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Abstract

Monte Carlo criticality calculations for nuclear reactors have typ-
ically only been able to find the primary eigenvalue and eigenmode.
With the new fission matrix capability in MCNP6, it becomes pos-
sible to solve for higher modes, which are useful in wide variety of
analyses. As a test case of this new capability, two reactor models in
both a base configuration and a perturbed configuration were sim-
ulated in MCNP to generate fission matrices. Tools were written to
find a relatively small number of eigenpairs of the resulting matrices,
whereupon it was found that the implicitly restarted Arnoldi method
outperformed the previously used power iteration as an eigenvalue
algorithm by a factor of 1500 for a 3600 × 3600 sparse matrix. The
primary eigenvalue was then compared to the default MCNP result
and, although the values showed bias with regards to mesh size, the
matrix-derived values had superior statistics. With the eigenvalue
verification complete, the primary eigenmode of the base case was
then projected onto the perturbed core’s eigenspace, where transition
coefficients, simplified quasistatic transitions, and projection errors
were calculated. The projection error typically dropped off after the
first 20 eigenvalues to a value that was stable through the first 100.
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1 Introduction
Criticality calculations using the MCNP Monte Carlo code determine
the fundamental mode eigenvalue (keff) and eigenfunction (fission
distribution) of a fissile system. These calculations are routinely used
in the design and analysis of critical experiments, nuclear reactor
cores, and criticality safety applications. Recently developed MCNP
capabilities for the fission matrix method permit the calculation of
higher-mode eigenvalues and eigenfunctions. With knowledge of the
higher modes, transitions from the base state of a system to perturbed
states can be analyzed. The state transition parameters characterize
changes to the system induced by material substitutions, geometry
changes, and feedback, and are important for analyzing potential in-
stabilities.

The fission matrix is essentially a spatially discretized Green’s
function for the neutron transport equation. It is a matrix F̄ whose
entries, F̄ij, contain the expected number of next generation fission
neutrons generated in spatial mesh region i by a neutron born in
mesh region j. The eigenvalues and eigenvectors of this matrix will
approximate the eigenvalues and eigenvectors of the reactor. These
approximations are mesh size dependent, but the size of the matrix
goes as the square of the number of cells. For even moderate mesh
sizes, the resulting fission matrix will be massive. Thankfully, it is
also rather sparse. In this report the methods of solving for the eigen-
values and eigenvectors of a very large sparse matrix are detailed.
Tools that analyze the output of the fission matrix from MCNP were
implemented in C++, MATLAB and Python.

Demonstrations of the capabilities of the fission matrix were per-
formed on two reactor models, the Advanced Test Reactor, and a
2D PWR model. These models are frequently used in the testing of
MCNP. These models were then perturbed and the resulting eigen-
pairs were analyzed.

Lastly, as it is very difficult to store all of the data for the fission
matrix itself, additionally storing the squares of the tallies that gen-
erated it to calculate statistics is not implemented as of yet. By using
a moderate quantity of MCNP runs with varying starting seeds, the
statistics can roughly be approximated. The same two models used
for testing MCNP as before were used here as well.
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2 Theory
First, the theory and physics underlying the concept of fission ma-
trices is summarized, and the linear algebra behind transition coef-
ficients investigated. The predominant algorithms used for finding
eigenpairs of large, sparse, asymmetric matrices are also listed and
briefly discussed.

2.1 Fission Matrices
The utility of a fission matrix is rooted in the neutron transport equa-
tion. Through no approximation other than a simple spatial dis-
cretization, the neutron transport equation

MΨ(r, E, Ω̂) =
1
k

χ(E)
4π

S(r) (2.1)

can be integrated over space and energy into the form

s =
1
k

F̄s, (2.2)

where s is the source distribution vector and F̄ is the fission matrix
as defined before [1]. As shown, it is clear that this is an eigenvalue
problem, with k as the eigenvalue and s as the eigenfunction. As all
components are matrices, vectors, or scalars, this equation lends itself
well to a linear algebra solution.

The solutions of this eigenvalue problem are especially useful for
a specific type of analysis, namely, computing transition coefficients
for reactor perturbations. First, assume the reactor configuration in-
stantaneously changes, through e.g. a geometry or a material prop-
erty change. In this situation, one would like to know how the reac-
tor’s initial fission source distribution can be represented in terms of
eigenmodes of the fission matrix of the new configuration. In partic-
ular, one would like to be able to express any of the initial configura-
tion’s eigenmodes in terms of this new partial basis.

