
LA-UR-20-24025
Approved for public release; distribution is unlimited.

Title: Processing MCNP Elemental Edit Outputs

Author(s): Mehta, Vedant Kiritkumar
Armstrong, Jerawan Chudoung

Intended for: Report

Issued: 2020-06-02

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Processing MCNP Elemental Edit Outputs

Vedant Mehta and Jerawan Armstrong
Los Alamos National Laboratory

Los Alamos, NM, 87545

1 Introduction

The Los Alamos National Laboratory’s (LANL) Monte Carlo N-Particle®

(MCNP®) 1 transport code version 6 has the capability for tracking particles
on unstructured mesh (UM) geometry models [2, 3]. The MCNP UM fea-
ture was originally designed for the UM models created by the Abaqus/CAE
software product [1]. The MCNP version 6.2.0 and later recognizes the
UM models read from Abaqus INP files or MCNPUM files converted from
Abaqus INP files. Other finite element analysis software packages may gen-
erate UM models and then convert these models into Abaqus INP formats.

A geometry has to be defined in a MCNP input file in order to perform a
MCNP simulatuon. The MCNP geometry is organized into cells bounded
by surfaces. This geometry is known as a constructive solid geometry or
(CSG). It is difficult and time-consuming to build the CSG models for com-
plicated geometry problems. For some applications, the users may spend
several months to build the CSG geometries. The MCNP UM feature has
been developed for performing calculations of complex geometry models.
This capability is for tracking particles on the hybrid geometries where the

1MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad
National Security, LLC, manager and operator of Los Alamos National Laboratory for the
U.S. Department of Energy under contract number 89233218CNA000001. Any third party
use of such registered marks should be properly attributed to Triad National Security,
LLC, including the use of the ®designation as appropriate. Any questions regarding
licensing, proper use, and/or proper attribution of Triad National Security, LLC marks
should be directed to trademark@lanl.gov. For the purposes of visual clarity, the registered
trademark symbol is assumed for all references to MCNP within the remainder of this
report.

1

mailto:trademarks@lanl.gov

finite element meshes. are embedded into the CSG cells. Both structured
or unstructured meshes can be embedded into the CSG cells. The unstruc-
tured mesh is the collection of elements and thier nodes. The computer
programs are used to generate the mesh geometries from the solid geome-
tries. MCNP is not a mesh generation code. The mesh generation software
packages should be used to generate the unstructured meshes for use in
MCNP simulations.

The MCNP UM capability was originally developed for thermal mechanical
analysis applications, but this feature has increasingly used for other appli-
cations including reactor calculations. We have modified the MCNP code for
microreactor multiphysics calculations [4]. Microreactors are state-of-the-art
reactor concept with power level rated between 1 kWe and 10 MWe. Using
metallic fuel, metallic moderator, and heat pipes makes microreactors com-
pact, truck-transportable, and suitable for several high-temperature civilian
and military applications. However, there are many roadblocks that needs
to be crossed before a successful deployment of moderated microreactor con-
cept. Metal Hydrides are a great moderator for nuclear reactor as they im-
prove neutron economy significantly. However, all hydrides share the same
flaw. Under high temperature gradients, the hydrogen in the metallic bonds
of hydride dissociates and migrates from hot zones to cold zones. In addition,
under high temperature environment, hydrogen escapes the reactor core thus
impacting the reactor operation. This migration of hydrogen during the re-
actor operation results in local changes in moderator material properties
such as neutron cross sections, core power generation, thermal/mechanical
feedback. Thus, high fidelity multiphysics modeling is required to properly
understand the reactor dynamics during its operation. To do so, MCNP, a
Monte-Carlo particle transport code, and ABAQUS, a finite-element engi-
neering simulation software are used to develop a multiphysics framework
called MARM for high temperature microreactor analysis. MARM is a
MCNP ABAQUS based Reactor Multiphysics software package being de-
veloped at Los Alamos National Laboratory for microreactor applications.
This suite of software is aimed to provide steady-state and transient coupled
multiphysics analysis for microreactors including neutronics, heat transfer,
mechanical stresses, mass diffusion, and extensions capability for additional
user-defined physics. The main goal of this project is to enable high quality
multiphysics analysis for engineering length scale microreactor applications.

