
LA-UR-22-28306
Approved for public release; distribution is unlimited.

Title: LANL Nuclear Data Manager Format Specification v1.0

Author(s): Josey, Colin James
Conlin, Jeremy Lloyd

Intended for: Report

Issued: 2022-08-09

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

LANL Nuclear Data Manager Format Specification v1.0

Colin Josey, cjosey@lanl.gov, XCP-3,
Jeremy Lloyd Conlin, XCP-5

Los Alamos National Laboratory

August 8, 2022

1 Introduction
The LANL nuclear data manager tool is a Python utility that downloads nuclear data from the Nuclear
Data Team’s website at https://nucleardata.lanl.gov, arranges it, and configures directory listings for
nuclear codes such as the MCNP code to consume. In this document, the Version 1.0 API that this
tool relies on will be discussed, which will show how an external provider of nuclear data could set up
their website to provide a compatible implementation.

2 The API
There are three main components in the API. First, there is a libraries.json file that provides a
directory listing of libraries available on the server. Second, each library file has a particular layout.
Finally, there is a code_support.json format that can be used to generate directory listings of a
particular format for other codes.

Within this document, JSON files [1] will be shown. Text shown within C-style inline comments
(/* */) are comments. Within these comments, the format of the data will be described, as well as
a note on whether or not the object is a required element. In all JSON files, the dictionary entry
comment is always reserved for annotation purposes, and the nuclear data tool will never process such
a token. Further, all dates follow ISO 8601 [2].

2.1 libraries.json

The outermost format is described by Listing 1. There is a header with a libraries.json format
version, a date of publication, and an optional root object to point users at where more information
can be found. The ACE Libraries dictionary then contains each library available on the website,
by name. Note that while the token specifies ACE libraries, other files can be supported, as will be
discussed in Section 2.2. It is important to note that library name entries must be unique keys after
converted to lower-case. As a result, two libraries.json cannot describe a foo library at the same
time, nor can there be a foo and a Foo.

The next format component is the library description block, as shown in Listing 2. The header
includes a description, the date, whether or not this library counts as production for the command line
argument --all production in the data downloader, and optionally a URL. The date is used to sort
the libraries in the default sorting. Newer libraries will be placed before older libraries in the default
directory listing generation order, under the assumption that newer libraries were only released due to
being superior.

Within the files entry, there are one or more file descriptors. The data downloader will only
download one file for each library, so the contents of each compressed archive must be complete.
Multiple files are allowed to allow a client to select a preferred compression format. Within a file

1

mailto:cjosey%40lanl.gov
https://nucleardata.lanl.gov

Listing 1: Libraries JSON Outer Format

1 {
2 "version": "/* Semantic version , currently 1.0.0, required */",
3 "date": "/* Date updated , YYYY -MM-DD , required */",
4 "root": "/* URL to website , optional */",
5 "ACE Libraries": {
6 "/* Library name 1 */": /* ACE Library Desc., See Listing 2 */,
7 "/* Library name 2 */": /* ACE Library Desc., See Listing 2 */,
8 /* More Libraries ... */
9 }

10 }

Listing 2: ACE Library Descriptor

1 {
2 "description": "/* Short description of library , required */",
3 "production": /* bool , library suitable in production?, required */,
4 "url": "/* URL to website for library , optional */",
5 "date": "/* Date produced , YYYY -MM-DD , required */",
6 "files": [
7 {
8 "name": "/* filename for user systems , required */",
9 "path": "/* URL to file , required */",

10 "sha512": "/* SHA512 sum of file , required */"
11 },
12 /* More file options ... */
13],
14 "errata": [
15 /* Errata Block , See Listing 3, optional */,
16 /* More errata ... */
17]
18 }

2

Listing 3: Library Errata Descriptor

1 {
2 "description": "/* Short description of errata , required */",
3 "date": "/* Date produced , YYYY -MM-DD , required */",
4 "name": "/* Errata name , follows library name rules , required */",
5 "files": [
6 {
7 "name": "/* filename for user systems , required */",
8 "path": "/* URL to file , required */",
9 "sha512": "/* SHA512 sum of file , required */"

10 },
11 /* More file options ... */
12]
13 }

descriptor, the path is an absolute URL pointing to where the file exists on the server. The name
is what the file should be saved as on the user’s computer. The reason name is not extracted from
the path is that there are some circumstances in which a user-friendly filename cannot be used in the
URL. The SHA512 sum is used to ensure the downloaded file was received correctly. If the SHA512
does not match, the data downloader will treat it as a failed download and not install the library. The
content of the file in path must match the rules discussed in Section 2.2.

