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1. INTRODUCTION

In this work, the fission matrix method [1][2], imple-
mented into MCNP6 [3], is used to study criticality cal-
culations and compute quantities of practical use. Physi-
cally, the fission matrix consists of spatial transition terms
between two fission generations. With a sufficiently re-
fined mesh (achieved here with a sparse storage scheme)
these rates can be accurately tallied without knowledge of
the correct fission distribution. The matrix can then be
solved for K-eigenvalues and eigenvectors. The right and
left eigenvectors correspond to forward and adjoint fission
source modes, respectively.

Using higher source modes, the manner in which neu-
trons propagate in space through generations is represented
with eigenmode expansions (section 3.1). Source con-
vergence in criticality calculations is examined for a 2D
Pressurized Water Reactor (PWR) problem in section 4.2.
Three different initial guesses are used: a center point, cor-
ner point, and flat distribution. The cycle-wise sources are
expanded into a sum of source modes, and details of con-
vergence are discussed. Expansion coefficents over cycles
for the first 30 modes are shown, and their decay rates are
found to agree closely with expected values found from the
eigenvalue spectrum.

Using forward source modes from the fission matrix,
the first 30 forward flux modes are calculated for the 2D
PWR problem by running fixed-source calculations. Flux
modes are shown in section 4.1 for both the thermal and
above-thermal neutron energy range. For these results, high
relative variance is found to be localized to inflection lines.

Also of interest are higher modes of adjoint-weighted
flux; these are not easily found while maintaining the ac-
curate spatial and energy representation of Monte Carlo.
Here, a new method of calculating these functions using
higher-mode information from the fission matrix is exam-
ined. This extends previous work to perform fundamental-
mode adjoint-weighting, which uses the concept of iterated
fission probability to weight flux tallies [4].

To perform higher-mode adjoint weighting, a tech-
nique called fission kernel deflation is introduced, in which
criticality calculations are altered to converge to higher
source modes. It is then argued in sections 3.4-6, through
the eigenvalue expansion of the Green’s function, that fis-
sion kernel deflation combined with iterated fission proba-

bility weighting results in higher-mode adjoint weighting.
A 3-group slab problem is ran to verify the stable con-

vergence of the kernel deflation technique. Agreement of
the first six fission source modes with expectation is shown
in section 4.4. Higher-mode adjoint weighting is then ap-
plied to this problem, and results are benchmarked with a
discrete ordinates code written in Matlab. In section 4.5,
plots of the first four adjoint-weighted flux modes show
reasonable agreement with discrete ordinates, though an in-
creasing bias for higher mode number is seen.

Additionally, two applications of higher-mode adjoint
weighting, second-order perturbation theory and quasi-
static transient calcuations, are discussed (sections 3.8-9) in
the context of the proposed weighting scheme. Included is
a derivation of the second-order perturbation theory equa-
tions.

2. MOTIVATION

Nuclear engineering design work involves fine-tuning
parameters, in order to search a design space. Direct, brute-
force parameter studies, which involve many independent
calculations of varying input, is time-consuming in the con-
text of man-power. An additional burden arises from Monte
Carlo calculations, as calculating a precise and small dif-
ference between two stochastic results is time-consuming.
Perturbation theory allows for a design space to be searched
more efficiently, in the sense of both issues. This method-
ology involves the pre-computation of sensitivities, which
allows for extrapolations from a base case.

Second order perturbation theory increases the appli-
cable range of extrapolation into design space. Lacking
from the first-order formulation, the second-order formula-
tion approximates changes in the flux shape due to a pertur-
bation. This requires higher-mode flux information, both
forward and adjoint. The fission matrix method allows for
calculating higher source modes; Monte Carlo cannot eas-
ily calculate higher-mode information without this method.
A potential application of the fission matrix method is ex-
tending perturbation theory to second-order.

Similar to this extension is the quasi-static method,
which approximates time-dependent behavior by calculat-
ing the time-dependency of higher modes. Reliable ap-
proximations of time-dependent behavior are very useful,
due to the high cost of rigorous Monte Carlo transient cal-



culations.
These theories apply both to forward and inverse neu-

tron transport problems. Common forward problems of ap-
plicability here are: Boiling Water Reactor (BWR) power
oscillations, xenon oscillations, control rod movement and
interaction, and long-term burnup effects. Inverse problems
consist primarily of the estimation of system parameters us-
ing radiation detector responses.

There are also applications of eigenmode expansions,
discussed in sections 3.1 and 4.2. With precise convergence
knowledge gained from modal information, the iterated fis-
sion probability method of adjoint-weighting, discussed in
section 3.3, can be better understood. It is possible to quan-
tify the number of necessary latent generations, dependent
upon space, necessary for these calculations. Another area
of interest is the normality of eigenmode expansion coef-
ficients, examined by Toth, et al. [5]. This subject is also
relevant to the concern of inter-cycle correlation, and its ef-
fect on variance under-estimation [6]. The use of higher
eigenvalues was found to improve variance estimates on a
1-group slab problem in previous work [7].

An additional application of eigenmode expansion is
the representation of a perturbed system’s fundamental
mode with eigenmodes of an unperturbed system. This
can indicate (in neutron generations), the time until the per-
turbed system settles to steady state, and the spatial manner
in which it does so. This also may have relevance to the de-
gree of coupling needed between neutronics and thermal-
hydraulics calculations, if such a method is used. Lastly, it
indicates the ability of a limited number of fission source
modes of the unperturbed system to represent the funda-
mental mode of the perturbed system.

3. THEORY

3.1. Modal expansion of fission source

In a criticality calcuation, expanding the fission bank
distribution of cycle c, fc(~r), with the fission source eigen-
vectors Sn(~r) can give insight into the power iteration pro-
cess. Yamamoto, et al. [8] have shown this by using eigen-
modes calculated with the method of characteristics. The
modal expansion coefficients ac

n–found using biorthogo-
nality [Eqs. (1)]–indicate the relative importance of differ-
ent eigenmodes. Typically convergence is only character-
ized by the dominance ratio, K1/K0, but this expansion,

fc(~r) =
N̂∑

n=0

ac
nSn(~r), (1a)

ac
n =

〈fc(~r)S†n(~r)〉
〈Sn(~r)S†n(~r)〉

, (1b)

gives more information. N̂ is a maximum mode number of
interest, less than the total number of modes. To calculate
ac

n, left and right eigenvectors of a tallied fission matrix are
calculated. These are then used for the cycle-wise calcu-
lation of Eq. (1b) on the same problem with varying initial
source guess. Different guesses will excite different modes.