The MCNP UM calculations are computationally expensive. Typically, the
calculations are performed on the supercomputers. After the MCNP calcu-

2

lation is finished, the python script is used to process the MCNP outputs
to write the new Abaqus input file for finite element analysis calculation.
The Abaqus calculation is then performed where the outputs are written
into the ODB file. The OBD file is the Abaqus binary output file format.
We have developed a python code for processing a MCNP elemental edit
output (EEOUT) file to produce a heat flux file for Abaqus calculations.
This python code is presented in Appendix A.

References

[1] Abaqus/CAE. www.3ds.com/simulia.

[2] R. L. Martz and D. L. Crane. The MCNP6 Book on Unstructured Mesh
Geometry: Foundation. Technical Report LA-UR 12-25478 Rev 1, Los
Alamos National Laboratory, 2014.

[3] R. L. Roger. The MCNP6 Book On Unstructured Mesh Geometry:
User’s Guide For MCNP 6.2. Technical Report LA-UR 17-22442, Los
Alamos National Laboratory, 2017.

[4] H. Trellue, S. Vogel, A. Long, V. Mehta, J. Armstrong, G. McKinney,
A. Shivprasad, E. Luther, J. Payne, M. Cooper, T. Carver, B. Wilker-
son, J. Wermer, and J. Bull. Demonstration of advances experimental
and theoretical characterization of hydrogen dynamics and associated
behavior in advanced reactors. Technical Report LA-UR-20-22974, Los
Alamos National Laboratory, 2020.

Appendix A Python Code

#!/usr/bin/env python3

-*- coding: utf-8 -*-

"""

Code: eeout_to_inp.py

Authors: Vedant Mehta

NEN-5: Systems Design and Analysis

Los Alamos National Laboratory

Jerawan Armstrong

XCP-3: Monte Carlo Codes

Los Alamos National Laboratory

Copyright (c) 2020 Triad National Security, LLC. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy

3

www.3ds.com/simulia

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

"""

import os, sys

import numpy as np

help_info = """

This script processes MCNP eeout file and produces body heat flux for ABAQUS.

HOW TO RUN:

python eeout_to_inp.py <eeout filename> <reactor power level in Watts>

Produces:

heatFlux.inp (FOR ABAQUS)

Add the resulting file in ABAQUS after '*Heat Transfer' as

'''

*INCLUDE, INPUT=heatFlux.inp

'''

"""

#---

def extract_eeout_data(fileIn,tally_num):

fileIN = os.path.isabs(fileIn)

if not os.path.isfile(fileIn):

raise IOError('MCNP EEOUT file not found :: check directory path')

number of items in identificaiton segment line in EEOUT file

MCNP writes this data line to describe the numbers of various data in the

current data group. MCNP writes 6 items in this line

num_id_segments = 6

read eeout file

fr = open(fileIn,"r")

line = fr.readline() # 1st line in EEOUT file is the title line

initialize vectors

energy = [] # MeV/g

density = [] # g/cm**3

volume = [] # cm**3

ins_id = [] # instance element ID

start_element = [] # start element number for each element ID

end_element = [] # end element number for each element ID

extract enery from this tally type

e6_tally_id = 'ENERGY_{:d}'.format(tally_num)

========== Begin extract EEOUT data ====================

indx = 0

found_e6 = False

while True:

line = fr.readline()

if not line: break

#print(line.strip())

id_segments = line.split()

if len(id_segments) != num_id_segments:

print(">>>Check this invalid line:")

