RUN echo "[oneAPI]" >> /etc/yum.repos.d/oneAPI.repo \
&& echo "name=Intel oneAPI repository" >> /etc/yum.repos.d/oneAPI.repo \
&& echo "baseurl=https://yum.repos.intel.com/oneapi" >> /etc/yum.repos.d/oneAPI.repo \
&& echo "enabled=1" >> /etc/yum.repos.d/oneAPI.repo \
&& echo "gpgcheck=1" >> /etc/yum.repos.d/oneAPI.repo \
&& echo "repo_gpgcheck=1" >> /etc/yum.repos.d/oneAPI.repo \

Docker Containers for MCNP® development
Los Alamos National Laboratory Page A-1
Docker Containers for MCNP® development
Los Alamos National Laboratory Page A-1
Docker Containers for MCNP® development
Los Alamos National Laboratory Page A-1

mirrorlist.centos.org

Appendix A - Dockerfiles

&& echo "gpgkey=https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB" >> /etc/yum.repos.d/oneAPI.repo \
&& yum update -y \
&& yum install -y \

intel-oneapi-compiler-fortran-2023.1.0 \
intel-oneapi-compiler-dpcpp-cpp-and-cpp-classic-2023.1.0

WORKDIR /tmp
ENV GCC_VERSION=11.3.0
ENV PREFIX=/usr/local/gcc-11.3.0
ENV PATH=$PREFIX/bin:$PATH
ENV LD_LIBRARY_PATH=$PREFIX/lib64:$PREFIX/lib:$LD_LIBRARY_PATH
RUN wget http://ftp.gnu.org/gnu/gcc/gcc-$GCC_VERSION/gcc-$GCC_VERSION.tar.gz \

&& tar -xzf gcc-$GCC_VERSION.tar.gz \
&& rm gcc-$GCC_VERSION.tar.gz

Build and install GCC
RUN cd gcc-$GCC_VERSION \

&& ./contrib/download_prerequisites \
&& mkdir build \
&& cd build \
&& ../configure --prefix=$PREFIX --enable-languages=c,c++,fortran --disable-multilib

RUN yum install -y make

RUN cd gcc-$GCC_VERSION/build \
&& make -j$(nproc) \
&& make install \
&& cd / \
&& rm -rf /tmp/*

RUN g++ --version
RUN gfortran --version
RUN gcc --version

RUN source /opt/intel/oneapi/setvars.sh; ifort -v; icc -v; icpc -v

ENV PKG=/opt/rh/rh-git218/root
ENV PATH=${PKG}/usr/bin:$PATH
ENV LD_LIBRARY_PATH=${PKG}/usr/lib64:${PKG}/usr/lib:${LD_LIBRARY_PATH}
ENV MANPATH=${PKG}/usr/share/man:$MANPATH
RUN git --version
RUN git-lfs --version

ENV PKG=/opt/rh/httpd24/root
ENV PATH=${PKG}/usr/bin:$PATH
ENV LD_LIBRARY_PATH=${PKG}/usr/lib64:${PKG}/usr/lib:${LD_LIBRARY_PATH}

Docker Containers for MCNP® development
A-2 Page Los Alamos National Laboratory

Docker Containers for MCNP® development
A-2 Page Los Alamos National Laboratory

Docker Containers for MCNP® development
A-2 Page Los Alamos National Laboratory

Appendix A - Dockerfiles

ENV MANPATH=${PKG}/usr/share/man:$MANPATH
RUN curl --version

WORKDIR /tmp
RUN curl -LO https://www.openssl.org/source/openssl-1.1.1w.tar.gz \

&& tar -xzvf openssl-1.1.1w.tar.gz \
&& cd openssl-1.1.1w \
&& ./config --prefix=/usr/local --openssldir=/usr/local shared \
&& make \
&& make install

ENV LD_LIBRARY_PATH=/usr/local/lib64:${LD_LIBRARY_PATH}

RUN openssl version

WORKDIR /tmp
ENV PYTHON_VERSION=3.12.3

RUN yum install -y zlib-devel \
&& curl -LO https://www.python.org/ftp/python/${PYTHON_VERSION}/Python-${PYTHON_VERSION}.tgz \
&& tar -xzf Python-${PYTHON_VERSION}.tgz \
&& mkdir build; cd build \
&& ../Python-${PYTHON_VERSION}/configure \

--prefix=/usr \
--with-openssl=/usr/local \
--enable-shared \
--with-ensurepip=install \

&& ldconfig

RUN cd /tmp/build \
&& make -j$(nproc) \
&& make install \
&& python3 --version \
&& cd /tmp; rm -rf /tmp/*

ENV LD_LIBRARY_PATH=/usr/lib:${LD_LIBRARY_PATH}

RUN python3 --version

RUN python3 -m pip install requests

RUN python3 -c "import requests"

