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ABSTRACT

The point kinetics model is used as a first approximation for modeling transients in nuclear systems.
Point kinetics is accurate enough in many situations, but its performance can degrade far from
criticality. The classic approach uses a k or multiplication eigenvalue as the basis for developing
the underlying model. This work generalizes the point kinetics equations for any multiplicative
eigenvalue. The collision and leakage eigenvalues are studied, and preliminary results show that in
some cases the collision eigenvalue provides a more accurate representation of the prompt period.
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1. INTRODUCTION

The simplest model for transient behavior in a nuclear system is the point kinetics
approximation[1]. Traditionally, the approximation is based upon a k or multiplication eigenvalue
form of the neutron transport equation. Alternative eigenvalue formulations of the transport
equation are also possible[2–5]. The point kinetics equations are reformulated to use any
multiplicative eigenvalue. Using this formulation, point kinetics models based upon the collision,
or c-eigenvalue, and leakage, or l-eigenvalue, are obtained.

The eigenvalue equations are identical at criticality and therefore produce identical kinetic
behavior, but differ from each other for off critical systems. The suitability of using the inverse
prompt period α from different point kinetics models as a surrogate for the true inverse prompt
period from time-dependent transport is studied using a few multigroup systems with
representative cross sections: a bare system, a fast system with a low-Z reflector, and a moderated
system with a reflector. The results show that for the reflected cases, the collision c eigenvalue
form of the point kinetics model does best at predicting the inverse prompt period α away from
criticality.

2. THEORY

2.1. Time-Dependent Neutron Transport

The time-dependent neutron transport equation may be written as

1

v

∂ψ

∂t
= (S +M − L− T )ψ(r, Ω̂, E, t) +

∑
i

λiCi(t) +Q(r, Ω̂, E, t), (1)
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where ψ is the neutron angular flux, Ci is the delayed neutron precursor concentration for group i,
v is the neutron speed, S, M , L, and T are operators for scattering, prompt fission, streaming, and
total interactions respectively, λi is the decay constant for precursor group i, and Q is an external
neutron source. The delayed neutron precursor concentrations are governed by rate equations of
the following form:

dCi

dt
= Biψ(r, Ω̂, E, t)− λiCi(t), (2)

where Bi is the fission production operator for delayed neutron precursors of group i.

The overall neutron population N at time t is

N(t) =

∫
1

v
ψ(r, Ω̂, E, t) dr dΩ̂ dE. (3)

Often times the logarithmic rate of change in the system as a function of time is of interest,

α(t) =
1

N(t)

dN

dt
. (4)

This is often referred to as dynamic α and is a general quantity describing the time behavior of an
arbitrary neutronic system.

For prompt transients, the timescale of the neutron precursors is much longer than that of the rate
of change of the neutron population, and those terms can be neglected. Additionally, if the
external source is assumed to be of negligible intensity relative to the neutron population (as is
often the case in operating nuclear reactors), then the time-dependent transport equation is

∂ψ

∂t
= Aψ, (5)

where A = v(S +M − L− T ), and is referred to as the transport operator. This equation can be
formally solved via a Laplace transform, and the time-dependent solution can be obtained from
the following contour integral on the complex plane:

ψ(r, Ω̂, E, t) =
1

2πi

∫ γ+i∞

γ−i∞
est(s− A)−1ψ0(r, Ω̂, E) ds. (6)

Here s is the transform variable, ψ0 is the initial condition, and γ is a constant that is sufficiently
large to encompass all poles on the complex plane. Unfortunately, because of the nature of the
transport operator A, the poles are not discrete points, and this contour integral is difficult[6].
Nonetheless, this assumption is often made anyway, and empirically is shown to produce good
results except for the very short timescales. This allows the solution to be expressed as

ψ(r, Ω̂, E, t) =
∞∑

j=0

aje
αjt, (7)

where the aj are expansion coefficients related to the initial condition ψ0. The α0 is the
asymptotic inverse prompt period that is often measured experimentally in reactors, and
corresponds to the dynamic α at late times assuming no delayed neutrons or sources.
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It turns out that the form of a solution as a sum of exponentials may be obtained if the neutron flux
is assumed to be separable from time a priori. This results in the prompt-α eigenvalue equation:

Aψα = αψα. (8)

Here ψα denotes the time-independent shape function or eigenfunction, and α is the
corresponding eigenvalue. The fundamental eigenvalue and eigenfunction correspond to those
obtained for late times for the prompt, sourceless time-dependent neutron transport equation. The
criticality condition is when the fundamental α0 = 0; the case where α0 < 0 is referred to as
subcritical, and the case where α0 > 0 is called supercritical.

2.2. Static-Eigenvalue Equations

In practice, the time-dependent neutron transport or α-eigenvalue equations can be difficult to
solve. Since behavior at or near criticality, is of most interest, the neutronic behavior can be
described by a static eigenvalue equation. This is obtained by making the ad hoc assumption of
steady state by setting the time derivatives to zero. Of course, the equation then does not balance
unless the system was already at steady state, so a multiplicative factor is applied somewhere in
the equation to enforce balance. The most popular form involves placing a factor 1/k on the total
fission term (prompt plus delayed):

(L+ T − S)ψk =
1

k
Fψk. (9)

Here F is the operator for total fission, ψk is the shape function given this model. This is an
eigenvalue problem and k is referred to as the multiplication eigenvalue, and ψk the
corresponding eigenfunction. The k can be thought of as a factor to increase the fission
multiplication uniformly to enforce balance. It follows the definition of k = 1 is critical, k < 1 is
subcritical, and k > 1 is supercritical.

Suppose that rather than placing the multiplicative factor on the fission term, the factor 1/c is
instead applied to the scattering plus the fission term:

(L+ T )ψc =
1

c
(S + F )ψc. (10)

This is the collision eigenvalue form of the transport equation, where ψc represents the shape
function for this model, which is different than that of the k-eigenvalue model. As an aside, unlike
the k eigenvalue, both the c and α eigenvalues exist even in the absence of fissionable material.

Another static-eigenvalue form of the transport equation can be created by placing a factor of 1/l
on the total interaction term in addition to the scatter and fission terms:

Lψl =
1

l
(S + F − T )ψl. (11)

Here l is the leakage eigenvalue, and corresponds to a uniform factor changing the density, or the
neutron mean-free-path, to make the system critical. Unlike with the k or c eigenvalues, a
positive, real l eigenvalue is not guaranteed to exist, corresponding to the situation where there is
no change in material density to make the system critical.
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In this study, only these three static eigenvalues are considered. One could get creative and define
an infinite number of eigenvalues through different applications of multiplicative factors. In any
case, for a critical configuration all of these eigenvalue equations are identical, as is the α
eigenvalue equation at α0 = 0 and the general time-dependent transport equation. Likewise, for
any multiplicative eigenvalue x < 1, the system is subcritical, and x > 1 implies the system is
supercritical. There is no simple, general connection between the different static eigenvalue
equations for systems that are not critical.

2.3. Adjoint Equations

The goal is to derive the point kinetics equations, but before that can be done, the adjoint equation
must be introduced. The adjoint function acts as a convenient weight function allowing for
simplifications to the equations. Mathematically, the adjoint function of the neutron transport
equation has the following property: 〈

ψ†, Hζ
〉

=
〈
ζ,H†ψ†

〉
. (12)

Here the brackets denote integration over all phase space, H is a generic linear operator, and ζ is
an arbitrary function. The adjoint function is a general, time-dependent quantity, but for brevity,
only the static eigenvalue cases are considered.

The adjoint k-eigenvalue equation is

(
L† + T † − S†

)
ψ†k =

1

k
F †ψ†k. (13)

Here ψ† is the adjoint function of the neutron transport equation, with the daggers on the
operators denoting their adjoint forms — note that k = k†, but the derivation of this is not shown
here and available in many relevant textbooks. The adjoint equation reverses the direction of
streaming, and the “direction” of scattering and fission are reversed.