Recalling the proof of power iteration convergence
rate, which assumes linearly independent eigenvectors (the
case here), the decay rate of mode n > 0 is given by
Kn/K0. Similar rates for the expansion coefficients here
would be expected.

3.2. Calculation of forward flux modes

The right eigenvectors of the fission matrix,

Sn(~r) =
∫∫

dE′dΩ̂′νΣF (~r,E′)Ψn(~r,E′, Ω̂′), (2)

can be used to calculate forward flux modes. This requires
running a fixed-source calculation on Sn(~r),

Ψn(~r,E, Ω̂) =
1

Kn
M−1· χ(~r,E)

4π
Sn(~r). (3)

As both flux and fission source modes vary with sign for
n > 0, a flag is needed to mark the particle weight’s sign.
Consequently, handling both positive and negative scores
is necessary in tally routines. The current implementation
involves repeated calls to MCNP6 with fission sources of
increasing mode number, and a track-length flux tally on a
Cartesian, energy-binned mesh. The NONU card is used to
treat fission as absorption–this is necessary from the defi-
nition of the net-loss operator. Source points are sampled
in an analog manner (using an alias table) from the loaded
fission source mode, and location is re-sampled until fis-
sionable material is found. An equivalent, and possibly
more efficient method, is to hold all desired modal informa-
tion in each particle history. This entails sampling source
points uniformly throughout the problem’s fissionable re-
gions, and attaching a vector of weights to each source par-
ticle. Each weight here corresponds to the different fission
source mode values at the relevant location. The different
weights are then treated as usual for a random walk.

A concern here is that for greater positive/negative os-
cillation in the source as mode number rises, there will be
more score cancellation in tallies. This may lead to larger
tally variances than is manageable. This issue is examined
in section 4.1.

3.3. Calculation of adjoint flux modes

It has been proven [1] that for a fine enough mesh, the
left-eigenvectors of the fission matrix are equivalent to the



adjoint fission source modes,

S†n(~r) =
∫ ∫

dE′dΩ̂′χ(~r,E′)
4π

Ψ†
n(~r,E′, Ω̂′). (4)

Analogous to Eq. (3), the inverse of the adjoint net loss
operator could theoretically applied to νΣF (~r,E)S†n(~r) to
obtain adjoint flux modes. This is highly impractical to im-
plement, though, due primarily to the difficulty of transpos-
ing the scattering operator. A tally of scattering matrices
and multigroup treatment could allow for easy transposing,
but this is a significant complication, and reduces the fi-
delity of the Monte Carlo calculation.

Previously, a method has been developed and im-
plemented in MCNP to perform continuous-energy ad-
joint weighting of tallies [4]. This method uses the iter-
ated fission probability interpretation of adjoint flux. In
broad terms, adjoint weighting of a tally is proportional
to the near-asymptotic neutron population resulting from
the tally contributing neutron. This involves: an origi-
nal generation where tallies and their respective neutron
”progenitor” identifiers are stored, a number of latent gen-
erations in which progenitors yield subsequent progeny,
and an asymptotic generation where the original tallies are
weighted by population. Below is an attempted extension
of this method–to weighting by higher-mode adjoint func-
tions.

3.4. Deflation of the fission kernel

The iterated fission probability interpretation of ad-
joint flux can be summarized with the following statement
of proportionality,

Ψ†(~r0, E0, Ω̂0) = c× 〈F (~r ′ → ~r)L·∫∫
dE′dΩ̂′G(~r0, E0, Ω̂0 → ~r ′, E′, Ω̂′)νΣF (~r ′, E′)〉~r,

(5)

where L is the number of latent generations used, F (~r ′ →
~r) is the fission kernel, and c is an arbitrary constant. In
words: the adjoint flux at a point is proportional to L+1
repeated fission generations applied to a point source at
(~r0, E0, Ω̂0). As a side note, the assumption of asymptotic
population after L generations is equivalent to

F (~r ′ → ~r)L

·
∫∫

dE′dΩ̂′G(~r0, E0, Ω̂0 → ~r ′, E′, Ω̂′)νΣF (~r ′, E′)

≈ cS0(~r), (6)

where c is a scaling constant and S0(~r) is the fundamental
fission source mode.

The above representations of iterated fission probabil-
ity suggest an extension–of weighting by higher modes us-
ing the concept of matrix deflation. Matrix deflation elim-
inates the effect of eigenvectors (those which the matrix is
deflated by). With Hotelling deflation of degree n− 1,

Fn = F −
n−1∑
n′=0

Kn′
Sn′S†n′

〈S†n′Sn′〉
, (7)

repeated application of the deflated matrix results in con-
vergence to mode n. With the forward/adjoint fission
source modes and eigenvalues found from the diagonaliza-
tion of the fission matrix, it is possible to perform deflation
with regards to the fission kernel,

Fn(~r0 → ~r) = F0(~r0 → ~r)−
n−1∑
n′=0

Kn′
Sn′(~r)S†n′(~r0)

〈S†n′(~r′)Sn′(~r′)〉

=
∫∫∫∫

dEdΩ̂dE0dΩ̂0νΣF (~r,E)
[
G(~r0, E0, Ω̂0 → ~r,E, Ω̂)

−
n−1∑
n′=0

Kn′
Ψn′(~r,E, Ω̂)Ψ†

n′(~r0, E0, Ω̂0)

〈S†n′(~r′)Sn′(~r′)〉

]χ(~r0, E0)
4π

.

(8)

Returning now to the subject of iterated fission probability,
it seems likely that by eliminating the effects of leading
modes and applying the iterated fission probability method,
weighting by higher adjoint modes is possible.

