
LA-UR-21-26591
Approved for public release; distribution is unlimited.

Title: Compiling MCNP6.2 for ARM Clusters

Author(s): Grieve, Tristan Sumner

Intended for: 2021 MCNP User Symposium, 2021-07-12 (Los Alamos, New Mexico, United
States)

Issued: 2021-08-11 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

14/5/21Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 14/5/21

Compiling MCNP6.2 for ARM Clusters

Avery Grieve

XCP-3 (Monte Carlo Codes)

2021 MCNP User Symposium
July 13, 2021

28/4/21

Topics

1. Motivation
• Why bother with this?

2. Preliminary Cluster Setup
• What do you need to set up a cluster from scratch?

3. Compilers and Options
• gfortran, gcc, g++, OpenMPI

4. Modifications to configuration file
• x86-64 vs aarch64 compiler options

5. Performance
• Comparing OMP and MPI runs against an x86-64 system

6. Drawbacks & Considerations
• Nothing is perfect

34/5/21 34/5/21

Motivation

• ARM processors are increasingly common:
− Supercomputer Fugaku: A64FX 48C (7.63 M cores)
− New Apple silicon
− Raspberry Pi and other off-the-shelf single board computers (SBCs)

• Single board computers are low cost devices with strong potential in
research applications, whether as a local testbed for developing parallel
applications or a low-cost computational cluster

• Potential for recycling old smartphones utilizing ARM ISAs into cluster-like
applications (reduction in e-waste).

44/5/21 44/5/21

Preliminary Cluster Setup

• When building a cluster from scratch, there are several key considerations:

− Lightweight operating system
§ Disable functions that aren’t needed, consider headless setup to avoid display overhead, etc

− Interconnect type
§ Ethernet interconnect via a switch is probably the easiest (only need to configure /etc/hosts),

faster options may be compiled

− Networked storage between cluster devices for MCNP installation
§ nfs-common package (Debian)

− Highly recommended to install Munge & Slurm for job scheduling & user
management
§ Installation and setup is beyond the scope of this presentation. Many distributions have both

a Slurm and Munge package.
§ Recommend setting up a head node independent of the compute nodes.

54/5/21 54/5/21

End Goal

USER

HEAD
NODE

COMPUTE
NODE 1

COMPUTE
NODE 2

COMPUTE
NODE 3

NFS
STORAGE

Slurm Control

MPI MPI

64/5/21

Personal testbed cluster with an OrangePi PC2 head node (not pictured) and three
NanoPi Fire 3 compute nodes (24 threads @ 1.4GHz total). Ethernet interconnect. Low
power usage (<50W max). This cluster is the basis of this original work.

74/5/21 74/5/21

Compilers & Requirements for building with
CONFIG=‘mpi omp gfortran’
• LA-UR-17-30373 is a good place to start for compiling. However, versions of

gfortran newer than 7.1 do build the code.
− Check the operating system’s package repositories for a version of gfortran that will

build the code.
− The latest version of gfortran tested during this work is 9.3.0

• Ensure the “build-essential” package or equivalent is installed for gcc and
g++.

• The version of OpenMPI shouldn’t matter, but each node needs the same
version compiled. Recommend compiling from scratch and installing to
default location.
− Latest tested for this work is OpenMPI 4.0.5

https://mcnp.lanl.gov/pdf_files/la-ur-17-30373.pdf

84/5/21 84/5/21

Modifying the configuration file

• Extract the DVD folders to shared directory & navigate to Source directory:
− $ cd /cloud/MCNP/MCNP_CODE/MCNP620/Source

• Trying to build MCNP now will lead to invalid compiler option errors, so the
Linux config file must be modified

• Open Linux.gcf file in the Source/config/ directory:
− $ vim config/Linux.gcf

94/5/21 94/5/21

Modifying the configuration file

• Locate gfortran compiler section in configuration file (line 253)

• Problematic flags are circled… What are these and what are the ARM
gfortran equivalents?