WORKDIR /tmp

Download CMake 3.24.3 source and install

Docker Containers for MCNP® development
Los Alamos National Laboratory Page A-3
Docker Containers for MCNP® development
Los Alamos National Laboratory Page A-3
Docker Containers for MCNP® development
Los Alamos National Laboratory Page A-3

Appendix A - Dockerfiles

ENV CMAKE_VERSION=3.24.3
ENV CMAKE_ROOT=/usr/local/cmake-${CMAKE_VERSION}
RUN curl -LO https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz
RUN tar -xf cmake-${CMAKE_VERSION}.tar.gz \

&& cd cmake-${CMAKE_VERSION} \
&& ./configure --prefix=${CMAKE_ROOT} -- -DCMAKE_USE_OPENSSL=OFF \
&& make -j $(nproc) \
&& make install

ENV PATH="${CMAKE_ROOT}/bin:$PATH"
RUN cmake --version

Download and install openmpi 4.1.1
ENV OPENMPI_VERSION=4.1.1
ENV OPENMPI_DIR=/usr/local/openmpi-${OPENMPI_VERSION}
WORKDIR /tmp

RUN curl -LO https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-${OPENMPI_VERSION}.tar.gz
RUN tar -xf openmpi-${OPENMPI_VERSION}.tar.gz \

&& rm openmpi-${OPENMPI_VERSION}.tar.gz \
&& cd openmpi-${OPENMPI_VERSION} \
&& ./configure --prefix=${OPENMPI_DIR} \
&& make -j$(nproc) >/dev/null \
&& make install >/dev/null \
&& cd / \
&& rm -rf /tmp/*

Set environment variables for OpenMPI
ENV PATH="${OPENMPI_DIR}/bin:${PATH}"
ENV LD_LIBRARY_PATH="${OPENMPI_DIR}/lib64:${LD_LIBRARY_PATH}"
ENV LD_LIBRARY_PATH="${OPENMPI_DIR}/lib:${LD_LIBRARY_PATH}"
ENV MANPATH=${OPENMPI_DIR}/share/man:${MANPATH}
ENV C_INCLUDE_PATH=${OPENMPI_DIR}/include

Verify OpenMPI installation
RUN mpicc --version && mpicxx --version && mpifort --version

Download and install HDF5
WORKDIR /tmp
ENV HDF5_VERSION=1.14.2
ENV HDF5_DIR=/usr/local/hdf5-${HDF5_VERSION}

RUN curl -LO https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.14/hdf5-${HDF5_VERSION}/src/hdf5-${HDF5_VERSION}.tar.gz

RUN tar -xf hdf5-${HDF5_VERSION}.tar.gz \
&& rm hdf5-${HDF5_VERSION}.tar.gz \

Docker Containers for MCNP® development
A-4 Page Los Alamos National Laboratory

Docker Containers for MCNP® development
A-4 Page Los Alamos National Laboratory

Docker Containers for MCNP® development
A-4 Page Los Alamos National Laboratory

Appendix A - Dockerfiles

&& mkdir build \
&& cd build \
&& cmake ../hdf5-${HDF5_VERSION} \

-DCMAKE_INSTALL_PREFIX=${HDF5_DIR} \
-DCMAKE_BUILD_TYPE=Release \
-DHDF5_BUILD_TOOLS=ON \
-DHDF5_ENABLE_PARALLEL=OFF \
-DHDF5_ENABLE_Z_LIB_SUPPORT=ON \
-DHDF5_BUILD_EXAMPLES=OFF \

&& cmake --build . --parallel $(nproc) \
&& cmake --install . >/dev/null \
&& cd / \
&& rm -rf /tmp/*

Set environment variables for HDF5
ENV PATH="${HDF5_DIR}/bin:${PATH}"
ENV LD_LIBRARY_PATH="${HDF5_DIR}/lib:${LD_LIBRARY_PATH}"
ENV LD_LIBRARY_PATH="${HDF5_DIR}/lib64:${LD_LIBRARY_PATH}"
ENV MANPATH=${HDF5_DIR}/share/man:${MANPATH}
ENV C_INCLUDE_PATH=${HDF5_DIR}/include

WORKDIR /tmp
ENV LYX_VERSION=16660d12
ENV LYX_ROOT=/usr/local/lyx-${LYX_VERSION}

ENV CC=/usr/local/gcc-11.3.0/bin/gcc
ENV CXX=/usr/local/gcc-11.3.0/bin/g++
RUN yum install -y qt5-qtbase-devel qt5-qtsvg-devel \