3.5. Relationship between Green’s function and flux
modes

This proof, similar to one found in Duderstadt &
Hamilton [9], will show the relationship between flux
modes and the Green’s function, thus giving context for the
deflation method discussed in section 3.4. This begins with
the k-eigenvalue form of the transport equation,

M ·Ψ(~r,E, Ω̂) =
1
K

χ(~r,E)
4π

S(~r), (9)

and expanding the fission source and angular flux
modes,

Ψ(~r,E, Ω̂) =
∞∑

n=0

cnΨn(~r,E, Ω̂), (10)

S(~r) =
∞∑

n=0

snSn(~r). (11)

Eq. (10) is not true in general, as discussed in [10].
The implications of this may be important in the context of
kernel deflation as a whole. Now, solving for the source
expansion coefficients is done using biorthogonality,



sn =
〈Ψ†

n(~r,E, Ω̂), χ(~r,E)
4π S(~r)〉

〈Ψ†
n(~r,E, Ω̂), χ(~r,E)

4π Sn(~r)〉
. (12)

This result, along with the flux expansion, is inserted
into transport equation,

M ·
∞∑

n=0

cnΨn(~r,E, Ω̂) =
1
K

χ(~r,E)
4π

∞∑
n=0

snSn(~r). (13)

The net loss operator is then applied to the flux modes,
and the transport equation for higher modes is used,

∞∑
n=0

cn
1

Kn

χ(~r,E)
4π

Sn(~r) =
1
K

χ(~r,E)
4π

∞∑
n=0

snSn(~r).

(14)
Again using biorthogonality, the following relation be-

tween the two expansion coefficients is found,

cn =
Kn

K0
sn. (15)

Plugging this relation into the flux expansion gives

Ψ(~r,E, Ω̂) =

1
K0

∞∑
n=0

Kn

〈Ψ†
n(~r ′, E′, Ω̂′), χ(~r ′,E′)

4π S(~r ′)〉
〈Ψ†

n(~r ′, E′, Ω̂′), χ(~r ′,E′)
4π Sn(~r ′)〉

Ψn(~r,E, Ω̂).

(16)

Recalling the integral transport equation,

Ψ(~r,E, Ω̂) =
1

K0

∫∫∫
d~r0dE0dΩ̂

χ(~r0, E0)
4π

S(~r0)G(~r0, E0, Ω̂0 → ~r,E, Ω̂), (17)

and comparing to Eq. (16) indicates

G(~r0, E0, Ω̂0 → ~r,E, Ω̂) =
∞∑

n=0

Kn
Ψn(~r,E, Ω̂)Ψ†

n(~r0, E0, Ω̂0)

〈S†n(~r ′), Sn(~r ′)〉
. (18)

With this expression of the Green’s function, Eq. (8)
is given more substantial meaning. In a similar manner,
the following eigenvalue expansion of the adjoint Green’s
function can be derived:

G†(~r0, E0, Ω̂0 → ~r,E, Ω̂) =
∞∑

n=0

Kn
Ψ†

n(~r,E, Ω̂)Ψn(~r0, E0, Ω̂0)

〈S†n(~r ′), Sn(~r ′)〉
. (19)

3.6. Attempted Proof of Higher-Mode Adjoint Weight-
ing

Assuming the Green’s function eigenvalue expansion
[Eq. (18)], a proof of the main principle of iterated fission
probability weighting [Eq. (5)] is attempted. This is then
extended to the deflated kernel, to justify the higher-mode
adjoint weighting method proposed.

First, an expression for F (~r′ → ~r)L is found using
the Green’s function eigenvalue expansion. Examining the
case of L = 2,

F (~r0 → ~r)2 = F (~r ′ → ~r)F (~r0 → ~r ′) =( ∞∑
n=0

Kn
Sn(~r)S†n(~r ′)

〈S†n(~r ′′)Sn(~r ′′)〉

)

×

( ∞∑
m=0

Km
Sm(~r ′)S†m(~r0)

〈S†m(~r ′′)Sm(~r ′′)〉

)
, (20)

this equality involved using the expansion of Eq. (18)
and evaluating the integrals necessary to get to the for-
ward/adjoint fission source mode terms. In the context of
the fission matrix, Eq. (20) resembles matrix diagonaliza-
tion on a infinitely-fine mesh. Next, these two infinite series
of outer products are multiplied with each other; the n 6= m
terms cancel due to biorthogonality,

F (~r0 → ~r)2 =
∞∑

n=0

K2
n

Sn(~r)〈S†n(~r ′′)Sn(~r ′′)〉S†n(~r ′)

〈S†n(~r ′′)Sn(~r ′′)〉2
=

∞∑
n=0

K2
n

Sn(~r)S†n(~r ′)

〈S†n(~r ′′)Sn(~r ′′)〉
. (21)

By extension, the expression for arbitrary L is

F (~r0 → ~r)L =
∞∑

n=0

KL
n

Sn(~r)S†n(~r0)

〈S†n(~r ′′)Sn(~r ′′)〉
. (22)

Now, insert this expression into the right side of Eq.
(5) and expand the Green’s function applied in the original
generation,



F (~r ′ → ~r)L·∫∫
dE′dΩ̂′G(~r0, E0, Ω̂0 → ~r ′, E′, Ω̂′)νΣF (~r ′, E′) =[ ∞∑

n=0

KL
n

Sn(~r)S†n(~r ′)

〈S†n(~r ′′)Sn(~r ′′)〉

]

×
[ ∫∫

dE′dΩ̂′

∞∑
m=0

Km
Ψm(~r ′, E′, Ω̂′)Ψ†

m(~r0, E0, Ω̂0)νΣF (~r ′, E′)

〈S†m(~r ′′)Sm(~r ′′)〉

]
.