Let {ui} be the set of eigenmodes of the fission matrix of the initial
configuration, and {vi} be the set of eigenmodes in the final config-
uration. Assuming the fission matrix for the final state has at least m
linearly independent eigenmodes {vi}m

i=1, then any source distribu-
tion s can be approximated by its projection onto the space spanned
by these m modes. This approximation can be considered optimal (in
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the sense that it minimizes the norm of the residual) if the set of right
eigenmodes is orthogonal.

Applying the above expansion to the i-th eigenmode of the initial
fission matrix, ui, gives:

ui ≈ um
i =

m−1

∑
j=1

Cijvj. (2.3)

The j-th expansion coefficient Cij can be extracted by exploiting the

fact that the system of forward and adjoint modes
{(

sk, s†
k

)}d
k=0 of

a diagonalizable matrix forms a biorthogonal system; i.e., with the
appropriate normalization,〈

sl , s†
m

〉
= δlm. (2.4)

The notation 〈a, b〉 denotes the inner product on Cn, which for the
purposes of this report is defined as b∗a. This product is linear in the
first argument and conjugate-linear in the second, a property called
‘sesquilinearity’.

The adjoint modes are the left eigenvectors of the fission matrix.
In practice, they can be computed by taking the eigenvectors of its
transpose. In the general case, the resulting vectors are the complex
conjugates of the adjoint modes. This is usually not a problem, since
it is usually assumed that the eigenmodes of a fission matrix will be
real. Although this fact has not been theoretically proven, numerical
evidence bears it out within the limits of statstical variation [1].

Relation (2.4) holds, albeit in a restricted sense, even if a complete
system of eigenvectors does not exist for a given fission matrix; see
Appendix A. Using this fact, one can write, using the linearity of the
dot product in its first argument,

Cij =
〈

ui, v†
j

〉
=

N

∑
k=1

Cik

〈
vk, v†

j

〉
=

N

∑
k=1

Cikδkj, (2.5)

assuming the final eigenmodes are normalized such that Relation (2.4)
holds.

The approximation um
i can then be constructed using the transi-

tion coefficients
{

Cij
}m

j=1 and the eigenvectors
{

vj
}m

j=1.
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Once these transition coefficients are known, a quasistatic model
of the transition from the base to the perturbed state is:

scurrent =
N

∑
j=1

C1,j

(
k j

k1

)n

vj, (2.6)

where n is the current neutron generation and N is the total number
of eigenvalues.

2.2 Eigenvalue Solvers
The fission matrix F̄ is nonsymmetric and tends to be a large, sparse
matrix. As such, it is very difficult to store without using a sparse
storage scheme. This severely constrains the choice of eligible algo-
rithms. For example, the implicit QR algorithm, the eigenpair solver
of choice for dense matrices, requires a transformation into upper
Hessenberg form [2]. Such transformations tend to cause fill-in of the
formerly empty elements, causing what was once a sparse matrix to
occupy more than half of the space of a full version of the matrix.
Further, the resulting matrix of eigenvectors will be nearly full. Most
computers cannot handle matrices so large.

An alternative comes in the form of Krylov subspace solvers. The
primary advantage of such solvers is the iterative mode of calculation
that performs only matrix-vector math with the sparse fission matrix,
so the problem of fill-in is avoided. The most simple Krylov subspace
solver is the power iteration method. This simple algorithm is robust
and effective, but has two major flaws. For one, to get more than the
first eigenpair requires some sort of deflation, such as Hotelling de-
flation [3, pp. 85-96]. Secondly, the convergence of the power method
is linear and governed by the factor |λ1/λ2|, also known as the dom-
inance ratio [4]. When this ratio is close to one, the convergence of
this method can be extremely slow.

