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Monte Carlo Approaches for Uncertainty Quantification of Criticality for System
Dimensions

Brian C. Kiedrowski1 and Forrest B. Brown1

1X-Computational Physics Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545

MCNP6 is used to estimate uncertainties from geometric tolerances using forward and adjoint methods. Results are
obtained and the forward and adjoint approaches appear to agree in some cases where the responses are not non-linearly
correlated. In other cases, the uncertainties in k disagree for reasons not yet known.
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I. Introduction

One of the current challenges in nuclear engineering computa-
tions is the issue of performing uncertainty analysis for either
calculations or experimental measurements. It is often not
enough to just know the answer, but also how well that an-
swer is known. In neutron transport, the uncertainty arises
from any system parameter: nuclear data, densities, composi-
tions/enrichments, geometry (component dimensions and po-
sitions), model approximations, theory assumptions, etc. The
dominant source of uncertainty in most neutronics calculations
are the nuclear data, e.g., cross sections, fission multiplicities
and spectra, etc., and this aspect has been studied extensively.
In trying to quantify the uncertainty for measurements of an
experimental benchmark, the other system parameters matter.
This paper specifically focuses on the issue of estimating the
uncertainties arising from geometric tolerances.

There are many sophisticated techniques for uncertainty
quantification available. For this paper, only two cases are
studied. The first is the forward propagation technique, which
can be thought of as a “brute force” approach; uncertain system
parameters are randomly sampled, the calculation is run, and
uncertainties are found from the empirically obtained distribu-
tion of results. This approach need make no approximations
in principle, but is very computationally expensive. The other
approach investigated is the adjoint-based approach; system
sensitivities are computed via a single Monte Carlo calculation
and those are used with a covariance matrix to provide a linear
estimate of the uncertainty.

An overview of the forward and adjoint approaches is given.
Demonstration calculations are performed with MCNP6(1) for
both. The results show that in many cases the forward and
adjoint cases agree, but in others they disagree, suggesting
possible errors in the coding or limitations of the adjoint theory
applied to geometry.

II. Forward Approach

Forward methods are perhaps the most intuitive. A set of
uncertain parameters X = [x1, . . . , xi, . . .] are defined, each
having an underlying probability distribution fi(X), which may
be correlated (perhaps non-linearly or with constraints) with
the other parameters.

Each fi(X) is randomly sampled to generate a random real-
ization of X, which are then used to define a problem geometry.
This random realization is run through a code (e.g., MCNP)
and a result such as k is obtained for that realization. After
numerous realizations N, the distribution of results is obtained,
and mean values, variances, normality, or other properties of
the output distribution are obtained. The uncertainty in result
R is obtained via the standard deviation from basic sample
statistics:

δR =

√√√
1

N − 1

N∑
i−1

(
Ri − R̄

)2
. (1)

This process has the advantage that it is very general and ex-
act within the knowledge of the underlying distributions fi(X),
which may not be known in practice. The main disadvantage
is that if the dimensionality of X is large, it may be necessary
to perform a very large number of random realizations before
the output distribution may become resolved enough to make
meaningful inferences.

MCNP provides a utility called pstudy(2) (a Perl preprocessor
script) for forward simulations of uncertainty quantification.
The pstudy script parses a special MCNP input file (call it
the master) containing special macros—the macros are not
recognized by MCNP, so it cannot be run directly on the master
input file. The script is quite general, allowing for almost any
input parameter to be randomly varied, and allowing for user-
defined constraints on the random parameters (e.g., to prevent
overlaps in parts). When pstudy processes the master input file,
it creates N derivative input files. Each of these N files is then
run, either sequentially or submitted in parallel via batch submit
to a cluster. Upon conclusion, MCNP collects the MCTAL
output files (a file containing just the tally results and none
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Figure 1: Illustration of surface defined by contour B with corre-
sponding cross sections.

of the details of the calculation found in the standard MCNP
output file) and calculates averages and standard deviations of
results.

III. Adjoint Approach

The adjoint method arises from an application of perturbation
theory, which can be used to compute sensitivity coefficients
sR,x. The sensitivity coefficient for response R arising from
system parameter x is defined as

sR,x =
dR/R
dx/x

, (2)

or the ratio of the relative differential change in R arising from
the relative differential change in x.