104/5/21 104/5/21

Modifying the configuration file

[1] https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html

[2] https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html

X86
Compiler
Option

Description of Option AARCH64
“Equivalent”

Description of Equivalent

-m64 “The -m64 option sets int to
32 bits and long and pointer
types to 64 bits, and generates
code for the x86-64
architecture” [1]

-mabi=‘lp64’ “Generate code for the specified data
model. Permissible values are…and ‘lp64’
for SysV-like data model where int is 32
bits, but long int and pointers are 64 bits.”
[2]

-mieee-fp “Control whether or not the
compiler uses IEEE floating-
point comparisons. These
correctly handle the case
where the result of a
comparison is unordered. ” [1]

-march=‘native’
(activates fp
feature modifier)

“The value ‘native’ is available on native
AArch64 GNU/Linux and causes the
compiler to pick the architecture of the
host system.”
“Enable floating-point instructions. This is
on by default for all possible values for
options -march and -mcpu.“ [2]

https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html

114/5/21 114/5/21

Final Linux.gcf

• Replace x86-64 options with new aarch64 options:

124/5/21 124/5/21

Build, Set Environment Variables, Test

In the MCNP620/Source directory, run:

Ø make realclean
Ø make build GNUJ=N CONFIG=‘omp mpi gfortran’ *
Ø export DATAPATH=/path/to/MCNP_DATA
Ø export OMP_STACKSIZE=128M (IMPORTANT)
Ø export PATH=/path/to/MCNP620/bin/:$PATH
Ø make test CONFIG=mpi

Note: Building an OMP-only executable after building an mcnp6.mpi executable will overwrite the MPI
version but building with MPI after building an OMP version will not overwrite the OMP version giving
two executables in bin: mcnp6 & mcnp6.mpi

* See LA-UR-17-30373 for a list of CONFIG options

https://mcnp.lanl.gov/pdf_files/la-ur-17-30373.pdf

134/5/21 134/5/21

Regression test results:

Of 1063 regression tests, 25 have
reported differences (~2.3%)
Differences in MCTAL files are most
important. These appear small, but are
worth noting.

144/5/21 144/5/21

But how well does it run?

Chip Price (current
eBay)

Clock
Speed

Caches Number of Threads
(in current system

configuration)

Xeon E5-2695
v4

~$450 2.1 GHz L1i/d 32K
L2 256K
L3 46080K

1 Thread/core
18 Cores/socket
2 sockets
= 36 threads

ThunderX2
CN99xx

$230 2.1 GHz L1i/d 32K
L2 256K
L3 32768K

4 Threads/core
32 Cores/socket
2 sockets
= 256 threads

Compare 36 threads on a Xeon chip to 36 threads on the ThunderX2 chip
with the same input.

154/5/21 154/5/21

Very simple test input

test input for metrics
100 0 2 -999 imp:p=1
200 1 -6.63 -2 imp:p=1
999 0 999 imp:p=0

2 rpp -10 10 -10 10 -2 2
999 so 100

mode p
nps 1e8
sdef par=2 pos=0 0 10 erg=1.3
m1 64157 3 13027 2 31000 3 08016 12
f8:p 200
e8 0 700i 1.4

Simply a GAGG(Ce) rectangular prism in
a vacuum with a photon source.

164/5/21 164/5/21

Maximum Grind time for ThunderX2 is
3971.35 M Histories/hr
For Xeon, 3687.73

ThunderX2 1.08x faster than Xeon with OMP

Maximum Grind time for ThunderX2 is
15530.47 M Histories/hr
For Xeon, 10414.27

ThunderX2 1.49x faster than Xeon with MPI

Grind Time Results

174/5/21 174/5/21

Another comparison from the NanoPi cluster:
Device Processor Maximum

Threads
Grind Time (M
Histories/hr)

Cost New
(Cost Now)

Cost/M
histories/hr

Dell Latitude
3570

i5-6200U @ 2.30
GHz

4 1368.8 $2500
(~$400)

1.82
(0.29)

NanoPi Fire3
Cluster

Samsung S5P6818
@ 1.4 GHz

24 2661.9 $200
(n/a)

0.075
(n/a)

ThinkPad
W541

i7-4710MQ @ 2.5
GHz

8 2901.6 $2500
(~550)

0.93
(0.18)

Avery’s
Desktop

AMD Ryzen 5 2600
@ 3.4 GHz

12 4955.5 $1200
(n/a)

0.24
(n/a)

2019
MacBook Pro

Intel i9-9980HK @
2.4 GHz

16 5209.56 $3,399.00
(n/a)

0.65
(n/a)

184/5/21 184/5/21

Limitations

• Off-the-shelf SBCs generally have very little RAM.
− Fire3 cluster has 1GB per node, Raspberry Pi 4 has maximum 4GB.

• The changes to the compiler flags in the config file may lead to differences in
results. This potential behavior should be investigated prior to using an ARM
cluster for critical work.

• SBCs generally have slow (and small) cache and memory access times,
which will decrease performance with more complex problems.

• Institutional systems like the ThunderX2 are significantly more capable, but
significantly more expensive than an SBC. Total system cost may approach
a Xeon system.

