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ABSTRACT 

 
For over 60 years, Monte Carlo criticality calculations for keff and the fission distribution have 
been solved using the power iteration method. Significant burdens are placed on code users, 
however, to ensure that (1) a sufficient number of neutrons per cycle is used to prevent bias in 
keff and errors in the fission source shape, and (2) a sufficient number of initial cycles is 
discarded to ensure that keff and the fission source have converged to the steady-state, stationary 
distribution. Recent work has addressed those burdens, providing automated acceleration of 
the convergence process, statistical tests for automatically determining convergence, and 
additional tests to assess whether a sufficient number of neutrons per cycle was used. These 
automated methods provide adaptive meshing and a fission matrix reference solution, and 
provide quantitative evidence of convergence. Testing on a wide range of problems has 
demonstrated that the methods are robust and reliable. 
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1. INTRODUCTION 
 

For over 60 years, Monte Carlo (MC) criticality calculations for keff and the fission distribution have been 
solved using the power iteration method, also called the method of successive iterations [1,2].  

• A	 generation-based	 iteration	 scheme	 is	 used,	 and	 the	 neutron	 population	 is	 renormalized	
between	successive	iterations,	as	shown	in	Figure	1.	Each	generation	is	started	with	the	same	
total	number	of	neutrons	N	(or	equivalently	for	mcnp6,	total	weight)	and	a	number	of	neutrons	
N'	is	produced.	N'	is	a	stochastic	variable,	hence	the	renormalization	to	N	neutrons	for	the	next	
generation	is	a	biased	process.	Further,	the	renormalization	reduces	the	number	of	independent	
neutron	fission	chains,	introducing	correlation	among	cycles	[3,4].	The	correlation	manifests	as	
clustering	for	very	low	N.			

• The	bias	in	keff	 introduced	by	the	renormalization	process	is	negative	and	proportional	to	1/N	
[5,6].	 	 The	 eigenfunction	 (i.e.,	 fission	 distribution)	 is	 also	 biased	 proportional	 to	 1/N,	 with	



 

 

additional	 complications	 of	 being	 too	 low	 in	 high-
importance	regions	and	too	high	in	low-importance	
regions.		

• The	MC	iteration	scheme	begins	with	an	initial	guess	
for	keff	and	the	fission	distribution.	Iterations	(called	
inactive	 cycles)	are	performed	without	 tallies	until	
keff	 and	 the	 fission	 distribution	 have	 converged	 to	
their	stationary	state.	After	convergence,	tallies	are	
turned	 on,	 and	 iterations	 (called	 active	 cycles)	 are	
continued	 until	 sufficiently	 small	 uncertainties	 are	
obtained	for	desired	results.		

Significant burdens are placed on nuclear criticality safety (NCS) analysts to properly run the MC 
calculations:  

• The initial guess for the fission source locations must be defined by user input. Ideally, the initial guess 
should be similar to the steady-state stationary distribution (i.e., the final solution). Care must be taken 
to select the initial starting sites such that there are some fission sites located in each fissionable region 
of the problem. 

• Users must ensure that a sufficient number of neutrons per cycle is used to prevent bias in keff and errors 
in the fission source shape. For small to moderate sized problems, it has been shown that using N > 
10,000 neutrons per generation effectively removes the bias in keff [7]. For larger physical systems, 
100,000 or 1 M or more neutrons per generation may be needed. 

• Users must also ensure that a sufficient number of initial cycles is discarded so that keff and the fission 
source have converged to the steady-state, stationary distribution.  In a typical traditional calculation, a 
short trial run is made to determine the number of inactive cycles based on plots of keff and the Shannon 
entropy of the fission source distribution, H. Then the number of inactive cycles to achieve convergence 
is manually set in the mcnp6 input file. Then a final run is made to determine results, with additional 
cycles run until the uncertainties on results are small enough. 

While the procedures for running MC criticality problems properly are straightforward, they can be 
burdensome when many different problems need to be analyzed. It is common in NCS work to perform 
parameter studies, varying one or more parameters such as spacing or density and then running a MC 
criticality problem. Often 100s or 1,000s of runs must be made to span the range of expected conditions. 
For these parameter studies, it is not practical to follow all of the recommended procedures discussed 
above, and typically very conservative over-estimates are used for the number of inactive cycles, resulting 
in excessive computer time. Additionally, determining proper convergence of the iteration process using 
plots of keff and the H is highly subjective due to the statistical variations in cycle-wise variations in keff 
and the H, and most users will conservatively choose the number of inactive cycles much larger than 
necessary. Finally, there have been no tests available for determining whether a sufficient number of 
neutrons per cycle was used to reduce the renormalization bias to negligible levels (other than repeated 
calculations with different numbers of neutrons per cycle, an extremely burdensome task). 