To compute the uncertainty the sensitivities are placed in
a vector S = [s1, . . . , si, . . .] and convolved with a covariance
matrix C using the so-called “sandwich rule”. The sandwich
rule involves a vector-matrix-vector multiplication of

(δR)2 = SCST . (3)

This uncertainty estimate is limited to quantities that vary and
are correlated linearly; non-linear variations in the response R
from x cannot be captured by this approach. Another limita-
tion specific to this paper, because of the limitations with the
method prototyped in MCNP, the uncertainty estimates are fur-
ther restricted to only the effective multiplication k and for cases
where the surface is uniformly expanded or contracted along
its surface normal, although extending this to more general
responses should be possible.

To illustrate the mathematics behind adjoint-based geome-
try perturbations, some terminology is needed. The interface
between two zones within a geometry is defined by a surface
contour B with an outgoing surface normal n̂ as shown in Fig.
1. The zone on the positive side of the surface normal is defined
to be the positive zone with respect to the surface, whereas the
zone on the negative side is defined as the negative zone. The
positive and negative zones have generic macroscopic cross
sections Σ+ and Σ respectively. With these definitions, it is
possible to derive an expression for the derivative of k with
respect to interface location b located on surface contour B.

Adjoint-based perturbation theory yields the following rela-
tionship for the change in k (define λ = 1/k, where k is that of

the unperturbed system, so dλ = −λ2dk) with respect to some
cross section perturbation:

dk = −
1
M

〈
ψ†, (dΣt − dS − λdF)ψ

〉
, (4)

where the brackets 〈., .〉 indicate an integration over all phase
space (position r, direction Ω̂, and energy E), ψ is the forward
angular flux, ψ† is the corresponding adjoint function, Σt is the
total macroscopic cross section, S is the scattering operator
given by

S =
"

dE′ dΩ′ Σs(r, E′ → E, Ω̂′ → Ω̂) (5)

with Σs as the double-differential scattering cross section, F is
the fission operator given by

F =
1

4π

"
dE′ dΩ′ χ(E′ → E)νΣ f (r, E′) (6)

with χ as the fission emission spectrum, ν as the mean number
of neutrons produced per fission, Σ f as the macroscopic fission
cross section, and the quantity M is the adjoint-weighted fission
source times λ2 or

M =
〈
ψ†, λ2Fψ

〉
. (7)

Both the forward and adjoint flux correspond to the unperturbed
system.

The functional form of a generic cross section in the vicinity
of the surface contour B along some ray r crossing the surface
at location b in the positive direction is

Σ(r) = Σ− + Θ(r − b)(Σ+ − Σ−), (8)

whereΘ is the Heaviside step function. Differentiating the cross
section with respect to b, the location of the surface crossing,
yields

dΣ
db
= −δ(r − b)(Σ+ − Σ−), (9)

where δ is the Dirac delta function. By substituting Eq. (9)
into Eq. (4) and rearranging, the following convenient form is
obtained:

dk
db
=

1
M

[ 〈
ψ†,
(
Σ+t − Σ

−
t
)
ψ
〉

B
+
〈
ψ†, S −ψ

〉
B
−
〈
ψ†, S +ψ

〉
B

+
〈
ψ†, λF−ψ

〉
B
−
〈
ψ†, λF+ψ

〉
B

]
.

(10)

Subscript B denotes that the volume integral in the inner product
is now a surface integral on contour B. The operators with the +
and − superscripts are identical to the corresponding definitions
except that their constituent cross sections have inherited the
corresponding superscript. Recall that the superscripts denote
which side the surface the material is on, not the direction that
the neutron is traveling. The reason for the particular form
chosen in Eq. (10) is seen in the Monte Carlo methodology.

Each inner product of Eq. (10) constitutes an adjoint-
weighted tally computed during a random walk simulation.
The numerator has five such terms, and accumulation of infor-
mation for each occurs each time a neutron crosses the surface
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for which the sensitivity is desired. The essential component
for all these tallies is an estimate of the flux at the surface,
which is done by the traditional estimator of

ψ̃B =
w
|µ|
, (11)

where ψ̃B denotes an individual contribution to the flux estimate
at the surface, w is the numerical particle weight, and µ is the
cosine of the angle between the particle trajectory and the
surface normal.