More advanced Krylov subspace solvers such as implicitly restarted
Arnoldi method (IRAM) address both issues. IRAM can solve for
more than one eigenpair at a time and it has (usually) superlinear
convergence [5]. All math done with regards to the fission matrix is
in matrix-vector form. Two matrices are stored separately from the
fission matrix. Matrix V has columns of the same length as the fission
matrix, but a number of rows equal to m, a variable that is between
2-3x as large as the total number of eigenpairs needed. The columns
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are, once sorted, the resulting eigenvectors of the problem. Matrix H
is an upper Hessenberg matrix of size m by m whose eigenvalues are
the eigenvalues of the fission matrix [3, pp. 128-136].

3 Methodology
Several steps were involved in the investigation of the fission matrix
capability. First, in order to study transitions and transition coeffi-
cients, reactor models were needed in both an initial and final state.
Then, a tool was needed to find the eigenpairs of both systems effi-
ciently. These tools were finally expanded to perform numerous data
manipulations and plot the results.

3.1 Reactor Model Modification
A main goal of the project was to test the fission matrix capability on a
reasonably complex analysis problem. The problem of finding tran-
sition coefficients between two reactor models was chosen for this
purpose. This analysis requires perturbed versions of base-case reac-
tor models, as well as the base models themselves. If the two mod-
els were too different, the transition coefficients would be essentially
meaningless, so the alterations were done in such a way to signifi-
cantly alter the flux while at the same time not significantly altering
the geometry. For the ATR case, four of the control drums S3, S4,
W1, and W2 were rotated 50◦, moving beryllium closer and hafnium
away from the core. The core model, before and after, is shown in
Figure 1.

For the 2-D PWR core, control rods consisting of type 304 stainless
steel were inserted in each assembly in the upper right quadrant of
the core. A comparison is also shown in Figure 2. Note that the region
chosen is asymmetric in that it does not represent a true rotationally
symmetric quarter of the core; this fact has significant consequences
for the eigenmodes of the perturbed case as well as the transition
coefficients in between the states.

3.2 Fission Matrix Generation
Currently, as of August 2013, published versions of MCNP6 do not
contain the full fission matrix capability. The commands described
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(a) ATR Full Core (b) ATR Original (c) ATR Modified

Figure 1: ATR Core Modifications

(a) PWR Full Core (b) PWR Original (c) PWR Modified

Figure 2: PWR Core Modifications
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below will work, but no fission matrix will be output. Further, as
time goes on, the method of generating fission matrices as well as
their output format will likely change as they are not precisely user
friendly at the moment. This part of the report will detail how current
versions of MCNP6 internal to LANL operate with regards to fission
matrices.

In order to enable fission matrices, two cards must be present in
the input deck. First, the mesh extent from the HSRC card is used
as the extent for the fission matrix. As such, the HSRC card must be
included. The number of cells along each axis will not be used, how-
ever, as the fission matrix usually needs to be finer than the Shannon
entropy mesh. The second is the KOPTS card. The KOPTS card defines
the options for KCODE, and contains the settings for the fission matrix.
KOPTS has the following form:

KOPTS ...several-unrelated-options...

fmat= (yes/no)

fmataccel= (yes/no)

fmatskip= n

fmatncyc= n

fmatnbr= n

fmatnbrx= n

fmatnbry= n

fmatnbrz= n

The meaning of these options is summarized in Table 1.
As long as both commands are present, MCNP will keep the fis-

sion matrix tallies internally. If fmataccel = yes, the resulting pri-
mary eigenfunction from solving the fission matrix will be used to
split or roulette KCODE source neutrons in each cell to closer match
the source distribution. This has some advantages, as the fission ma-
trix primary eigenmode will be more accurate than the initial guess
or any unaltered KCODE results prior to convergence. Current ver-
sions of MCNP do not save the fission matrix, but in-development
versions do. The resulting file is fmat_file. The structure of this file
as currrently implemented is discussed in the following sections.