4

print(line)

raise ValueError('invalid identification segments in EEOUT file; check EEOUT file')

id_segments = np.int_(id_segments)

num_char_in_title = id_segments[0] # number of chracter in the title line

num_records = id_segments[1] # number of records in the data-set after the title record

data_type = id_segments[2] # data type:0=no data, 1=character, 2=integer, 3=real

num_items_per_record = id_segments[4] # number of items in each record

num_items_per_line = id_segments[5] # length of each record

#print(id_segments)

#print(num_char_in_title)

#print(num_records)

#print(data_type)

#print(num_items_per_record)

#print(num_items_per_line)

if num_char_in_title > 0:

title_line = fr.readline().strip()

else:

title_line = ''

#print(title_line.strip()+'\n')

#if len(title_line) > 0:

print(line.strip())

print(title_line.strip())

print('\n')

if num_records > 0:

if data_type == 1: # charecter data type

if num_items_per_line != 1:

print(">>>Check this invalid line:")

print(line)

raise ValueError('invalid number of iterms for chacter data type in id segment line')

else:

num_of_lines = num_records

elif data_type==2 or data_type==3: # integer or real data type

if num_records > 1 and num_items_per_record == 1:

num_of_lines = num_records

else:

num_data = num_records * num_items_per_record

if np.mod(num_data,num_items_per_line) == 0:

num_of_lines = int(num_data/num_items_per_line)

else:

num_of_lines = int(num_data/num_items_per_line) + 1

else:

if data_type != 0:

print(">>>Check this invalid line:")

print(line)

raise ValueError('invalid data type in id segment line')

else:

num_of_lines = 0

if title_line.startswith('INSTANCE ELEMENT NAMES'):

if data_type != 1: # must be character

raise ValueError('invalid data type for INSTANCE ELEMENT NAMES; check EEOT file')

for i in range(0,num_of_lines):

line = fr.readline().split()

for l in line: ins_id.append(l)

elif title_line.startswith('INSTANCE ELEMENT TYPE TOTALS'):

if data_type != 2: # must be integer

raise ValueError('invalid data type for INSTANCE ELEMENT TYPE TOTALS; check EEOT file')

element number start end end for each element types

there are 6 element tyoes: tet, pent, hex tet2, pent2, hex2

if num_items_per_line != 12:

raise ValueError('invalid record length for INSTANCE ELEMENT TYPE TOTALS; check EEOUT file')

for i in range(0,num_of_lines):

spl = np.int_(fr.readline().split())

locs = []

loce = []

5

for i in [0,2,4,6,8,10]:

if spl[i]==0: continue

locs.append(spl[i])

for i in [1,3,5,7,9,11]:

if spl[i]==0: continue

loce.append(spl[i])

start_element.append(locs)

end_element.append(loce)

elif title_line.startswith('DATA OUTPUT PARTICLE') and e6_tally_id in title_line:

found_e6 = True

elif title_line.startswith('DATA SETS RESULT') and found_e6:

found_e6 = False

if num_records != 1: # must be 1 record

raise ValueError('invalid number of records for DATA SETS RESULT; check EEOT file')

if data_type != 3: # must be real

raise ValueError('invalid data type for DATA SETS RESULT; check EEOT file')

for i in range(0,num_of_lines):

line = fr.readline().split()

for l in line: energy.append(l)

elif title_line.startswith('DENSITY'):

if num_records != 1: # must be 1 record

raise ValueError('invalid number of records for DENSITY; check EEOT file')

if data_type != 3: # must be real

raise ValueError('invalid data type for DENSITY; check EEOT file')

for i in range(0,num_of_lines):

line = fr.readline().split()

for l in line: density.append(l)

elif title_line.startswith('VOLUMES'):

if num_records != 1: # must be 1 record

raise ValueError('invalid number of records for DENSITY; check EEOT file')

if data_type != 3: # must be real

raise ValueError('invalid data type for DENSITY; check EEOT file')

for i in range(0,num_of_lines):

line = fr.readline().split()

for l in line: volume.append(l)

else:

if num_of_lines > 0:

for i in range(0,num_of_lines): fr.readline()