(23)

Evaluating the double integral on the right yields for-
ward source mode terms. Multiply the two infinite series
and use biorthogonality,

F (~r ′ → ~r)L · [...] =[ ∞∑
n=0

KL
n

Sn(~r)S†n(~r ′)

〈S†n(~r ′′)Sn(~r ′′)〉

]

×

[ ∞∑
m=0

Km
Sm(~r ′)Ψ†

m(~r0, E0, Ω̂0)

〈S†m(~r ′′)Sm(~r ′′)〉

]
=

∞∑
n=0

KL+1
n

Sn(~r)Ψ†
n(~r0, E0, Ω̂0)

〈S†n(~r ′′)Sn(~r ′′)〉
. (24)

Lastly, account for the renormalization that occurs af-
ter every cycle of the power iteration process, i.e. divide by
KL+1

0 ,

F (~r ′ → ~r)L · [...] =

S0(~r)Ψ
†
0(~r0, E0, Ω̂0)

〈S†0(~r ′′)S0(~r ′′)〉
+(

K1

K0

)L+1
S1(~r)Ψ

†
1(~r0, E0, Ω̂0)

〈S†1(~r ′′)S1(~r ′′)〉
+(

K2

K0

)L+1
S2(~r)Ψ

†
2(~r0, E0, Ω̂0)

〈S†2(~r ′′)S2(~r ′′)〉
+ .... (25)

Assuming the number of latent generations has been
sufficient, i.e. higher modes have been powered out, only
the mode-0 term remains. The final rearranged result is
then

Ψ†
0(~r0, E0, Ω̂0) =

〈S†0(~r ′′)S0(~r ′′)〉
S0(~r)

F (~r ′ → ~r)L · [...] =

〈S†0(~r ′′)S0(~r ′′)〉 · c (26)

The assumption of asymptotic population, Eq. (6), has
been used; the constant c represents the asymptotic pop-
ulation size, which can validly be tallied over the entire
problem for the greatest sampling efficiency. This equality,
which has been arrived at through eigenvalue expansion of
the Green’s function, states the fundamental principle of it-
erated fission probability, Eq. (5). Now, this is examined in
the context of the deflated kernel.

The deflation process, which uses source eigenvectors
from the fission matrix on a spatial mesh, approximates the
following equality:

Fn(~r0 → ~r)L =
∞∑

n′=n

KL
n′

Sn′(~r)S†n′(~r0)

〈S†n′(~r ′′)Sn′(~r ′′)〉
. (27)

Using the same argument as Eqs. (23) and (24), but
with the deflated kernel, the following series is found:

Fn(~r ′ → ~r)L · [...] =

Sn(~r)Ψ†
n(~r0, E0, Ω̂0)

〈S†n(~r ′′)Sn(~r ′′)〉
+(

Kn+1

Kn

)L+1 Sn+1(~r)Ψ
†
n+1(~r0, E0, Ω̂0)

〈S†n+1(~r ′′)Sn+1(~r ′′)〉
+

(
Kn+2

Kn

)L+1 Sn+2(~r)Ψ
†
n+2(~r0, E0, Ω̂0)

〈S†n+2(~r ′′)Sn+2(~r ′′)〉
+ .... (28)

Powering higher modes out gives an expression for the
principle of iterated fission probability on a deflated kernel,

Ψ†
n(~r0, E0, Ω̂0) =

〈S†n(~r ′′)Sn(~r ′′)〉
Sn(~r)

Fn(~r ′ → ~r)L · [...] =

〈S†n(~r ′′)Sn(~r ′′)〉 · cn, (29)

where another assumption of asymptotic population
has been made–the size given by cn. Note cn can now be
positive or negative. This means that the sign of the asymp-
totic distribution given by repeated application of Fn to the
origin point (~r0, E0, Ω̂) can be opposite in sign to the ref-
erence distribution Sn(~r). For this argument the weight
of the origin point has been defined as positive and unity
(generalizing to include an extra term for the sign-varying
weight of the origin point in the fission kernel would give
the same conclusion). Recalling the discussion of power
iteration and eigenmode expansion, convergence to either
±Sn(~r) is possible, depending on which sign of the mode
is excited initially. The sign of the mode that is excited is
thus given by the sign of the adjoint flux mode at that point.

The magnitude of cn is found, as before, by tallying the
size of the asymptotic population. The sign of cn must also



be calculated now, by finding the sign of the asymptotic
distribution relative to the reference source Sn(~r). The sta-
blest way to do this (the source may not be completely con-
verged, so the sign estimation cannot always be perfect)
seems to be to compute the inner product,

sign(cn) = sign( 〈S†n(~r), Fn(~r ′ → ~r)L · [...]〉 ), (30)

which considers all of the asymptotic progeny, and
weights by importance of location. This requires extra
work and memory in every asymptotic generation–related
progeny must be gathered together to compute the inner
products.

As will be shown, the current adjoint weighting
method shows bias; peaks are underestimated and critical
points are overestimated. This could be primarily due to
two effects of critical points: near division by zero (im-
plicitly) during weighting in the asymptotic generation, and
sign-variation of the fission source across multiple original
generations. Special treatment near critical points may be
required for more accurate higher-mode adjoint weighting.

There is presently a difference in the asymptotic popu-
lation estimation for higher-modes, as compared to mode-
0. Mode-0 weighting effectively computes the expected-
value of population, by tallying the fission-production rate
with a track-length estimator. This fission-production rate
is not relevent to higher modes. Presently, higher-mode
population is estimated in an analog manner, by counting
fission sites. An expected value approach could be imple-
mented, though, with a track-length tally on the same mesh
as the deflation vectors.

3.7. Applying kernel deflation

The method of deflation used here involves alteration
of inter-cycle fission banks on a finite spatial mesh. An
exact deflation would require directly altering the random
walk to directly yield higher modes; here the application of
the deflated kernel on a cycle-wise fission source Sc(~r0) is
decomposed,

Fn(~r0 → ~r) · Sc(~r0) = F0(~r0 → ~r)Sc(~r0)

−
n−1∑
n′=0

Kn′
〈S†n′(~r0)Sc(~r0)〉
〈S†n′(~r′)Sn′(~r′)〉

Sn′(~r). (31)

The first term on the right side of Eq. (31) represents the
normal transport of a fission generation. The numerator of
the second term represents an inner product of the cycle-
wise source with an adjoint fission source mode; this gives
the degree to which the present source is exciting modes
that should be eliminated. The first term is spatially dis-
cretized, in order to subtract the already-discretized second
term (scaled by inner products saved from before the last

cycle). The vector resulting from the subtraction of the two
terms is then replicated in inter-cycle fission banks. To en-
sure stability, the first term on the right side must be scaled
by a ratio to ensure its growth in magnitude conforms to
the growth of the second term. Uncorrected, the first term’s
growth is stochastic, whereas the second term’s growth is
deterministic.