Recent work has addressed these burdens, providing automated acceleration of the convergence process, 
statistical tests for automatically determining convergence, and additional tests to assess whether a 
sufficient number of neutrons per cycle was used. These automated methods determine mesh spacing 
(with no user input) from cycle 1 estimates of physics results, provide adaptive meshing and a fission 
matrix reference solution, and provide quantitative evidence of convergence. Testing on a wide range of 
problems has demonstrated that the methods are robust and reliable. 

 
Figure 1. MC iteration scheme 



 

 

This paper provides details on the tallying and solution of the fission matrix to provide a reference 
solution, the choice of mesh size for computing Shannon entropy and the fission matrix, and acceleration 
of fission source convergence. The statistical tests for determining convergence, the tests for assessing 
adequate population size, and the wide variety of test problems are discussed briefly, with more detail 
provided in a companion paper [8]. 

2. METHODS 
A local version of mcnp6.2.1 [9] was modified to: 

• use physics-based problem data to create a mesh for convergence analysis,  
• perform tallies of the fission matrix for all cycles after cycle 1 using sparse storage, 
• monitor the stability of the fission matrix and solve for the fundamental mode eigenfunction after 

each block of M cycles, 
• accelerate convergence of the fission source iterations,  
• perform statistical tests for convergence and automatically	activate	the	tallies,	and 
• assess whether a sufficient number of neutrons per generation was used.  

Each of these procedures is described below.  
2.1.  Establishing the Mesh for Convergence Analysis and Adapting the Mesh 

Previous work involving the fission matrix method reported in [10,11] focused primarily on determining 
higher-mode eigenfunctions and the eigenvalue spectrum. The mesh for tallying the fission matrix was 
specified by the user, and successive runs refining the mesh were performed until the eigenvalue spectrum 
converged. The mesh resolution required for an accurate eigenvalue spectrum was highly problem-
dependent, and very fine meshing was needed to obtain detailed spatial resolution for the fundamental and 
higher-mode eigenfunctions. 

For the current work in convergence testing and acceleration, a reference solution for the global shape is 
needed, and higher-mode eigenfunctions are not required. Only the fundamental mode eigenfunction is 
necessary for the methods described in the following sections.   
For automatically determining adequate mesh resolution for the fundamental mode global solution, a 
physics-based parameter is desired. Since the fission matrix is essentially a collection of point-to-point 
Green’s functions from neutron birth in fission to next-generation birth in fission, a reasonable choice for a 
metric for determining the mesh spacing is the RMS distance from birth to fission in a cycle, Lfiss. 
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where  𝑟) is the location of a next-generation neutron born in fission, wn is the weight of that neutron, 𝑟.,) 
is the location where the parent neutron started, and N’ is the number of next-generation neutrons created 
in the cycle. Lfiss is trivial to calculate, using just the starting birth site and the resultant next-generation sites 
within a cycle, with tallies made only at the end of a cycle (i.e., there is no need to tally during the neutron 
random walks). 

Examining the mesh used in the previous studies of higher-mode eigenfunctions and eigenvalue spectra in 
[10,11], the mesh resolutions required for accuracy in detailed eigenmodes and eigenvalue spectra were 
typically  0.1*Lfiss  to  0.2*Lfiss, and sometimes even smaller. For the present work where only the global 
shape of the fundamental mode eigenfunction is needed, numerical experiments were performed on the test 
problems cited below and on 100s of ICSBEP benchmark problems to determine a recommended mesh 
resolution. It was found that using 1.0*Lfiss was suitable for all problems tested. That is, using a coarser 



 

 

mesh did not adequately capture the global shape of the fission distribution; using a finer mesh required 
many additional iterations for the fission matrix to stabilize and produce a reliable solution. (If the mesh is 
too fine, then very many neutrons may be needed to produce fission matrix tallies that are not too noisy.) 
While there are user input options to override the factor applied to Lfiss for determining the mesh spacing, 
all of the testing discussed below used the default spacing of 1.0*Lfiss. 
An adaptive Cartesian mesh is used for determining Shannon entropy, Hneut, of the fission source 
distribution, Sneut, and the starting/ending fission point bins for the fission matrix method. During the first 
(inactive) cycle, tallies are made to estimate the RMS distance to fission, Lfiss. While the value of Lfiss is not 
precise, since it is based on the initial source distribution guess and only 1 cycle of neutrons, it provides an 
adequate physics-based distance for setting a mesh size for convergence analysis. By default, a mesh 
spacing of Lfiss is used. Then a Cartesian mesh is defined for the axis-aligned bounding box of fission points 
at the end of the first cycle, with N = nx ny nz mesh cells. The mesh storage is adaptive: If during subsequent 
cycles a source tally must be made in a location outside the mesh, then the appropriate mesh dimensions nx, 
ny, nz are extended (keeping the same spacing) to include that region.   

