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INTRODUCTION

Code verification is an extremely important process that
involves proving or disproving the validity of code algorithms
by comparing them against analytical results of the underlying
physics or mathematical theory on which the code is based
upon. Monte Carlo transport codes such as MCNP6 [1, 2]
undergo verification and testing upon every release to ensure
that the codes are properly simulating nature. Specifically,
MCNP6 has multiple sets of problems with known analytic
solutions that are used for code verification [3, 4].

Most of the verification problems are fairly simple due
to the fact that they are usually composed of few materials,
with simplified cross-sections, or physics approximations, and
simple geometry. These approximations make the transport
equation possible to solve analytically or semi-analytically,
and thus they are quite valuable in verifying that the code
algorithms and methods (Monte Carlo, discrete ordinates, etc.)
are operating as intended. The remainder of this paper is or-
ganized as follows: first we briefly discuss the theory behind
the benchmarks problems, then the numerical results are pre-
sented, and finally we conclude with general remarks on this
and possible future work.

THEORY

Most of the analytical benchmarks for fixed source trans-
port problems used for code verification specify either the
boundary conditions for the angular or scalar flux or the ex-
ternal (usually isotropic) source. Monte Carlo codes on the
other hand, primarily specify either current boundary sources
or a volumetric fixed source, either of which can be very com-
plicated functions of space, energy, direction and time. Thus,
most of the challenges with modeling analytic benchmark
problems in Monte Carlo codes come from identifying the cor-
rect source definition to properly simulate the correct boundary
conditions [5]. In this benchmark suite, the problems included
originate from chapter 3 of Professor Barry Ganapol’s book,
Analytical Benchmarks for Nuclear Engineering Applications
Case Studies in Neutron Transport Theory [6].

The class of problems included in this suite all deal with
mono-energetic neutron transport without energy loss, in a
homogeneous material. The variables that differ between the
problems are source type (isotropic/beam), medium dimen-
sionality (infinite/semi-infinite/finite), and c defined below.

c ≡
Σs + νΣ f

Σt
(1)

For these benchmarks, while the ratio of c is varied, Σt is al-
ways kept at unity. Along with other approximations, which
vary from one benchmark to another, the mono-energetic ap-
proximation is the first step toward making these transport

problems tractable. To get to the one group form, we assume
neutrons scatter elastically from nuclei with infinite mass and
thus do not lose energy. After integrating out energy we obtain
the one group version of the transport equation [6]:

[Ω · ∇ + Σ(r, E0)] φ(r,Ω) =

∫
4π

dΩ′Σs(r,Ω′ ·Ω, E0)φ(r,Ω′)

+
1

4π
ν(E0)Σ f (r, E0)

∫
4π

dΩ′φ(r,Ω′) + Q(r,Ω) (2)

where (Ω · ∇)φ(r,Ω) represents neutrons streaming out of the
volume, Σ(r, E0)φ(r,Ω) represents neutrons lost to absorption,∫

4π dΩ′Σs(r,Ω′ · Ω, E0)φ(r,Ω′) represents neutrons scattering
within the volume, the third term represents neutrons born
from fission, and Q(r,Ω) represents the source. Equation (2)
has five dimensions and thus is still difficult to solve mathemat-
ically. Further simplifications are necessary in order to be able
to reach a solution analytically. A reduction to 1-D geometry,
and making artificial cross-sections which only include elastic
scatter, capture, and fission neutron physics are common as-
sumptions made in the derivation of these simplified forms of
the transport equation.

RESULTS AND ANALYSIS

Professor Ganapol provided the FORTRAN codes that
were used to solve modified versions of the mono-energetic
transport equation semi-analytically, for the different boundary
conditions and values of c. The same problems were set up
in MCNP6, and the data was compared using a python script.
For ease of comparison, the numbering of the plots coincide
with the numbering in Barry Ganapol’s book.

Infinite Medium Benchmark 3.1

For Benchmark 3.1 the transport equation that is solved
is for mono-energetic neutrons in a homogeneous infinite
medium, scattering without energy loss. The problem is solved
in MCNP6 using a F2 flux tally for a beam and isotropic
source.