The way in which a spatial distribution is replicated in
the fission bank is now discussed, as the previously used
method was found to be unstable when inflection points
are present. The method used in past fission matrix studies
consisted of:

1. Spatially bin current fission bank on identical mesh to
desired source, to get a current spatial distribution,

2. Using every current source point’s location in the
mesh, store ratio of desired spatial distribution value
to current value,

3. Use these ratios, stored for every site, to duplicate or
delete sites and best match desired distribution.

This works well for normal cases, but not here, where
higher modes containing sign changes are to be replicated.
Storing a ratio of distributions does not work well, because
of the possible division by small values. Instead, a less
efficient method is used, O(NmeshNbank) as opposed to
O(Nbank), where Nmesh is the number of mesh cells in
the desired distribution and Nbank is the number of points
in the fission bank. This algorithm, which avoids the use of
ratios, is as follows:

1. Spatially bin fission bank on identical mesh to desired
source, to get a current spatial distribution,

2. Zero out values in desired distribution where no points
are present,

3. Sample Nbank mesh cell indices from desired distri-
bution,

4. Build a sorting vector to index into the fission bank by
increasing mesh index,

5. Sample points from sorted fission bank–the number
of points for each mesh cell is given by the number of
repeated indices from step #3.

With this slower method, issues near inflection points are
avoided.

3.8. Second-order perturbation theory

Below is an outline of second-order perturbation the-
ory, which involves expansion of the flux perturbation
present in second-order terms into a sum of higher flux
modes. Similar results are found in Ref. [11], and relevant



theory is discussed in Ref. [10]. Use of the additional spa-
tial information should account for the effect of global flux
changes on the fundamental eigenvalue. In Ref. [11], con-
trol rod interaction effects are studied with higher modes;
calculating interactions scales factorially with the number
of control rods, thus a spatial perturbation theory is used.

Starting by perturbing a base case,

L0φ0 = λ0M0φ0, (32)

(L0 + δL)(φ0 + δφ) = (λ0 + δλ)(M0 + δM)(φ0 + δφ),
(33)

and expanding the flux perturbation term with the unper-
turbed flux modes,

δφ =
N̂∑

n=1

anΨn, (34)

and removing all second and third-order terms gives

δLφ0+L0

N̂∑
n=1

anΨn = λ0M0

N̂∑
n=1

anΨn+λ0δMφ0+δλM0φ0.

(35)
Left multiplying by the adjoint flux, taking the in-
ner product, and using orthogonality (〈Ψ†

m,M0Ψn〉 =
δnm〈Ψ†

n,M0Ψn〉),

an =
〈Ψ†

n, (δL− λ0δM)φ0〉+ δλ〈Ψ†
n,M0φ0〉

(λ0 − λn)〈Ψ†
n,M0Ψn〉

. (36)

The left term in the numerator of Eq. (36) is computed with
perturbed calculations in original generations, followed by
higher-mode adjoint weighting. As an aside, the need for
adjoint weighting of the other terms can be eschewed by
calculating the equivalent inner product,

〈Ψ†
n,M0Ψn〉 = 〈Ψ,M†

0Ψ†
n〉

=
∫∫∫

d~rdEdΩ̂Ψn(~r,E, Ω̂)νΣF (~r,E)S†n(~r). (37)

δλ in Eq. (36) is approximated with the standard first-
order approximation. Now, expanding Eq. (33) and neglect
only third-order terms yields

δLφ0 + L0δφ + δLδφ

= λ0M0φ + λ0δMφ0 + λδMδφ

+ δλM0φ0 + δλM0δφ + δλδMφ0. (38)

Weighting by the fundamental adjoint, taking the inner
product, and using the defining property of adjoint oper-
ators,

〈Ψ†
0, (L−λ0 M)δφ〉 = 〈δφ, (L†−λ0 M†)Ψ†

0〉 = 0, (39)

and solving for δλ yields,

δλ =
〈Ψ†

0, (δL− λ0δM)(φ0 + δφ)〉
〈Ψ†

0, (M0 + δM)φ0〉+ 〈Ψ†
0,M0δφ0〉

=
〈Ψ†

0, (δL− λ0δM)φ0〉+
N̂∑

n′=1

an′〈Ψ†
0, (δL− λ0δM)Ψn〉

〈Ψ†
0, (M0 + δM)φ0〉+

N̂∑
n′=1

an′〈Ψ†
0,M0Ψn〉

.

(40)

The right term in the numerator entails running fixed-
source calculations with higher modes in the original gen-
erations, and then performing mode-0 adjoint weighting.

3.9. Quasi-Static Modal Expansion Method

Starting from the time-dependent transport equation,
flux can be expanded into products of unperturbed eigen-
modes and time-dependent expansion coefficients. Using
adjoint weighting of varying mode number, a system of
first-order differential equations in time can be formulated
and solved for the expansion coefficients. With these, tran-
sients and reactor stability can be studied. Refs. [12],[13]
derive the relevant equations, and apply them with diffu-
sion theory. Using diffusion theory, modes are periodically
updated to account for the time-dependence of multigroup
cross sections. By using Monte Carlo and a continuous en-
ergy treatment, this updating shouldn’t be necessary.

Similar calculations can be done by expanding the
steady state fission source distribution of a perturbed state
as the sum of source modes of an unperturbed state. Rel-
evant ratios of eigenvalues can be used to represent a tran-
sient in neutron generation-time. With the quasi-static
system of equations, though, transients are represented in
physical time. Delayed neutrons are explicitly accounted
for, and unique kinetics parameters for each eigennmode,
better model transient behavior.

In the quasi-static equations, a near-instantaneous per-
turbation could be represented in the perturbed operators
(δL, δM ) with a Heaviside step function in time. Other
transient phenomena, such as Xenon-induced power oscil-
lations or BWR instabilities, could be represented with a
frequency term in the perturbed operators.