3.3 Eigenvalue Tool Exploration
By default, the current development versions of MCNP6 output the
fission matrix as an unformatted binary file as written by a Fortran-
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command Description
fmat= yes Enables fission matrix

fmataccel= yes Enables using the fission matrix primary
eigenmode to accelerate the convergence of
KCODE

fmatskip= n Skips n cycles before tallying fission matrix

fmatncyc= n Solves for keff and dominance ratio every n cy-
cles

fmatnbr= n Total number of entries available for the sparse
matrix.

fmatnbrx= n Sets number of cells in the x-axis to n

fmatnbry= n Sets number of cells in the y-axis to n

fmatnbrz= n Sets number of cells in the z-axis to n

Table 1: KOPTS Options
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based code. These files are not human-readable, and their structure
is machine and compiler dependent. A Fortran-based tool already
existed that would read the fission matrix, perform power iteration,
and output several text and PostScript files containing results and
plots. This worked well on smaller fission matrices on the order of
N = 10000 rows, but beyond that, the calculation time was unrea-
sonably high. Two different approaches (with a third later) were un-
dertaken to expedite the calculation process. The first approach used
Python interfaced with ARPACK [6], the second was a custom C++
implementation of Arnoldi iteration, and the third used MATLAB,
again interfaced with ARPACK.

Each toolset had in common the same general steps necessary
to perform the analysis: First, it read in the initial and final (per-
turbed) fission matrices from their native binary formats. Second, the
tool normalized each matrix’s rows against the corresponding fission
source tally, since the matrices were saved in the form of raw tallies.
Third, it extracted the forward and adjoint eigenvalues of the result-
ing sparse matrix. Finally, it obtained transition coefficients by tak-
ing dot products between the initial forward and final adjoint eigen-
modes. These results were then visualized and interpreted.

3.3.1 Python

One approach to extracting the eigenmodes from the fission matrices
used an interactive Python analysis system1 equipped with several
useful libraries. The system used the NumPy package for numerical
computing, as well as the SciPy package’s sparse-matrix capabilities,
which included an interface to the freely available ARPACK sparse-
matrix eigenvalue solver [6]. Plots and visualizations were generated
using the Matplotlib visualization package.

The system proved effective at reading in the generated fission
matrices in Fortran unformatted-binary sparse storage format and
finding a small (80 or fewer) number of eigenvectors and -values.
As an illustrative example, the eigensolver routine took 163 seconds
to solve for the 80 forward modes of the unperturbed case with N =
57600; the adjoint case usually took longer (212 seconds in this case)

1Technical details: Enthought Python Distribution 7.3-2 (64-bit) (https://www.
enthought.com/) with Python 2.7.3, SciPy 0.10.1, NumPy 1.6.1, Matplotlib 1.1.0, and
IPython 0.12.1 for interactive use.
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because of the additional cost of multiplying by the transposed fis-
sion matrix; see Section 4.1.

The prime disadvantage of the Python system is that it did not
have parallel processing capability in the standard configuration. A
parallel implementation of ARPACK is available [6]; however, the
SciPy package apparently only links to the serial version. Moreover,
the sparse matrix-vector products themselves must be performed by
SciPy; this procedure is apparently also implemented serially in stan-
dard configuration.

3.3.2 C++

Initially, the C++ code, called eigtest, was simply a matrix math li-
brary that would implement just enough matrix math to do power
iteration so that the person writing it could relearn the programming
language. After finding out about the massive speedup possible con-
verting from power iteration to the implicitly restarted Arnoldi method,
the tool was converted to mimic a reference implementation written
in MATLAB [7]. Portions of the original F90 code were merged in
to provide for reading the fission matrix files. After a few weeks,
however, the implementation was not converging correctly, and due
to limited time, it was scrapped. The ability for the tool to read and
write the matrix in a few different formats proved useful later on in
the MATLAB implementation.

3.3.3 MATLAB

Although it may seem a bit strange to implement this code in both
Python and MATLAB, during the C++ implementation, a large amount
of MATLAB backend was written before the Python implementation
was complete. In general, the MATLAB capability is very similar to
the Python one and was used for the core step-by-step transition cal-
culations and the statistics2.

3.3.4 Fortran ARPACK Interface

Near the end of the project, another interface was developed for AR-
PACK, written in Fortran 90 and using parallel sparse-matrix vector

2Technical details: Matlab version R2013a

LANL Computational Physics Workshop 2013 11 of 28



Eigenfunction Decomposition, MCNP

products. By that time, however, most of the work requiring eigen-
value solvers was completed, so it was not extensively tested.

3.4 Verification
It is not clear to what extent the algorithms and implementation of
ARPACK have been verified. Therefore, two simple independent
checks were undertaken to verify that ARPACK was indeed return-
ing results with the advertised properties.