The adjoint function is often given the physical meaning of importance. For the k-eigenvalue
equation, this importance the relative propensity of a neutron at some location in phase space of
driving a self-sustaining chain reaction in a system where the multiplication has been adjusted by
a factor of 1/k to make it critical.

Likewise, the collision and leakage transport equations also have corresponding adjoint equations:

(
L† + T †

)
ψ†c =

1

c

(
S† + F †

)
ψ†c , (14)

L†ψ†l =
1

l

(
S† + F † − T †

)
ψ†l . (15)

It is also straightforward to show that c = c† and l = l†. Furthermore, the physical interpretation
of neutron importance holds, except that the physics has been adjusted in a different way for each
different eigenvalue.
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2.4. Generalized-Eigenvalue Point Kinetics

Now that the adjoint equations have been defined, point kinetics for a general eigenvalue x may
be defined. First, group the terms in the time-dependent transport equation as follows:

1

v

∂ψ

∂t
= Gxψ −Hxψ +

∑
i

λiCi +Q, (16)

Here Gx and Hx are operators depending on the choice of eigenvalue x from the following
general eigenvalue transport equation:

Hxψx =
1

x
(Gx +B)ψx, (17)

where B is the total production operator for delayed neutrons (M +B = F ).

From here, the point kinetics derivation proceeds in the traditional way. First, multiply the
time-dependent transport equation by ψ†x and integrate over all space.〈

ψ†x,
1

v

∂ψ

∂t

〉
=

〈
ψ†x, Gxψ

〉
−

〈
ψ†x, Hxψ

〉
+

∑
i

〈
ψ†x, λiCi

〉
+

〈
ψ†x, Q

〉
, (18)

Next, take the corresponding adjoint transport equation, multiply by ψ, and apply the property of
adjoints to obtain

0 =
1

x

〈
ψ†x, (Gx +B)ψ

〉
−

〈
ψ†xHxψ

〉
. (19)

Subtract this from the time-dependent equation to yield〈
ψ†x,

1

v

∂ψ

∂t

〉
=

〈
ψ†x, Gxψ

〉
− 1

x

〈
ψ†x, (Gx +B)ψ

〉
+

∑
i

〈
ψ†x, λiCi

〉
+

〈
ψ†x, Q

〉
, (20)

Add and subtract the quantity
〈
ψ†x, Bψ

〉
to the right-hand side:〈

ψ†x,
1

v

∂ψ

∂t

〉
=
x− 1

x

〈
ψ†x, (Gx +B)ψ

〉
−

〈
ψ†x, Bψ

〉
+

∑
i

〈
ψ†x, λiCi

〉
+

〈
ψ†x, Q

〉
. (21)

Now, assume that the angular flux ψ can be separated into the fundamental mode shape function
ϕ and a time factor n(t):

ψ(r, Ω̂, E, t) = ϕ(r, Ω̂, E)n(t). (22)

Substituting this into the equation and rearranging gives

dn

dt
=

x−1
x

〈
ψ†x, (Gx +B)ϕ

〉
−

〈
ψ†x, Bϕ

〉〈
ψ†x, 1

v
ϕ
〉 n(t) +

∑
i

〈
ψ†x, λiCi(t)

〉〈
ψ†x, 1

v
ϕ
〉 +

〈
ψ†x, Q

〉〈
ψ†x, 1

v
ϕ
〉 . (23)

This finishes the derivation. To give a more familiar compact form, some definitions are made.