3.10. Adjoint-weighted flux tallies

Before the calculation of higher adjoint flux modes, it
was necessary to add a subroutine into MCNP that allowed
for the calculation of adjoint-weighted flux, 〈Ψ†,Ψ〉r,
where r is a phase-space region in space and energy. While
this calculation has been done in Ref. [4], it has not been
implemented into the current version of MCNP6. To do
this, two modules used for k-sensitivity calculations were



taken (‘ksen xs mod.F90’ and ‘ksen interface mod.F90’)
as templates to write similar, yet simplified, modules
(‘kadj wgting mod.F90’ and ‘kadj wgting mod.F90’). In
the future, a forward flux multiplier akin to the tally multi-
plier (FM) card will be added to these modules.

4. RESULTS

4.1. Forward flux

To test the forward flux calculations, a fission matrix
was generated from a 2D PWR problem (50×50×1 mesh;
500 cycles, initial 2 skipped; 500k batch size), and fixed-
source calculations (500k histories) were ran for 30 modes.
The same problem was examined in Refs. [2] and [7]. Fig-
ures 1 and 2 give flux results, and Figs. 3 and 4 show rela-
tive uncertainties. Times for these calculations were about
a minute on 8 threads, for each mode. Group 1 flux modes
are very similar to the fission source modes, and the most
notable feature of the group 2 flux modes are the new peaks
in the peripheral water moderator. The relative uncertainty
plots give a reassuring result–the high relative uncertain-
ties are localized near the inflection lines. Uncertainties are
manageable where the functions are significantly nonzero,
notwithstanding the cancellation of tallies.

4.2. Expansion coefficients

For the 2D PWR problem, cycle-wise eigenmode ex-
pansion coefficients as given by Eq. (1b) were calculated.
Three initial guesses were chosen: a point in the center
(Fig. 5), a point in the corner (Fig. 6), and uniform through-
out the problem (Fig. 9). In these plots, important modes
are labeled: the center guess excites radially-symmetric
modes that have peaks in the center, the corner guess ex-
cites asymmetric modes that have peaks in the relevant cor-
ner, and the flat guess (a uniform circle) excites the first
two radially symmetric modes. Figure 6 zooms in on four
coefficients from the corner guess as they oscillate about
zero. Recalling that lower mode numbers have the higher
the eigenvalues, eigenmodes of higher number should be
less correlated from cycle to cycle. This is shown in Fig.
6. Significant lag correlation is seen in the drift of mode
2, whereas mode 29 has a much tighter and uncorrelated
oscillation about the value of zero. The lag-correlation co-
efficients were directly evaluated for these expansion co-
efficients, and some evidence of relation to the eigenvalue
spectrum was found (as assumed in Ref. [6]). Lastly, for
this problem, Fig. 8 shows the distribution of converged ex-
pansion coefficients, all of which indicate normality. The
coefficients of mode 1 are not shown, as it is just converged
by cycle 449. This shows how poor of an initial guess it
is; strongly exciting the mode with the next-highest eigen-
value under mode 0 requires extensive neutron propagation

through generations to reach the fundamental.
The higher the mode number, the quicker it decays

away as power iteration proceeds. As explained in the sec-
tion 3.1, the power decay rate should be near Kn/K0. Ta-
bles I and II compare the expected values versus the values
found from doing a least squares fit of the coefficients be-
fore they die away. The agreement in Table I is quite bad,
but better in Table II. This is most likely due to the larger
batch size for later run (five times as large).

Table I. Empirical power decay rates of expansion coef-
ficients for the center-point initial guess run (batch size =
1M), and relevant eigenvalue ratios.

Mode
#

Cycle
Range for

Fit

Empirical
Decay Rate Ki/K0 C/E

5 1-80 0.95371 0.95757 0.99597
10 1-30 0.90994 0.91655 0.99279
16 1-30 0.87385 0.87954 0.99354
25 1-15 0.80733 0.81315 0.99283
18 1-20 0.78111 0.78421 0.99605

Table II. Empirical power decay rates of expansion coef-
ficients for the corner-point initial guess run (batch size =
500k), and relevant eigenvalue ratios.

Mode
#

Cycle
Range for

Fit

Empirical
Decay Rate Ki/K0 C/E

1 1-150 0.98609 0.98530 1.00080
3 1-100 0.96945 0.96756 1.00195
5 1-50 0.95810 0.95619 1.00199
7 1-50 0.94412 0.94058 1.00377
8 1-15 0.90134 0.92119 0.98822
9 1-20 0.89848 0.92118 0.97535
10 1-45 0.92062 0.91388 1.00737

4.3. Verification of fundamental adjoint weighting tal-
lies

Figure 10 verifies the implementation of the spatial and
energy-dependent adjoint weighting tallies in MCNP; plot-
ted is the quantity 〈Ψ†

0,Ψ0〉r/〈Ψ0〉r. The same problem
is used in Ref. [4] to show increasing accuracy of adjoint
weighting for increasing number of latent generations. The
parameters for this 1-group problem are: Σt = 1.0 cm−1.
Σγ = 0.1 cm−1, Σf = 0.2 cm−1, Σs0 = 0.7 cm−1, and ν =
1.5. Since the problem is self-adjoint, the reference adjoint
flux can be tallied directly. Figure 11 provides verification,
with the discrete ordinates code PARTISN, for a 3-group
problem, also used in Ref. [4].



4.4 Test of kernel deflation

A problem was ran to examine the implementation
of the kernel deflation process. Convergence to higher
source modes, and subsequent stable oscillation about the
expected shape, is verified. Issues could conceivably arise
from an inadequate mesh size or from the effect of inflec-
tion points, but these problems are not seen here. A 3-group
slab problem with vacuum boundaries is tested. The slab
size is 40 cm; the other problem parameters are given in
Table III. Before running this problem, a similar 1-group
problem was found to have similar results as to those shown
here.