The nature of the eigenvalue problem admits a straightforward
method of verification: Given a computed solution (vC, λC) to the
problem Av = λv, the residual r = AvC − λCvC can be computed,
and its properties (e.g. norm) investigated to assess whether the com-
puted answer solves the problem to the desired tolerance. A residual
was considered acceptable if its l2 norm did not considerably exceed
the number of mesh cells used times the machine epsilon. This was
indeed found to be the case for a set of 80 eigenvalues extracted both
from the PWR and the ATR cases. We suspect this check is already
done internally in ARPACK, but since no concrete evidence of such a
check could be found, an independent verification was seen as justi-
fied. This independent check also guarded against any possible fail-
ure conditions in ARPACK that would not have been reported back
to the user.

Another important criterion on the set of eigenvectors returned
by ARPACK is that they be linearly independent; this property can
be checked using a singular value decomposition of the matrix of
eigenvectors. For both the PWR and the ATR test cases, it was indeed
the case that all 80 singular values of the matrix of eigenvectors were
clearly nonzero, i.e. many orders of magnitude larger than machine
precision.

4 Results
The two different test problems, PWR and ATR, were run in MCNP
with different parameters. A summary of the parameters used is in
Table 2. These two runs generated fission matrices that were 4.8 GB
and 32 MB in size for the PWR and ATR respectively. Both runs had
enough cycles discarded to be converged for KCODE. The choice of fis-
sion matrix mesh size depends on the reactor being studied as well

LANL Computational Physics Workshop 2013 12 of 28
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Reactor 2D PWR ATR
Cycles 300 500
KCODE Active Cycles 200 400
fmatskip 3 3
fmatnbrx 480 100
fmatnbry 480 100
fmatnbrz 1 1
Neutrons/cycle 4 million 100 thousand

Table 2: MCNP6 run details

Matrix Size IRAM (ARPACK) Power Iteration
3600× 3600 3.09 s 4878 s
900× 900 0.234 s 353 s
225× 225 0.0337 s 30.6 s

Table 3: IRAM vs. Power Iteration for Various Matrix Sizes

as computational resources. For example, the PWR has low connec-
tivity between distal regions of the core, owing to its great size. This
is reflected in the fission matrix as a very high sparsity and thus, low
memory usage. The opposite case is true for the ATR. As such, the
ATR was typically run with a smaller mesh. A smaller mesh also re-
quires fewer neutrons for statistical reasons. However, it is always
beneficial to calculate with as large a mesh as possible, because the
fission matrix can be aggregated into a smaller one as needed.

In practice, the fission matrix used for the PWR was aggregated
by a factor of two, reducing it in size from 230400 to 57600 rows. This
made the eigenvalue solve times much more tractable and improved
the statistical properties of the resulting eigenmodes.

4.1 Solver Timings
A quick speed comparison was done between the two algoritms avail-
able. The runs were done on 1 CPU, and the first 16 eigenmodes and
16 adjoint eigenmodes were solved for. These runs are summarized
in Table 3. As shown, a speedup of approximately 1500-fold was ex-
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Number of Unperturbed Perturbed
Modes Forward Adjoint Forward Adjoint
20 95 s 110 s 120 s 149 s
40 129 s 170 s 105 s 143 s
80 163 s 212 s 148 s 196 s

Table 4: Timings of the IRAM eigenvalue algorithm, as implemented
by SciPy (see Section 3.3.1), on the PWR problem with N = 57600
rows.

perienced in switching algorithms on the 3600× 3600 matrix.
Additionally, a preliminary investigation was done to investigate

how the time taken by Arnoldi iteration scales with mesh size and the
number of modes requested. The results are summarized in Table 4,
from the PWR problem with N = 57600 rows. The times were com-
puted both for the forward and adjoint mode solves. The given times
are best out of 3 runs on a fairly capable multi-user machine. An im-
portant caveat on these timings is that a surprisingly large amount of
variation was observed in the eigenvalue-solve timings, particularly
on a spatial mesh with N = 230400.