Each contribution ψ̃B must then be multiplied by an estimate
of the adjoint function of that particle after having undergone
a process representing the differential change in the interface
location. The estimate of the adjoint function is obtained by the
Iterated Fission Probability (IFP) method,(3) which calculates
the forward responses in 10 and assigns each scoring neutron a
tag that is passed to subsequent fission generations. After some
number of fission generations such that the particle distribu-
tion has reached stationarity, an estimate of the population of
neutrons arising from the neutron that made that original con-
tribution is made—the population or response after a long time
is proportional to the adjoint function—and multiplied by the
original scores to form the final score for an adjoint-weighted
integral.

The change in the collision rate from the differential surface
perturbation is computed by multiplying ψ̃B by

ψ̃†B(Σ+t − Σ
−
t )/w, (12)

where ψ̃†B is the estimate of the adjoint function for the particle
that just crossed the surface. The factor (Σ+t −Σ

−
t ) arises from the

differential change in the collision rate that would have occurred
had the surface been moved uniformly an infinitesimal amount
at every point in the direction of the surface normal.

The scatter (and fission) source rate derivative terms are
computed in a different, and far less efficient, manner. As with
the collision rate derivative term, ψ̃B is multiplied by

ψ̃†BΣ
±
s /(Σ

+
s + Σ

−
s ) (13)

for the scattering term, but in this case ψ̃†B is the importance
of a neutron that would have undergone a scattering process
on both sides of the interface had it undergone a differential,
uniform perturbation along the surface normal. For the fission
term, ψ̃B is multiplied by

ψ̃†BνΣ
±
f /(νΣ

+
f + νΣ

−
f ). (14)

Unfortunately, unless from happenstance, such neutrons will
not exist in the simulation to follow and estimate its adjoint
function. This is unlike the collision rate derivative term, where
the importance is with respect to the existing neutron that will
be followed in the course of the normal random walk. Also
consider that the adjoint function poses a “what if” question
about a neutron’s expected future—the neutron need not ac-
tually exist or even be possible to appear in the problem, but
it may still have a non-zero importance function. Since this
“what if” question is being asked about a neutron that does not
normally exist in the random walk, one must be created with

unit weight and followed for the sole purpose of making an
estimate of its importance, and this must be done in a way that
does not influence the results since it is not an actual neutron in
the system.

To produce this so-called pseudoneutron, the simulated
(physical) neutron must undergo an artificial scattering event
(a pseudoscatter) and the resulting secondary, the pseudoneu-
tron, from that is treated separate from the physical particles.
Pseudoneutrons undergo all interactions that a physical neu-
tron would and produce progeny (also pseudoneutrons) from
fission, but they do not contribute to any tallies in the problem
except for making a single estimate of the adjoint function ψ̃†B.
Pseudoneutrons do not interact with the boundary sensitivity
tallies that produced them and therefore their surface crossings
do not result in the production of more pseudoneutrons. The
main drawback to the pseudoneutron approach is that it adds
additional random walks and therefore necessitates increases in
computational time that in practice are quite significant. Unfor-
tunately, because this “what if” question must be answered for
a neutron that would not normally exist, this computationally
expensive operation must be carried out.

Since perturbing the surface results in a gain in the size and
material of the negative zone and in a corresponding loss to
the positive zone, both the gain (positively weighted collision)
and loss (negatively weighted collision) must be accounted for
by an individual pseudoneutron. In the case where one of the
materials is vacuum, no pseudoneutron for that zone (whether
positive or negative) is generated since no collision may occur
there. Also, in the case where the materials and densities of
the zones are identical, no pseudoneutrons are generated for
reasons of efficiency since, on average, the two scatter and
fission terms will sum to zero.

IV. Results

Two systems are considered to test how well the forward and
adjoint-based methods agree. The first system is a solid, bare
cylinder of Pu-metal (Jezebel in cylindrical form) with the ra-
dius and height varied both independently and in a way that pre-
serves overall mass. The second system is a can of plutonium-
nitrate solution where the solution height and inner and outer
radii of the can are varied.