Table III. Parameters for 3-Group Slab Problem
g Σt Σf Σγ χ Σs,g′1 Σs,g′2 Σs,g′3 ν̄

1 0.7 0 0.05 1 0.45 0.2 0 0
2 1.2 0 0.05 0 0 0.55 0.6 0
3 1.2 0.05 0.05 0 0 0 1.1 2.17

The source modes are calculated from a fission matrix
tallied from 500 cycles of 100k histories. The mesh of these
modes is 100×1×1. Kernel deflation is then ran for modes
1-5, in addition to a run with the undeflated kernel; the ini-
tial distribution of all runs is flat and positive. 1000 cycles
are ran, with a batch size of 10k. Viewing the cycle by cy-
cle convergence of the different modes shows the different
speed and manner in which each converge. These prop-
erties of convergence should be able to be predicted, just
as in the case of an undeflated kernel. After convergence,
reached by all modes by cycle 100, stable oscillation about
the mean is seen, just as in active cycles of regular crit-
icality calculations. Figure 12 shows mean and standard
deviations of the fission bank distributions over cycles 100-
1000. In the mean distribution plots, both the fission bank
results and pre-computed fission matrix source modes (the
expected values) are shown. The agreement between the
two indicates the correctness and stability of the process.
The relative standard deviations of the mean fission bank
distributions are also shown; the values grow sharply near
inflection points–especially in the case of mode #5.

4.5 Test of higher-mode adjoint weighting

The same 40 cm slab problem of Table III is now used
to evaluate the higher-mode adjoint weighting scheme. The
same precomputed fission matrix is used–tallied for 500
cycles with a 100k batch size. Adjoint-weighting is then
turned on; 3015 cycles with a batch size of 50k are ran
with 20 latent generations. Energy and spatially-dependent
adjoint-weighted flux is then tallied and plotted in Fig. 13.
Note that, for actual perturbation and kinetics quanities, no
energy or spatial binning is required, thus many less histo-

ries are needed for convergence of these quantities. Figure
13 shows there is an increasing bias for increasing mode
number. The peaks are underestimated, and the critical
points are overestimated.

A probable cause for the overestimation of the adjoint-
weighted flux near critical points is the combination of the
variation in sign of the tallies and the correlation of the the
forward and adjoint tallies. If a positive forward flux is
being tallied from a history in the original generation, it is
most likely that the history will yield an asympotic distribu-
tion that gives a positive adjoint flux. Similarly, a negative
forward flux tally most likely leads to a negative adjoint
tally. This positive correlation (or negative correlation, if
the reference modes used for calculation adjoint flux are
flipped) prevents the product of the tallies from converging
to zero, as the product is almost always the same sign. Ad-
dressing this could possibly entail estimating a correlation
coefficient, or somehow uncorrelating the two tallies.

5. CONCLUSIONS

This report has looked at ways in which higher-mode
information of the fission matrix can be used to: better un-
derstand criticality calculations, and calculate new quan-
tites of interest for practical design work. Decomposing
the power iteration process into the behavior of the most
important eigenmodes gives a clear picture of how neu-
trons propagate in space through generations, in addition to
showing the effect of an initial guess on convergence. Next,
it was shown for a typical 2D PWR problem that higher
flux modes of reasonable statistical error could be calcu-
lated from fission source modes in a manageable amount
of time.

Higher-mode adjoint weighting, a necessity for most
practical applications of higher modes, motivated the look
into fission kernel deflation. Kernel deflation aims to re-
move the effect of modes from the Green’s function. This
was first shown to have the effect on stable convergence
to higher modes. It was also argued that this resulted in
higher-mode adjoint weighting when the principle of iter-
ated fission probability was applied. Results from a test
problem gave good results in terms of overall shape and
energy dependence, but an increasing bias was seen for in-
creasing mode number. This bias is believed to be due to
the effects of inflection points.

6. FUTURE WORK

The higher-mode adjoint weighting method used in
Monte Carlo can be replicated with the 1D discrete ordi-
nates written for this work. This could provide additional
verification of the implementation in MCNP. The current
issues are believed to be due to sampling and correlation–
these issues would not be present with discrete ordinates. If



the current issues are fixed or ameliorated, harder problems
will be tested involving: asymmetry, multiple spatial di-
mension, and continuous energy. This method is expected
to fail for poor sampling and meshing–sampling and mesh-
ing requirements could be better understood. Calculating
higher-mode perturbation and kinetics parameters will be
key to understanding the usefulness of this work. This
will entail examining their convergence properies and ap-
plying them to test problems. The perturbation theory dis-
cussed has been relevant to the calculation of the multipli-
cation factor, but this could be extended to any response–
such as heating in a region of space. Comparisons to ex-
isting higher-mode deterministic methods–from both dif-
fusion theory discrete ordinates, will show the effect of
Monte Carlo on the accuracy of these calcuations.

An additional consideration is that for a realistic 3D
problem, perturbation calculations may demand hundreds
of modes. Calculating these from a fission matrix of some
finite amount of tallies and mesh cells may be inadequate.
Understanding the sensitivity of eigenmodes to mesh size
and statistics, and possibly improving accuracy, is a possi-
ble future area of work.
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APPENDIX A

A modified Whitesides problem [14] was built and ran
to examine the effects of a significantly asymmetric fission
kernel. A 5×5 PB-239 pin array with a 30 cm pitch is
placed in water. Water acts as a reflector, 30 cm around the
periphery. All pins except the center are 3.976 cm in radius;
the center pin is 4.928 cm, and is covered in 1 cm of Cad-
mium. The Cadmium shell, a high-pass filter of neutrons,
should result in a reduced amount of neutrons entering the
center sphere to cause fission. Thus, the columns of the fis-
sion matrix in the vicinity of center mesh cells should be
larger in magnitude then the respective rows, which is what
Fig. 14 shows. Figs.15-19 gives eigenmode results for the
first 30 modes. Table IV gives the spectrum calculated for
the problem on a 100×100×1 mesh–surprisingly negligi-
ble imaginary components are found. This suggests that
significantly-asymmetric fission matrices can still result in
eigenmodes with minor imaginary components.

APPENDIX B

A 16-assembly BWR problem, with reflecting bound-
ary conditions, was ran with both three and four control
blades inserted. The first 30 fission source modes for both
problems are shown in Figs. 20, 21. To understand the



Table IV. Eigenvalue spectrum for modified Whitesides
problem. Fission matrix tallied with 200 cycles (2 initial
skipped), 500k batch size; 100×100×1 mesh.