Since not enough time was available to study the statistical prop-
erties of these timings in more detail, they are presented here only
in order to illustrate some interesting general properties of the al-
gorithm’s runtime. First, note that the algorithm took consistently
more time solving the adjoint problem than the forward problem;
this is likely due to the overhead involved in transposing a CSR-
stored sparse matrix, or computing matrix-vector products with its
transpose. Second, the scaling as a function of number of eigen-
modes requested is much weaker than one would expect given the
known complexities of the individual components of the algorithm.
This fact hints at the nontrivial convergence properties of the implic-
itly restarted Arnoldi method, as does a surprising result where it
took longer to solve for 40 modes than for 80 modes of the matrix of
the PWR problem with N = 230400 rows (1130 seconds versus 793
seconds, best of 6 runs each).
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4.2 Eigenmodes
Using the techniques described earlier, the eigenpairs of the resulting
matrices were solved for and plotted. Figure 3 shows the first 4 eigen-
modes and adjoint eigenmodes of the initial and final configuration
of the core. The same was done for the ATR in Figure 4. Comparing
the original to the modified for the PWR, it becomes clear that the
insertion of the control rods has significantly depressed a quadrant
of the fundamental mode. The slight asymmetry in the perturbation
also becomes noticeable in the higher modes. As for the ATR, the
lobe that is surrounded by the moved control barrels is more active
than the rest of the core. This is essentially as expected.

4.3 Transition Coefficients
Using a set of 40 eigenmodes calculated from each fission matrix,
the transition coefficients were calculated and mapped into a grid.
The PWR and ATR transition coefficients are plotted in Figure 5. The
PWR transition coefficients give hints as to the more intricate transi-
tion occuring. The insertion of control rods in an asymmetric region
of the core is not nearly as uniform an alteration as moving four adja-
cent control barrels by the same amount, and has a very strong spatial
dependence.

4.4 Transitions
For the ATR, these coefficients were used to reconstruct a very ba-
sic stepwise transition. This is shown in Figure 6, along with what
should be the original and final source distributions. Very slight dif-
ferences are evident between the original and the generation 0 result,
hinting that the reconstruction is not exact due to the limited number
of eigenmodes used. Had the entire set of eigenvalues been calcu-
lated, this reconstruction would not be as imprecise.

The transition is found to be relatively smooth with the major-
ity of sources propagating into the lobe of the core with the rotated
control drums. The transition is mostly completed after 15 neutron
generations, which, ignoring delayed neutrons and other reactions
such as temperature dependence that will alter the transition, is a
very short time. These plots can be seen as an approximation of the
prompt jump at the beginning of a reactor configuration change.
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(a) PWR Original (b) PWR Modified

Figure 3: Eigenvectors of the 2D PWR
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(a) ATR Original (b) ATR Modified

Figure 4: Eigenvectors of the ATR
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Figure 5: Transition Coefficients

4.5 Reconstruction Error
The error between the fundamental mode and its reconstruction in
the space spanned by the perturbed eigenmodes was also studied.
The initial fundamental mode was reconstructed with various quan-
tities of eigenmodes in the final configuration and the l2 norm of the
difference between the two was calculated. The differences for both
reactors with 40 eigenmodes are plotted in Figure 7, with the eigen-
mode count dependence plotted in Figure 8. It is clear that the more
symmetric perturbation in the ATR core has made the transition co-
efficients rather simple. It takes relatively few transition coefficients
to properly reconstruct the initial modes. The rather complex pertur-
bation done to the PWR causes a more spread-out set of transition
coefficients, indicating the larger number of perturbed modes neces-
sary to reconstruct any given initial mode.

4.6 Statistics
One primary drawback to the fission matrix method is that it is al-
ready quite difficult to store even rather small fission matrices. As
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(a) ATR Original (b) ATR Generation 0

(c) ATR Generation 5 (d) ATR Generation 10

(e) ATR Generation 15 (f) ATR Final

Figure 6: ATR Transition from Start to Final
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(a) PWR (b) ATR

Figure 7: Reconstruction Error

Figure 8: Reconstruction Error by Eigenmode Count
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k̄1 σk̄1
k̄2 σk̄2

KCODE 0.995077 0.000023 N/A N/A
50× 50× 50 mesh 0.995017 0.000021 0.900928 0.000033
25× 25× 25 mesh 0.995011 0.000021 0.898198 0.000033
10× 10× 10 mesh 0.994977 0.000021 0.879747 0.000036
5× 5× 5 mesh 0.994924 0.000021 0.831998 0.000042

Table 5: Statistics of Runs

such, storing the squares of the tallies necessary to do error propaga-
tion in MCNP is not implemented. As such, the only way to measure
statistics is to repeatedly run the same problem over and over again
with different starting seeds until there are enough datapoints to cal-
culate the variance of the sample.