&& git clone https://git.lyx.org/repos/lyx.git \
&& cd lyx; git reset --hard ${LYX_VERSION}; cd .. \
&& mkdir build \
&& cd build \
&& cmake ../lyx -DCMAKE_INSTALL_PREFIX=${LYX_ROOT} -DLYX_INSTALL=ON \
&& cmake --build . --parallel $(nproc) >/dev/null \
&& cmake --install . >/dev/null \
&& cd / \
&& rm -rf /tmp/* \
&& yum clean all \
&& cd ${LYX_ROOT}/bin \
&& ln -s ./lyx2.4 ./lyx

ENV PATH=${LYX_ROOT}/bin:${PATH}
ENV MANPATH=${LYX_ROOT}/share/man:${MANPATH}
RUN lyx --version

Install ninja for Qt6

Docker Containers for MCNP® development
Los Alamos National Laboratory Page A-5
Docker Containers for MCNP® development
Los Alamos National Laboratory Page A-5
Docker Containers for MCNP® development
Los Alamos National Laboratory Page A-5

Appendix A - Dockerfiles

WORKDIR /tmp
RUN curl -LO https://github.com/ninja-build/ninja/archive/master.tar.gz \

&& tar -xf master.tar.gz \
&& cd ninja-master \
&& ./configure.py --bootstrap \
&& mv ninja /usr/local/bin \
&& rm -rf /tmp/*

RUN ninja --version

RUN yum install -y \
dbus at-spi2-atk at-spi2-core \
mesa-libGLU-devel libXrender-devel libX11-devel \
libXi-devel \
libxkbcommon-devel libxkbcommon-x11-devel \
xcb \
libfontconfig1-dev \
libfreetype6-dev

ENV QT_VERSION=6.3.2
ENV QTDIR=/usr/local/qt-${QT_VERSION}
WORKDIR /tmp
RUN curl -LO https://download.qt.io/archive/qt/6.3/${QT_VERSION}/single/qt-everywhere-src-${QT_VERSION}.tar.xz \

&& cmake --version \
&& tar -xf qt-everywhere-src-${QT_VERSION}.tar.xz \
&& rm qt-everywhere-src-${QT_VERSION}.tar.xz \
&& mkdir build \
&& cd build \
&& ../qt-everywhere-src-${QT_VERSION}/configure \

-prefix ${QTDIR} \
-opensource -confirm-license \
-release \
-skip qtwebengine \
-no-icu \
-xcb \
-nomake examples \
-nomake tests \

&& cmake --build . --parallel $(nproc) \
&& cmake --install . >/dev/null \
&& cd / \
&& rm -rf /tmp/* \
&& yum clean all

Reset environment variables for Qt
ENV PATH="${QTDIR}/bin:${PATH}"
ENV LD_LIBRARY_PATH="${QTDIR}/lib:${LD_LIBRARY_PATH}"

Docker Containers for MCNP® development
A-6 Page Los Alamos National Laboratory

Docker Containers for MCNP® development
A-6 Page Los Alamos National Laboratory

Docker Containers for MCNP® development
A-6 Page Los Alamos National Laboratory

ENV LD_LIBRARY_PATH="${QTDIR}/lib64:${LD_LIBRARY_PATH}"
ENV MANPATH=${QTDIR}/share/man:${MANPATH}
ENV C_INCLUDE_PATH=${QTDIR}/include:${C_INCLUDE_PATH}

Download CMake 3.28.3 source and install
WORKDIR /tmp
ENV CMAKE_VERSION=3.28.3
ENV CMAKE_ROOT=/usr/local/cmake-${CMAKE_VERSION}
ENV PATH="${CMAKE_ROOT}/bin:$PATH"
RUN curl -LO https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz
RUN tar -xf cmake-${CMAKE_VERSION}.tar.gz \

&& cd cmake-${CMAKE_VERSION} \
&& ./configure --prefix=${CMAKE_ROOT} -- -DCMAKE_USE_OPENSSL=OFF \
&& make -j $(nproc) \
&& make install \
&& cd /tmp \
&& rm -rf ./* \
&& cmake --version

RUN python3 -m pip install h5py setuptools matplotlib

RUN adduser mcnp-developer \
&& usermod -a -G wheel mcnp-developer \
&& echo ’%wheel ALL=(ALL) NOPASSWD:ALL’ >> /etc/sudoers \
&& yum clean all

SHELL ["/bin/bash","-l","-c"]
WORKDIR /home/mcnp-developer
RUN echo "source /opt/intel/oneapi/setvars.sh" >> .bashrc
USER mcnp-developer
ENV HDF5_USE_FILE_LOCKING=FALSE
ENV OMP_STACKSIZE=256M
ENV FC=ifort
ENV CC=icc
ENV CXX=icpc

vii

	1 Introduction
	2 Container Image Overview
	2.1 Dependencies

	3 MCNP developer container usage
	3.1 Container Usage on Linux
	3.2 VSCode

	4 Performance
	4.1 Windows
	4.2 Linux
	4.3 MacOS M2 Ultra

	5 Conclusions
	References
	A Appendix A - Dockerfiles