2.2. Fission Matrix Tallies 
The fission matrix, F, is an N x N matrix (where N is the number of mesh cells), potentially requiring N2 
tally bins. However, in this implementation tallies for F are stored using a compressed-row-storage (CRS) 
scheme, such that only nonzero tallies are stored.  If tallies are needed in an empty slot (i.e., a previously-
zero location that is not stored), then the CRS tallies are automatically extended to include the new entries. 
The CRS tallies for F are also automatically re-indexed and extended if the underlying mesh is extended. 

After cycle 1, inactive cycles proceed in the normal manner, with tallies of Sneut and F made at the end of 
each cycle. The tallies for F are cumulative, including both inactive and active cycles. During these cycles, 
the Sneut and F tallies may be extended if any neutron fission sites are found outside the previous mesh. 

2.3. Fission Matrix Stabilization and Solution 

The fission matrix equations are solved after each block of M cycles, where currently M defaults to 10 but 
can be overridden by user input. M is effectively a “window” for solving the fission matrix equations and 
checking on convergence of the fission neutron distribution. 

In the initial iteration cycles, the Sneut and F tallies may have significant statistical noise from the MC 
random walks, and solution of the fission matrix equations may be unreliable. During the initial iteration 
cycles, the numbers of nonzero entries in the Sneut and F tallies are monitored for changes from one cycle 
to the next. Currently, if the number of nonzero entries in the Sneut tallies changes by more than 2% in 
successive cycles, or if the number of nonzero entries in the F tallies changes by more than 5% in 
successive cycles, then the convergence window is shifted. That is, the block of M cycles is reset and 
shifted by 1 cycle. The Sneut and F tallies are declared stable enough for solution only after the stability 
tests are met for a consecutive block of M cycles. 
The fission matrix equations are solved using a standard, brute-force power iteration method. The method 
is robust, accommodates the non-symmetric F matrix, and requires only matrix-vector products, thus 
preserving the sparsity of F. Solution of the fission matrix equations yields kFM, SFM, and rFM (the 
dominance ratio).  

2.4. Accelerate Convergence of the Fission Source Iterations 
If acceleration of the fission source is to be performed, importance sampling weights of  SFM

(m)/Sneut
(m) are 

determined for each fission site, where (m) represents the mesh bin containing the fission site. This 
approach is essentially the same as that used in [12]. The importance sampling is a nonlinear acceleration 
method that essentially pushes the neutron distribution toward the reference distribution from the fission 
matrix eigenfunction. For this to be effective, it is essential that the statistical noise in fission matrix 
elements not be too large. In testing to date, the stability criteria for the Sneut and F tallies described in 



 

 

Section 2.3 have been sufficient, and the acceleration method has been stable and effective. While SFM is 
determined only at the end of each block of cycles, the importance sampling weights are updated for each 
cycle, based on the current Sneut. Acceleration is performed only during inactive cycles. The acceleration 
method typically reduces the number of inactive cycles required for convergence by factors of 2-20x. 

2.5. Perform Statistical Tests for Convergence and Automatically Activate the Tallies 
After determining SFM at the end of a block of cycles, statistical tests for convergence are performed. Eight 
tests are performed using metrics computed for cycles in the block, and 3 tests are performed using the 
distributions Sneut and SFM [13]: 

1. The slope of the single-cycle track-length estimates of keff for cycles in the block is computed, along 
with its standard deviation, using a least-squares method. The slope has a Student-T distribution, 
and if the magnitude of the slope is less than   t0.025 sslope,  then the slope is not statistically different 
from zero at the 95% confidence level. In addition, if the magnitude of the slope is less than 0.0001, 
then it is judged negligible. Thus a slope with magnitude less than   t0.025 sslope  or  0.0001 is assessed 
to be consistent with a steady-state converged distribution. 