To see if resolution has any impact on statistics, the ATR run was
modified to use a 50× 50× 50 mesh for the fission matrix, generating
a 125000× 125000 fission matrix. 25 runs were done and the mesh
was aggregated into smaller meshes of size 25× 25× 25, 10× 10× 10,
and 5 × 5 × 5. The average of the resulting values along with the
standard deviation of those values is summarized in Table 5.

It is worth noting that the statistics do get worse with decreasing
mesh size, but, for example, the 5× 5× 5 k2 is not equal to the 50×
50× 50 k2, even within statistical variation. It appears that there is
a significant bias effect for the non-fundamental modes at play with
regards to mesh size. The same can be said of the 50 × 50 × 50 k1
value as compared to the KCODE k1, but not to the same extreme. σk1

for all fission matrix runs was smaller than KCODE’s, likely owing to
the greater number of cycles contributing to the final result.

Another interesting test was to find the statistics on the first 100
eigenvalues for the 50 × 50 × 50 run. This turned up a surprising
result shown in Figure 9. Further exploration showed that mode 27
from run 20 had some regions inside of it with abnormally large val-
ues, as shown in Figure 10. The average mode is the one with run
20 removed but the other 24 combined. Removing all values above
a certain threshold, the run 20 mode 27 is once again similar to the
average, as shown in Figure 11, implying that the small number of
very large values that caused the shift are likely statistical noise. Fur-
ther, removing mode 20 completely from all calculations yields the
statistics shown in Figure 12.
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Figure 9: Standard Deviation by Eigenmode

5 Future Work
During the course of this work, many avenues for improvement and
future investigation were uncovered. Many of these avenues were
not pursued due to time constraints, so they are presented here as
recommendations for continuations of this work by future groups.

First, improvements are possible in the algorithms themselves.
The algorithms in ARPACK as it is typically implemented are not
parallel. Since most of the time is spent doing matrix-vector math,
parallelizing at least that component of the calculation is in princi-
ple fairly straightforward. This would be a benefit especially for ex-
tremely large matrices, where it can still take a large amount of time
to solve for any useful number of eigenvectors.

Another ongoing point of concern is the existance of imaginary
components that occasionally appear in the eigenvalues of the fis-
sion matrix. This phenomenon was observed during the course of
this project, but not systematically investigated. It is investigated in
[1], which makes the preliminary conclusion that the imaginary com-
ponents appear to be solely due to statistical variation. However, a
more thorough investigation of these components with a larger pa-
rameter space would be necessary in order to gather convincing evi-
dence of this suspicion.
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(a) Run 20 - Mode 26 (b) Run 20 - Mode 27 (c) Run 20 - Mode 28

(d) Average - Mode 26 (e) Average - Mode 27 (f) Average - Mode 28

Figure 10: Mode Comparison in 3D, Run 20 vs. Average
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(a) Run 20 - Mode 27 - Modified (b) Average - Mode 27

Figure 11: Mode Comparison in 3D, Run 20 vs. Average, With
Abnormal Values Removed

Figure 12: Standard Deviation With and Without Run 20
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Finally, only a limited set of perturbations were explored in this
project, and more interesting ones may be possible. For example, one
might investigate the transitions from a core in cold-clean conditions
to hot-clean conditions. It might also be interesting to investigate
other temperature effects, void effects, or xenon oscillations. In prin-
ciple, any type of transition can be investigated providing MCNP has
the capability to simulate the perturbed case.