Figure 1 shows both the calculated and benchmark scalar
flux (top) and the calculated scalar flux divided by the analytic
solution (bottom) as a function of position in the slab for an
isotropic source at the origin. The solutions, generated by
a version of MCNP6 equivalent to MCNP6.1.1, are within
statistics everywhere except near the source, where errors are
shown to be of the order of <10%. After running all of the
benchmark problems, this effect is found in most problems
near sources, boundaries, and high flux gradients. The diver-
gence of the MCNP6.1.1 solution can be explained by the



method which the F2 flux tally is calculated:

φ =
1

A ∗W

N∑
i=1

wgti
|µ|i

, (3)

where A is the surface area, W is the total source weight, wgt
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Fig. 1. Comparison of analytic results for Benchmark 3.1.2
with MCNP6 results for an isotropic source.

is the weight of the particle when crossing the surface, and |µ|
is the absolute value of the cosine of the angle between the
surface normal and the direction of the particle crossing the
surface. As can be seen from Eq. 3 the F2 flux tally divides by
the absolute value of the particle grazing angle with the surface.
Below |µ| < .1 MCNP6.1.1 makes a constant contribution to
the F2 tally, in order to ensure that the variance of the flux is
finite and to preserve good statistics. In the next release of the
MCNP6 code, the grazing angle cutoff of |µ| < .1 can be set
with a user option or the new default grazing angle cutoff of
|µ| < .001 may be used. In Figure 2, the F2 flux tally divided
by the semi-analytic solution is shown for both grazing angle
cutoff parameters. Better agreement between the semi-analytic
and MCNP solutions using the smaller grazing angle cutoff
clearly shows the discrepancies are due to the assumptions
made in the F2 flux tally at very small grazing angles.

Semi-Infinite Medium Benchmark 3.2 & 3.3

For Benchmark 3.2 and 3.3 the problem to be solved
is mono-energetic neutron transport through a homogeneous
material with vacuum boundary conditions either on one (half
space 3.2) or both sides (finite slab 3.3) and an impinging beam
on the left surface. The MCNP6 solutions for both of these
benchmark suites are within statistics except near the source,
which can be explained by the F2 tally contribution. Note that
MCNP6 comparisons of the 3.2 benchmark problems have
been discussed in Ref. 5.

Infinite Cylinder 3.4

Benchmark 3.4 deals with monoenergetic neutron trans-
port in an isotropically scattering infinite cylinder with a vac-

0 1 2 3 4 5
Position in Slab (cm)

0.980

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

C/
E

C/E, c=0.1, Large Grazing Angle Cutoff
C/E, c=0.1, Small Grazing Angle Cutoff

Fig. 2. Comparison of analytic results for Benchmark 3.1.2
with MCNP6 results for two grazing angle cutoffs.

uum boundary condition. As the neutrons enter the outside
surface of the cylinder they initiate fission, which leads to the
development of an internal flux profile. To compare MCNP6
results to the analytic "surrogate" flux (see Ref. 6 for details)
solution a volume source must be used over the entire cylinder,
with concentric infinite cylinders bounded by two reflecting
surfaces. A flux F2 tally is then defined at each of the con-
centric cylinders to obtain the MCNP6 results. The flux shape
for these problems is within statistics for most of the cylinder
except near the edge, where there is a high flux gradient.

A variation on this benchmark included a criticality cal-
culation of the infinite cylinder. By varying the value of c in
Eq. 1, the critical radius of an infinite cylinder is calculated
by Ganapol and compared to values reported in the literature
[6, 7]. In the present work, using the c and critical radius
values, the MCNP6 results for ke f f and the critical flux shape
agree nicely with the benchmark results as can be seen by
figure 3. Note that the results of surface flux tallies in the
criticality calculations are not very sensitive to the grazing
angle cutoff parameter compared with the other fixed-source
results in the present work.

CONCLUSIONS

It is extremely important not only to properly set up the
source, but to use the correct tallies as well, as can be seen
from these cases. The approximations present in the F2 tally
are the primary source of inaccurate results near the sources
and boundaries where low grazing angles may be prevalent.
To mitigate this discrepancy the smaller grazing angle cutoff
can be used (available in the next version of MCNP6), or all
of these problems could be reworked using a F4 volume flux
tally with very narrow volume widths in order to compare to
the point-wise semi-analytic solutions. It is evident that when
the correct source definition and tallies are used, the MCNP6
results match the analytical solution within statistics.
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