The errata section contains zero or more errata blocks, and is optional. These blocks, shown in
Listing 3, contain additional files that may be needed to introduce corrections for any reason. Note
that the no-file-collision rule in Section 2.2 still applies to errata, so an errata cannot replace a file in
the original library, only append. See 3.2 for a discussion for how errata sets are used.

2.2 Library File Layout
For practical reasons, the actual library files need to follow a few rules. First, each file must be an
archive. At this time, the supported file formats are, in descending default priority:

1. .tar.xz or .txz

2. .tar.bz2 or .tbz2

3. .tar.gz or .tgz

4. .zip

This priority was chosen due to compression ratios in normal use, and is constrained by the formats
supported within the tarfile and zipfile packages in Python1. When extracted, there must be only
one base folder. It is recommended but not required that this folder’s name matches the library name
entry.

The following rules apply to the files within that folder:

1. Regular files not listed below will be copied with the same heirarchy as in the base folder. So
[base folder]/foo/bar will be installed at [install folder]/foo/bar.

1The low placement of .zip is due to its default DEFLATE algorithm. While LZMA-compressed .zip files should
perform similarly to .tar.xz, this type of compression is rare and not supported by Microsoft Windows’ built-in zip
support, which is the primary target for .zip files. The absence of .tar.zst, which would be at the top of the list, is
due to a lack of support in current implementations of Python’s tarfile.

3

[library "name" entry]...(folder)
docs..(folder)

[documentation files, pdf suffix] (optional) (files)
[library "name" entry] ... (folder)

[data files] .. (optional) (files)
xsdir .. (optional) (file)
README.md..(optional) (file)

Figure 1: Recommended Library Layout

2. During installation, the process will roll back if a file is already installed at the location the
tool wishes to copy to. This prevents two libraries from generating the same file with different
contents and putting things in an inconsistent state.

3. PDF files are assumed to not be data, and are exempt from name collision checking. This allows
a set of libraries to share a single reference document. It is still recommended to give the files a
descriptive name, such as an LA-UR number for Los Alamos publications.

4. Any file named xsdir will be installed to [install folder]/database/xsdir_[library “name”]
and so only one file by that name can be present in the archive. This file is assumed to be an
XSDIR fragment, containing only directory entries, and is used to create the full XSDIR. See
Section 3.1 for more details.

5. Any file named xsdir_2.0 will be installed to [install folder]/database/xsdir_2.0_[library
“name”] and so only one file by that name can be present in the archive.

6. Any file named README.md will be installed to [install folder]/docs/README_[library “name”].md
and so only one file by that name can be present in the archive.

7. Any file prefixed with a period (such as .DS_Store) will be ignored and not processed. This
prevents accidental inclusion of hidden files from causing problems.

With these rules, the layout in Figure 1 is recommended. The only files in the root directory are those
that are handled in a special way. Documentation is recommended to be placed in the docs folder for
consistency with currently published libraries. As the library name entry must be unique, placing all
other files in a folder using that name should minimize the risk of any further collisions.

2.3 code_support.json

The final file in the API is the code support file. This file contains information on how a given code
would like directory files (such as XSDIR) to be formatted, as well as nuclear data that is fundamentally
not supported. The layout is shown in Listing 4.

The directory name is the name of the file that will be generated. An example would be xsdir
and xsdir_mcnp6.3. At least one is required in each support file, but as many as one wants can
be made. The code will always generate an xsdir_all file, that contains the verbatim contents of
the XSDIR fragments without any removals. The format entry controls the resulting format of the
directory listing. The version entry is the version of said format to generate. At this time, format
must be xsdir and version must be 1.0. The exclusion list is an optional entry that allows
a code developer to list off libraries that are known to be problematic for the code consuming this
directory file. As an example of an exclusion list, see Listing 5. In that example, 1001.80c-1001.87c
and 1002.80c-1002.87c are excluded from the foo library, and all ZAIDs are excluded from the bar
library. Excluded lines will be entirely removed from the XSDIR file for compatibility reasons. A user
can copy lines from the xsdir_all file if adjustments need to be made.