The general-eigenvalue reactivity is:

ρx =
x− 1

x
; (24)
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the general-eigenvalue reproduction time is:

Λx =

〈
ψ†x,

1
v
ϕ
〉〈

ψ†x, (Gx +B)ϕ
〉 ; (25)

the general-eigenvalue effective delayed neutron fraction for group i is:

βx,i =

〈
ψ†x, Biϕ

〉〈
ψ†x, (Gx +B)ϕ

〉 ; (26)

the general-eigenvalue effective delayed neutron fraction for all precursors is the sum of the
individual components or:

βx =

〈
ψ†x, Bϕ

〉〈
ψ†x, (Gx +B)ϕ

〉 ; (27)

the adjoint-weighted precursor concentration for group i is:

cx,i(t) =

〈
ψ†x, λiCi(t)

〉〈
ψ†x, 1

v
ϕ
〉 ; (28)

and the adjoint-weighted external source is:

qx =

〈
ψ†x, Q(t)

〉〈
ψ†x, 1

v
ϕ
〉 . (29)

Making these definitions, the compact form of the generalized-eigenvalue point kinetics equations
are obtained:

dn

dt
=
ρx − βx

Λx

n(t) +
∑

i

λicx,i(t) + qx(t), (30)

dcx,i

dt
=
βx,i

Λx

n(t)− λicx,i(t). (31)

The inverse prompt period for the generalized-eigenvalue point kinetics equations is

αx =
ρx − βx

Λx

. (32)

For the k-eigenvalue case, this is also known as Rossi α. At criticality all values of αx are
identical and the same as the asymptotic α from the prompt-only form of the time-dependent
neutron transport equation.

The shape function ϕ is, strictly speaking, with respect to the time-dependent transport equation.
Unfortunately, that is typically not available, so a similar shape function needs to be used that is.
Typically this is the neutron angular flux ψx for the eigenvalue problem being solved, and that is
the choice made for this paper.
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3. RESULTS

For this initial study, 1-D slab geometry and multigroup cross sections are used. The systems
studied were a bare metal system and a metal system with a low-Z reflector. Methods for solving
the forward and adjoint equations were implemented into a research discrete ordinates (SN ) code.
A research Monte Carlo (MC) code was created to solve the forward and time-dependent
transport problems—time dependent SN was developed as well, but because very small time steps
and negative flux fix-ups are required, MC proved to be more robust and efficient in this case. To
summarize, the kinetics parameters were obtained via SN (S64 Gauss-Legendre quadrature with
fine spatial mesh), and the prompt α was obtained with MC by a least-squares fit to the
asymptotically changing population; time cutoffs were used in the MC to control the neutron
population for the supercritical cases.

As a note of verification, the SN and MC forward eigenvalues from the two methods match, and
the k eigenvalue case was benchmarked with MCNP6.1 in multigroup mode[7], providing
confidence the equations are being solved correctly by both methods. As expected, the k, c, l, and
time-dependent results are identical for a critical configuration. The forward and adjoint SN

eigenvalue results for k, c, and l calculations are also identical.

3.1. Bare, 2-Group Slab

Bare slabs with varying thicknesses a form the first test case. The slab cross sections are given in
Table I, and the atomic density is 0.05 atoms per barn-cm. The speeds of the two groups are
v1 = 1.0 and v2 = 0.1 in arbitrary units. For this case, no delayed neutrons were used—the
4-group case to be discussed has them.

The slab thickness a is varied from 15 to 30 cm, with the critical thickness at about 25.5 cm.
Figure 1 shows the various αx values compared with the true (reference) prompt α. For the bare
case, αk and αc are almost identical regardless of slab thickness, whereas αl deviates significantly
from the other two away from criticality; of course, all agree at critical.

3.2. Reflected, 4-Group Slab

The next case is reflected on both sides (modeled as a reflecting boundary condition at x = 0).
The reflector thickness on each side is 25 cm. The four energy groups are centered at 1 MeV, 100
keV, 10 eV, and 0.025 eV, so more realistic speeds are used in this case. Core and reflector cross

Table I: 2-group core cross sections.

g σc σf ν χ σsg1 σsg2

1 1.5 1.0 2.8 1.0 0.98 0.02
2 20.0 120.0 2.5 0.0 0.00 20.0
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Figure 1: True α versus kinetics αx for 2-group bare slab.

sections are given in Table II. Delayed neutrons are included with 235U data used for the βi and λi.
To be consistent with point kinetics, only prompt ν is used to sample the fission multiplicity in the
time-dependent MC calculations.