6 Conclusion
Fundamentally, most of the groundwork for using the fission matri-
ces that MCNP produces has been completed. It is relatively cost-
effective to generate fission matrices with meshes of acceptably fine
resolution, with the primary limiters being memory and storage space.
Large matrices provide more accurate results as long as the statistics
are sufficient, and if they are not, the matrix can be reduced in size
until they are sufficient. By switching from the power method to the
implicitly restarted Arnoldi method, speedups on the order of 1500
fold were attained, proving this an effective algorithm for handling
these large matrices. The calculated eigenvalues converged towards
the KCODE result with expanding matrix size, and also appeared to
have superior statistical properties due to the reduced number of dis-
carded cycles, with the notable caveat of a bias appearing for insuf-
ficiently fine mesh resolutions. Lastly, the fundamental mode can be
reconstructed in a perturbed space with relatively small errors with
few eigenmodes used.
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A Biorthogonality Relation
For an N× N matrix A with N distinct eigenvalues and a set of right
eigenvectors {ri} and associated left eigenvectors {li} (here written
as column vectors), the following relation holds:〈

Arj, li
〉

=
〈
λjrj, li

〉
=
〈
rj, A∗li

〉
=
〈
rj, λ∗i li

〉
(A.1)
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so 〈
rj, li

〉
(λi − λj) = 0 (A.2)

by sesquilinearity of the dot product defined in Section 2.1. This
means that for λi 6= λj, the product 〈rj, li〉 = 0. Therefore, since the
matrix A and its complex conjugate transpose A∗ have sets of eigen-
values that are complex conjugates of each other, the sets of left and
right eigenvectors {li} and

{
rj
}

form a biorthogonal system.
In the more general case in which A has repeated eigenvalues,

which is often observed to be the case with fission matrices, a more
general relation is needed which makes use of the Jordan normal
form. Any square matrix can be decomposed in the form A = RJR−1,
where J is a block-diagonal matrix where the individual blocks are
Jordan blocks, which have an eigenvalue on the diagonal and ones
on the superdiagonal. The number of Jordan blocks corresponding
to an eigenvalue λi is equal to its geometric multiplicity, or the num-
ber of linearly independent eigenvectors corresponding to that eigen-
value (= dim Null(A− λi I)). All semi-simple eigenvalues, i.e. those
that have a geometric multiplicity equal to their algebraic multiplicty
(their multiplicity as roots of the characteristic polynomial of A), have
Jordan blocks of size 1. For more details, see [3, pp. 14-15] or any
standard textbook on linear algebra. For the purposes of illustration,
a Jordan block of the eigenvalue λi has the form:

λi 1

λi
. . .
. . . 1

λi


Writing the above decomposition in the form AR = RJ, it can be

seen that R contains all the right eigenvectors of A. The set of indices
of the columns in R that comprise the eigenvectors of the matrix A is
the set of (column) indices in J where each new Jordan block starts;
this is the set of indices at which a column vector of R is scaled by the
corresponding λi through the matrix multiplication.

Alternatively, the decomposition can be written R−1A = JR−1, or,
letting L = R−1, LA = JL. This form reveals that L contains all the
left eigenvectors of A in its rows. This time, however, the eigenvectors
occur at a different set of (row) indices: By inspecting the properties
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of left-multiplication of a matrix by a Jordan block, one can see that
the true eigenvectors occur at the set of indices where each Jordan
block ends; these are the indices at which a row vector in L is scaled
by the corresponding λi in the matrix multiplication.

Since LR = I, the identity matrix, the rows {li}N
i=1 and the columns

{ri}N
i=1 form a biorthogonal basis of CN . From this fact, it is possi-

ble to make a restricted conclusion regarding the biorthogonality of
eigenvectors of a matrix: The sets of left and right eigenvectors of a
matrix, with those vectors deleted that do not correspond to semi-
simple eigenvalues, form a biorthogonal system. This is because, for
semi-simple eigenvalues, the corresponding left and right eigenvec-
tors have the same row indices in L as column indices in R, since Jor-
dan blocks corresponding to semi-simple eigenvalues always have
size 1.

This manipulation of the Jordan normal form offers another in-
sight in the case where the fission matrix F̄ does not have a complete,
linearly independent set of eigenvectors: One can augment the exist-
ing eigenvectors with principal vectors from the Jordan normal form,
forming two complete biorthogonal bases of CN in which any arbi-
trary source distribution can be written as s = ∑N

i=1 aili, for example
(see Section 2.1). More care is required, however, in extracting the
j-th transition coefficient via aj =

〈
s, rj

〉
. The index j is an index

into a column of R, which includes principal vectors from the Jordan
normal form. Taking into account the above-mentioned indexing ir-
regularities, this means that while lj may be an eigenvector, this does
not imply that rj is as well, and vice versa.
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