2. The same slope-test procedure is performed for the collision estimates of keff. 

3. The same slope-test procedure is performed for the absorption estimates of keff. 

4. The same slope-test procedure is performed for the Shannon entropy of Sneut. That is, Hneut  is 
computed from Sneut separately for each cycle in the block, then the slope test procedure is applied 
to the Hneut  values within the block. 

5. The same slope-test for Hneut  is applied to the marginal distribution in x of Sneut. 

6. The same slope-test for Hneut  is applied to the marginal distribution in y of Sneut. 
7. The same slope-test for Hneut  is applied to the marginal distribution in z of Sneut. 

8. The Sneut tallies for each cycle in the block are accumulated and Hblock is computed for the 
cumulative sources in the block. HFM is then computed for the fission matrix eigenfunction 
determined at the end of the block. If HFM and Hblock agree within 1%, this test provides strong 
evidence that the reference fission matrix eigenfunction and the cumulative fission neutron source 
distribution for the block agree. However, HFM and Hblock may differ if there is significant source 
renormalization bias in the neutron distribution. Source renormalization bias is independent of the 
convergence. That is, if too few neutrons per cycle are used in the calculation, the fission neutron 
source would still converge, but to the wrong, biased solution. (SFM from the fission matrix method 
is not subject to source renormalization bias.) Thus, passing this test provides evidence of both 
convergence and an adequate neutron population. If the test is not passed, convergence is not 
precluded, however, since the cause may be an inadequate population size. 

9. The Kolmogorov-Smirnov goodness-of-fit test is applied at the 95% confidence level to compare 
the distributions given by Sneut and SFM. Since these are multidimensional distributions, the test is 
repeated for many random permutations of the ordering, with the worst-case statistic used to 
determine the test outcome. 

10. The Chi-squared 2-point distribution goodness-of-fit test is performed on Sneut and SFM at the 95% 
confidence level. 

11. The relative entropy (Kullback-Liebler discrepancy) [14] between the distributions for Sneut and 
SFM is computed. The Kullbach-Liebler discrepancy is related to the G-test for goodness-of-fit [15], 
and is an alternative to the chi-squared test. A 95% confidence level may be determined from the 
chi-squared distribution. If this test is passed, it provides strong evidence of both fission source 
convergence and adequate population size. However, as for Test 8, this test may fail if the 



 

 

population size is too small (leading to source renormalization bias). Thus, passing this test provides 
evidence of both convergence and an adequate neutron population. If the test is not passed, 
convergence is not precluded, however, since the cause may be an inadequate population size. 

It should be noted that Tests 8 and 11 that involve entropy or relative entropy are sensitive to the neutron 
population size (number of neutrons per cycle), whereas Test 9 and 10 are not. The underlying causes of 
the different sensitivities are not known, and are certainly in need of further investigation.  

If all of these statistical tests pass (more precisely, if none fail), then convergence is achieved and locked-
in for the remainder of the calculation, and active cycles with tallies will begin with the next cycle. To 
declare convergence, Tests 1-7 and 9-10 are required to pass. Tests 8 and 11 are not required to pass (since 
they may be affected by source renormalization bias), but provide additional strong evidence of 
convergence if they are passed.   
Due to the statistical nature of the testing, it is likely that some of the convergence tests may not pass in 
later cycles. Convergence is not rescinded, however. Typically, some tests that occasionally fail after 
convergence are passed on most subsequent cycles. 

On a historical note, it is important to consider the difference between the statistical testing described 
above and 2 previous attempts at automated convergence testing [16,17]. The previous attempts at 
automated convergence testing performed statistical slope tests for only 2 quantities, keff and H, for blocks 
of cycles. While that is essentially what users do in examining plots of keff and H to assess convergence, it 
was found to be not sufficiently reliable or conclusive for NCS purposes. In the current work, 11 different 
statistical tests are performed, including additional tests with sensitivity to spatial effects (e.g., the entropy 
for x-, y-, and z-marginal distributions) and tests for goodness-of-fit for distributions, with the fission 
matrix eigenfunction used as a reference solution. While the previous work suffered from occasional false 
positives or false negatives, the current approach using 11 statistical tests has been reliable and robust for 
all problems tested. In addition, reporting of the results for the statistical tests provides documented 
evidence of the convergence assessment. 
2.6. Assess Whether Sufficient Neutrons Per Generation Were Used.  

After convergence, statistical testing continues to be performed at the end of each block of cycles. In 
addition, 2 novel statistical tests are made to assess population size [18]. These tests are based on comparing 
the Shannon entropy and relative entropy (Kullback-Leibler discrepancy) of Sneut and SFM. If these tests 
indicate that an insufficient number of neutrons/cycle was used, warning messages are issued. 