4

Listing 4: Code Support Descriptor

1 {
2 "version": "/* Semantic version , currently 1.0.0, required */",
3 "date": "/* Date updated , YYYY -MM-DD , required */",
4 "directories": {
5 "/* Directory name */": {
6 "format": "/* Directory format string , required */",
7 "version": "/* Directory format version , required */",
8 "comment": "/* Description of file purpose , optional */",
9 "exclusion list": {

10 "/* library name , matches Listing 1 */": [
11 {
12 "identifier": "/* Python regex for ZAIDs , required */",
13 "reason": "/* Rationale for why , required */",
14 "reference": "/* Reference for more info , optional */"
15 },
16 /* more exclusion matches , optional */
17],
18 /* more libraries to exclude files from , optional */
19 }
20 },
21 /* More directory files , optional */
22 }
23 }

Listing 5: Exclusion List Example

1 "exclusion list": {
2 "foo": [
3 {
4 "identifier": "1001.8[0 -7]c",
5 "reason": "Some short reason string.",
6 "reference": "[URL]"
7 },
8 {
9 "identifier": "1002.8[0 -7]c",

10 "reason": "Some short reason string.",
11 "reference": "[URL]"
12 }
13],
14 "bar": [
15 {
16 "identifier": ".*",
17 "reason": "Some short reason string.",
18 "reference": "[URL]"
19 }
20]
21 }

5

Note that the restrictions each code has on the XSDIR also apply to the reason block. For example,
MCNP version 5 cannot have any lines in an XSDIR exceed 80 characters, even if they are comments.
For this reason, it is recommended that the reason and identifier entries do not exceed 65 characters
for any information intended for this version of the code. This is also the reason lines from excluded
nuclides are removed instead of being commented out.

3 Other Details
The following two parts note how some of the internals of the data manager tool work, to explain some
of the quirks of the API.

3.1 Handling XSDIRs
When a user requests an XSDIR to be generated, the process is as follows:

1. The contents of the file awr_data, included with the code, is added first.

2. For each library the user requests to add:

(a) Loop through the errata list and add the XSDIR fragment of the errata in order of the
errata list in Listing 2, if available (after removing excluded identifiers).

(b) Append the XSDIR fragment of the library, if available (after removing excluded identifiers).

3. Write out to the file given by the directory name in Listing 4.

These XSDIR fragments are read from [install folder]/database/xsdir_[library “name”] and
thus correspond to any xsdir file within the library package. These fragments contain the directory
listing of the XSDIR without the initial directory line. Extra whitespace at the end of the XSDIR
fragment is removed.

3.2 Errata
It is assumed that a user will want to have errata corrections installed for any library they request. As
a result, if a user installs a library that has an errata, it will go ahead and install the errata as well. The
code will then treat the combination library as a single component under the original library’s name.
In addition, if a user runs the update command and new errata is available, the tool will encourage
the user to install the errata immediately. If you do not wish for this level of interconnectivity, leaving
corrections as a separate library is an option.

4 Summary
It is hoped that, by making this API available, other nuclear data providers consider adding support
on their websites for the LANL nuclear data manager. In addition, there are several places designed
for future expansion, such as the directory listing format, that can be expanded for use by other codes.
If you end up using this API, please let us know how it goes, as well as provide any feedback on future
enhancements that would be desired.

References
[1] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259, December

2017.

[2] Date and time – Representations for information interchange – Part 1: Basic rules. ISO 8601-1:2019,
International Organization for Standardization, Geneva, CH, February 2019.

6

	1 Introduction
	2 The API
	2.1 libraries.json
	2.2 Library File Layout
	2.3 code_support.json

	3 Other Details
	3.1 Handling XSDIRs
	3.2 Errata

	4 Summary