Mode
#

Eigenvalue Mode
#

Eigenvalue

0 1.50991 15 1.32867
1 1.34361 16 1.32810
2 1.34257 17 1.32709
3 1.34228 18 1.32677
4 1.34036 19 1.32638
5 1.33844 20 1.32541
6 1.33667 21 1.32138
7 1.33605 22 1.31959
8 1.33457 23 1.31868
9 1.33360 24 1.31735

10 1.33337 25 0.80960 + 2.85157× 10−4i

11 1.33217 26 0.80960− 2.85157× 10−4i
12 1.33134 27 0.67165
13 1.33051 28 0.67121
14 1.32909 29 0.67079

requirements for perturbation calculations, the fundamen-
tal mode of the 4-blade problem is expanded in terms of
higher modes from the 3-blade problem. Fig. 22 shows the
relative errors from this expansion for an increasing num-
ber of modes. Fig. 23 gives the values of the expansion
coefficients and relative error stats. While the perturbation
of the control rod insertion is represented well with the ex-
pansion throughout most of the problem, in the vicinity of
the insertion the relative error cannot get better than about
400%. For increasing degree of expansion, the error is not
monotonically decreasing–expansion modes can introduce
errors which further expansion modes reduce.

FIGURES



Fig. 1. First 30 forward flux modes of 2D PWR, group 1 (0.625 eV to 20 MeV). Fission matrix tallied with 500 cycles, 500k
batch size; 50×50×1 mesh; 500k histories for each fixed-source calculation.

Fig. 2. First 30 forward flux modes of 2D PWR, group 2 (0 to 0.625 eV). Fission matrix tallied with 500 cycles, 500k batch
size; 50×50×1 mesh; 500k histories for each fixed-source calculation.



Fig. 3. Relative uncertainty of first 30 forward flux modes of 2D PWR, group 1 (0.625 eV to 20 MeV). Fission matrix tallied
with 500 cycles, 500k batch size; 50×50×1 mesh; 500k histories for each fixed-source calculation.

Fig. 4. Relative uncertainty of first 30 forward flux modes of 2D PWR, group 2 (0 to 0.625 eV). Fission matrix tallied with 500
cycles, 500k batch size; 50×50×1 mesh; 500k histories for each fixed-source calculation.



Fig. 5. First 30 eigenmode expansion coefficients for 2D PWR problem; initial guess is the center point. Fission matrix tallied
with 500 cycles, 500k batch size; 50×50×1 mesh; 100 cycles and 100k batch size for coefficient calculation.

Fig. 6. First 30 eigenmode expansion coefficients for 2D PWR problem; initial guess is a point in the corner. Fission matrix
tallied with 500 cycles, 500k batch size; 50×50×1 mesh; 449 cycles and 500k batch size for coefficient calculation.



Fig. 7. Eigenmode expansion coefficients #2,11,19,29 for 2D PWR problem; initial guess is a point in the corner. Fission
matrix tallied with 500 cycles, 500k batch size; 50×50×1 mesh; 449 cycles and 500k batch size for coefficient calculation.

Fig. 8. Distribution of eigenmode expansion coefficients for 2D PWR problem; initial guess is a point in the corner. Cycle
150-449 coefficients used for all except #1unconverged and #3cycles 200-449. Fission matrix tallied with 500 cycles, 500k
batch size; 50×50×1 mesh; 449 cycles and 500k batch size for coefficient calculation.



Fig. 9. First 30 eigenmode expansion coefficients for 2D PWR problem; initial guess is a uniform throughout problem. Fission
matrix tallied with 500 cycles, 500k batch size; 50×50×1 mesh; 100 cycles and 500k batch size for coefficient calculation.

Fig. 10. Adjoint flux approximations for a 1D, 1-group problem, with a varying number of latent generations



Fig. 11. Adjoint-weighted fluxes for two-region, 3-group problem, calculated with PARTISN and MCNP

Fig. 12. Mean & relative standard deviation of fission bank distribution for cycles 100-1000. Fission matrix source modes, the
expected values, are also plotted with the means.



Fig. 13. Normalized, 3-group adjoint-weighted flux of modes 0-4. Monte Carlo and S16 results plotted.

Fig. 14. Fission matrix structure of modified Whitesides problem. Fission matrix tallied with 200 cycles (2 initial skipped),
500k batch size; 100×100×1 mesh.



Fig. 15. Forward fission source modes of modified Whitesides problem. Fission matrix tallied with 200 cycles (2 initial
skipped), 500k batch size; 100×100×1 mesh.

Fig. 16. Forward flux modes of modified Whitesides problem, group 1 (0.625 eV to 20 MeV). Fission matrix tallied with
200 cycles (2 initial skipped), 500k batch size; 100×100×1 mesh; 1M histories for fixed-source calculations, tallied on a
240×240×1 mesh



Fig. 17. Forward flux modes of modified Whitesides problem, group 2 (0 to 0.625 eV). Fission matrix tallied with 200 cycles
(2 initial skipped), 500k batch size; 100×100×1 mesh; 1M histories for fixed-source calculations, tallied on a 240×240×1
mesh

Fig. 18. Relative uncertainty of forward flux modes for modified Whitesides problem, group 1 (0.625 eV to 20 MeV). Fission
matrix tallied with 200 cycles (2 initial skipped), 500k batch size; 100×100×1 mesh; 1M histories for fixed-source calculations,
tallied on a 240×240×1 mesh



Fig. 19. Relative uncertainty of forward flux modes for modified Whitesides problem, group 2 (0 to 0.625 eV). Fission matrix
tallied with 200 cycles (2 initial skipped), 500k batch size; 100×100×1 mesh; 1M histories for fixed-source calculations, tallied
on a 240×240×1 mesh

Fig. 20. Forward fission source modes for 16-assembly BWR problem with reflecting boundary conditions and 3 control blades
inserted. 100×100×1 mesh.



Fig. 21. Forward fission source modes for 16-assembly BWR problem with reflecting boundary conditions and 4 control blades
inserted. 100×100×1 mesh.

Fig. 22. Relative error of 4-control blade problem fundamental mode representation with increasing number of eigenmodes
from 3-control blade problem.



Fig. 23. Expansion coefficients and error stats of 3-control blade problem eigenmodes expansion to 4-control blades problem
fundamental.