==============End Extract EEOUT data ==============

fr.close()

if len(ins_id) != len(start_element) or len(start_element) != len(end_element):

raise ValueError('invalid INSTANCE ELEMENT NAMES and INSTANCE ELEMENT TYPE TOTALS; check EEOUT file')

for locs, loce in zip(start_element,end_element):

for s,e in zip(locs,loce):

if s >= e:

print(s)

print(e)

raise ValueError('invalid INSTANCE ELEMENT TYPE TOTALS; check EEOUT file')

MCNP write the 1st record of energy to 0.0

if len(energy)-1 != len(density):

print('len energy : ',len(energy))

print('len density : ',len(density))

print(" READING ERROR :: length of energy and density vectors not consistent \n \n")

print(" INCORRECT INTERPOLATION :: DON'T TRUST DATA \n \n")

6

raise ValueError('invalid energy and density data points')

MCNP Energy in MeV/g by default

density = np.float_(density)

volume = np.float_(volume)

energy = np.float_(energy)

return ins_id, start_element, end_element, density, volume, energy

#--

def write_heat_flux(fileIn, fileOut, Watt, amp, flux, tally_num):

ins_id, start_element, end_element, density, volume, energy = extract_eeout_data(fileIn, tally_num)

el_energy = density*energy[1:] # MeV/cc

esum = np.sum(volume*el_energy) # MeV

power = el_energy/esum # /cc

write dflux file

fw = open(fileOut,"w")

fw.write(amp+'\n')

fw.write('0, '+str(Watt)+'\n')

fw.write('1, '+str(Watt)+'\n')

fw.write('1e+33, '+str(Watt)+'\n')

fw.write(flux+'\n')

for cid, locs, loce in zip(ins_id,start_element,end_element):

j = 0

for s, e in zip(locs,loce):

for m in np.arange(s-1,e):

j = j+1

fw.write(cid+'.'+str(j)+', bf, '+str(power[m])+'\n')

fw.close()

print(" ABAQUS thermal input file generated :: "+fileOut+'\n')

return None

#--

if __name__ == '__main__':

import argparse

import time

parser = argparse.ArgumentParser(prog='eeout_to_inp',

description='This script processes MCNP eeout file \

and produces body heat flux for ABAQUS.')

parser.add_argument('eeout_filename',

type=str,

help="MCNP EEOUT file name")

parser.add_argument('power_level_in_watts',

type=float,

help="reactor power level in Watts")

parser.add_argument("-o", "--output", metavar="<heatFlux.inp>",

default='heatFlux.inp', type=str,

help="heat flux file name")

parser.add_argument('-em', '--embee', metavar='num',

default=6, type=int,

help='number in EMBEE card')

args = parser.parse_args()

if args.eeout_filename is not None and args.power_level_in_watts is not None:

fileIn = args.eeout_filename

Watt = float(args.power_level_in_watts)

fileOut = args.output

tally_num = args.embee

amp = '*amplitude, name=thermalAmplitude'

flux = '*dflux, amplitude=thermalAmplitude'

7

print(help_info)

print('>>> Caution :: Assuming DEFAULT EMBEE6 units from MCNP \n')

print(' Reading File :: '+fileIn+'\n')

print(' Power set to :: {:f} watts\n'.format(Watt))

start_time = time.time()

write_heat_flux(fileIn, fileOut, Watt, amp, flux, tally_num)

time_s = round(time.time() - start_time, 5)

time_m = round(time_s/60., 1)

time_h = round(time_s/3600., 2)

message = '\n>>>Code completed in {:f} seconds [{:f} minutes \

|| {:f} hours]\n'.format(time_s, time_m, time_h)

print(message)

8

	1 Introduction
	A Python Code