3. TESTING 

The automated acceleration and convergence testing methods have been applied to an assortment of 
criticality problems, including: 

• the	MCNP	validation_criticality	suite,	containing	31	ICSBEP	benchmark	problems,	
• the	MCNP	validation_crit_extended	suite,	containing	119	ICSBEP	benchmark	problems,	
• a	2D	model	of	a	commercial	PWR,	
• the	ATR	(advanced	test	reactor),		
• the	ACRR	burst	reactor	at	Sandia,		
• the	OECD-NEA	Hoogenboom-Martin	3D	reactor	computer-performance	benchmark,		
• the	3D	C5G7	U-Mox	OECD-NEA	benchmark	problem,		
• the	ICSBEP	benchmark	case	LEU-COMP-THERM-078	(a	Sandia	experiment),		
• a	large	3D	storage	pool	with	checkerboard	arrangement	(OECD-NEA	EG	on	source	

convergence	benchmark	#1),		



 

 

• a	400	cm	tall	single	reactor	fuel-pin	unit	cell	with	reflecting	boundary	conditions,		
• the	Whitesides	problem	(keff	of	the	world),		
• a	3D	Triga	reactor	model,	
• the	OECD-NEA	source	convergence	benchmark	#4,			test4s,	and	
• the	Godiva	HEU	sphere	

For all of these cases, standard mcnp6 input files were used with ENDF/B-VII.1 nuclear data. The only 
additional input supplied consisted of commands to activate the fission matrix treatment, automated 
convergence testing, and fission source acceleration: 

 kopts    fmat=       yes 
          fmatconvrg= yes  
          fmataccel=  yes 

Figure 2 shows some results from testing on the test4s problem (OECD-NEA Source Convergence 
benchmark #4). The upper plots of keff (for neutrons, fission matrix, and cumulative) and H (for neutrons 
and fission matrix) are from a typical traditional calculation, where a short trial run is made to determine 
the number of inactive cycles based on plots of keff and Hneut, and then a final run is made after manually 
setting the number of inactive cycles in the mcnp6 input file. The number of inactive cycles is somewhat 
arbitrary, and typical conservative-minded users would choose 150-200 inactive cycles. The lower plots of 
keff and H show results from the automated acceleration and convergence methods, with convergence 
achieved after 31 cycles with no additional  user input or trial runs. Figure 3 shows the quantitative evidence 
reported when the statistical tests for convergence are all passed. Figures 4 and 5 show details of the initial 
cycles, including the stabilization of the Sneut and F tallies, blocks of cycles for acceleration and 
convergence testing, and the automatic start of active cycles. 

Regarding robustness and reliability of the automated methods, all of the 162 test problems performed as 
expected, with no false positives for convergence or false negatives (which would not affect results, but 
would increase computer time). When run using conventional methods, the 31 problems in the 
validation_criticality suite required 108 minutes of run time with mcnp6 using 12 threads. Using the 
automated acceleration and convergence, the same suite of 31 problems required only 70 minutes to 
complete correctly. These and other results demonstrate that the combination of automated methods 
provides effective acceleration and reduces unnecessary conservatism in the number of inactive cycles. The 
most difficult problem for convergence is the OECD source convergence benchmark #1, a large fuel storage 
pool where over 2,000 inactive cycles are required for convergence using standard methods. With the 
automated methods, that problem converged properly in only 108 cycles, a factor of 20x improvement. 

4.  CONCLUSIONS 
The convergence acceleration typically reduces the number of initial inactive cycles by factors of 2-10 
times, and the use of 11 statistical checks for convergence has proven to be extremely robust and reliable. 
In the future, mcnp6 users will not have to make trial runs, plot keff and H vs cycle, manually edit the input 
file to adjust the kcode card parameters and then rerun the problem. Common user pitfalls and annoyances 
have been removed by the automated convergence and statistical testing methods, and quantitative evidence 
of convergence is provided. That quantitative evidence is extremely important in today’s regulatory 
environment – “eye-balling the plots” is difficult to defend, whereas documented evidence of passing 11 
statistical tests is clear cut. Further work in progress includes the automated generation of the initial guess 
for the fission neutron distribution. 
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Figure 3. Automated convergence reporting for problem test4s 
 

 

 
 

Figure 2. Keff and H by cycle for problem test4s, without/with automated acceleration & convergence 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 4.  Details of initial cycles for problem test4s 
  

 
 

Figure 5.  Details of initial cycles for problem test4s 
 