1. Bare Pu Cylinder

A bare cylinder of Pu metal (same material and density as the
Jezebel benchmark(4)) has a nominal radius R of 6.3849 cm and
a height H of 9.3269 cm with a nominal k of 1.00116±0.00011.
Two different sensitivity/uncertainty studies are performed. The
first involves independently perturbing the radius and height.
The radius is normally distributed with a standard deviation
of 5% the nominal value, and the height is also normally dis-
tributed with a standard deviation of 10% its nominal value. the
second study involves perturbing the radius (same distribution
as before) and fixing the height such that the overall mass is
preserved. For the forward method, pstudy is employed to run
100 independent random cases the sample standard deviation
is computed from the empirical distribution of results. The
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Forward Adjoint C/E

Uncorr. 4126 4277 1.037
Corr. 852 938 1.101

Table 1: Comparison of δk (in pcm) from the forward and adjoint
calculations for the uncorrelated and correlated studies.

adjoint method generates sensitivities for the radius and one of
the planar surfaces defining the cylinder and uses the sandwich
rule to compute the estimate of the uncertainty. In the second
study, the radius and height are non-linearly correlated, but a
linear correlation coefficient is used, which is empirically to be
found as -0.9949.

The sensitivity to the radius was calculated to be 0.083628 ±
0.00306 cm−1 and the sensitivity of the cylinder height is
0.035823 ± 0.00190 cm−1. Each adjoint calculation was per-
formed in about five minutes a piece, whereas the forward
calculations took about two hours each to complete. The com-
puted overall uncertainties in k (in units of pcm where 1 pcm
= 10−5 are given in Table 1 along with the C/E value to in-
dicate the goodness of agreement; in this case the C/E is the
ratio of the uncertainty from the adjoint calculation to the one
found empirically from the forward ones. The results of the
uncorrelated study agree within 4% error and the results for
the non-linearly correlated case agree within about 10%. The
agreement for the uncorrelated case is within 1-2σ statistical
uncertainties of the computed sensitivities, implying decent
agreement. The correlated case is disagrees by about 3σ, but
this is expected because the adjoint case may only capture linear
correlation, where the variation here is non-linear. Nonetheless,
a decent approximation for either can be gained within a matter
of minutes with the adjoint case as opposed to hours with the
forward case.

2. Pu-Nitrate Solution

The second test case looks at a more complicated variation. The
test problem used is a stainless steel can of plutonium-nitrate
solution—dimensions and material properties may be found in
Chapter 5 of the MCNP Criticality Primer.(5)

Three parameters are varied: the solution volume, the inner
radius Rin, and the thickness. From these the solution height
Hsol and the outer radius Rout are derived. The volume is varied
normally with a standard deviation of 5%, the inner radius
is varied normally with a standard deviation of 0.1 cm, and
the thickness is varied normally with a standard deviation of
0.02 cm. Table 2 gives the correlation matrix for the inner and
outer radii and the solution height. The diagonal terms are the
standard deviation in cm, and the off-diagonal terms are the
empirically found linear-correlation coefficients.

The results for the sensitivty/uncertainty study are given in
Table 3. The δk terms are the uncertainty for each parameter

Rin Rout Hsol

Rin 0.104 0.984 -0.352
Rout 0.984 0.106 -0.363
Hsol -0.352 -0.363 2.120

Table 2: Correlation matrix for the Pu-Nitrate Solution sensitiv-
ity/uncertainty study.

xi dk/dxi (cm−1) δk (pcm)

Rin −4.524 × 10−2 475
Rout 6.460 × 10−2 688
Hsol 1.156 × 10−3 245

Correl. -585

Adjoint 274
Forward 663

Table 3: Results for the Pu-Nitrate Solution sensitiv-
ity/uncertainty study.

alone; the correlation value is the sum of the off-diagonal terms
signed-square rooted. The total uncertainty δk is obtained by
taking the signed sum squared of the four other terms in the the
table. As seen the forward and adjoint uncertainties disagree by
about a factor of 2.4. Not including the correlation terms leads
to an adjoint uncertainty of 871 pcm, which then overpredicts
the uncertainty by a factor of 1.3.

Clearly, this result is not even close, unlike the bare metal
cylinder case. An investigation reveals that there may be some
issue with calculating the sensitivity coefficients for the Pu-
nitrate cylinder case. The sensitivities compared to those ob-
tained by two separate calculations using a central difference
derivative appear to differ significantly. Interestingly, this does
not hold true for other cases tested.(6) Investigation continues
to explain this large discrepancy.

V. Conclusions

Both forward and adjoint approaches have been applied to cal-
culating geometric uncertainties of k using MCNP6. It appears
the results compare favorably for the bare Pu-metal cylinder
case, but not so for a stainless steel can of Pu-nitrate solution.
The reasons for this are currently under investigation.
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