The core thickness a is varied as with the previous case. Similar comparisons of αx and the
inverse prompt period are given in Fig. 2. None of the αx do particularly well in predicting the
inverse prompt period in this case when it is far from critical. This is because the point kinetics
model does not adequately insert the 1/v absorber or source to account for the fact that slower or
faster neutrons do not significantly impact the transient. αc is most predictive of the inverse
prompt period and does better than αk near critical; αl is again a poor estimator of α.

Table II: 4-group core and reflector cross sections.

g σc σf ν χp χd σsg1 σsg2 σsg3 σsg4

1 1.5 1.0 2.8 0.8 0.7 0.7000 0.3000 0.0000 0.0000
2 0.5 1.0 2.6 0.2 0.3 0.0000 0.4998 0.0003 0.0000
3 10.0 2.0 2.5 0.0 0.0 0.0000 0.0000 4.9975 0.0025
4 20.0 120.0 2.5 0.0 0.0 0.0000 0.0000 0.0000 20.0000

1 0.2 0.0 0.0 0.0 0.0 1.1400 2.2800 0.3762 0.0038
2 0.5 0.0 0.0 0.0 0.0 0.0000 4.8000 1.1700 0.0300
3 0.5 0.0 0.0 0.0 0.0 0.0000 0.0000 4.5000 1.5000
4 1.0 0.0 0.0 0.0 0.0 0.0000 0.0000 0.2000 9.8000

8/10 PHYSOR 2014 – The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014



Prompt Generalized-Eigenvalue Kinetics

-60000

-40000

-20000

 0

 20000

 40000

 60000

 6  7  8  9  10  11  12  13  14
In

ve
rs

e 
P

ro
m

pt
 P

er
io

d 
(s

-1
)

Core Thickness (cm)

alpha (Ref.)
alpha-k
alpha-c
alpha-l

Figure 2: True α versus kinetics αx for 4 group reflected slab.

3.3. Reflected and Moderated, 8-Group Slab

The final test problem has a similar geometry to the previous except that 8-group cross sections
are used. The core of the slab is 10 thick with a 5 cm reflector on each side. The core is a mixture
of fuel and moderator (reflector) material ranging from 0.2% to 40% by atom. Figure 3 gives the
α results. As before, the αc appears to offer the best approximation of the time-dependent α away
from criticality; the αk and αl are about the same, with sometimes one performing better than the
other or vice versa.
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Figure 3: True α versus kinetics αx for 8 group moderated and reflected slab.

4. SUMMARY & FUTURE WORK

The point kinetics equations were generalized to an arbitrary multiplicative static eigenvalue of
the transport equation. The multiplication k, collision c, and leakage l point kinetics models were
obtained from this general form and studied. Research SN and MC codes were created to test the

9/10 PHYSOR 2014 – The Role of Reactor Physics toward a Sustainable Future
Kyoto, Japan, September 28 - October 3, 2014



Kiedrowski

ability of these models to predict the inverse prompt period α obtained from a time-dependent
MC simulation. Three cases with multigroup cross sections were tested: a bare fast core
(2-group), a fast core reflected by low-Z material (4-group), and a moderated core with a reflector
(8-group). While it would be premature to conclude overly much based upon a few simplistic test
problems using representative, but non-physical, nuclear data, the results suggest it may be worth
exploring different point kinetics models, and that there may be advantages to using the
c-eigenvalue kinetics for reflected systems.

The next step is to adapt these eigenvalue calculations into a continuous-energy MC code. Some
of this work has already been done for the forward case with the c-eigenvalue[8]; however, new
methods will need to be developed to handle the adjoint weighting needed to calculate the
alternate kinetics parameters. These will most likely be logical extensions of the iterated fission
probability method[9] used to compute the k point kinetics parameters.

Given the parameters from the different point kinetics models, the inhour equations may be
formulated and solved. Comparisons can then be made between the models to either time
dependent calculations or measurements. Finally, it may be possible to apply different
combinations of these point kinetics models to multi-region kinetics, particularly regions with
non-fissionable reflectors.
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