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1. Introduction 

We provide some perspective on the fission matrix method as applied to Monte Carlo (MC) criticality 
calculations. This method is among the oldest methods for MC criticality calculations [1,2], and has been 
proposed and tried by many researchers over the past 60 years. The past efforts were successful only for very 
small problems due to computer memory limitations and the N2 nature of the method. Some of the most 
interesting aspects of the fission matrix method pertain to the understanding and resolution of unanswered 
questions on the fundamental theoretical basis for continuous-energy MC criticality calculations.  

2. Fission Matrix Method 

References [3] and [4] provide detailed descriptions of the theory, computational techniques, and results 
obtained in the initial implementation of the method in MCNP. In [3], we derive the forward and adjoint fission 
matrix equations, without approximation, from the k-eigenvalue form of the neutron transport equation. Fission 
matrix elements are estimated at essentially no extra cost during the normal MC simulation using only the 
locations of fission neutron sources at the start and end of each batch, without incurring any overhead during 
the random walks. The key computational advance is the use of a sparse, compressed-row storage scheme for 
the fission matrix tallies. With this scheme, no approximations are made; the sparsity is general, not banded, 
and all tallies are rigorously recorded. Eigensolvers for both the left and right eigenvectors of a general sparse 
matrix are based on power iteration, with Hotelling deflation for producing higher modes. The example 
problems in [4] are realistic, detailed models using continuous-energy physics – a 2D PWR, a large fuel storage 
vault, the ATR reactor, and a 3D reactor. Fig. 1 [4] shows the first 10 eigenfunctions for the 2D PWR model. 

 The fission matrix can provide estimates of the fundamental mode distribution, the dominance ratio, the 
eigenvalue spectrum, and higher mode eigenfunctions. Accurate higher modes for the fission source and adjoint 
have many potential uses in convergence analysis, stability analysis, perturbation theory, etc. The fundamental 
mode from the fission matrix can be accurately computed before the actual neutron distribution has converged; 
it can therefore be used to accelerate convergence of the power iterations for the actual neutron distribution. 

3. Relation to Fundamental Reactor Theory 

The keff form of the transport equation for energy-dependent problems [5] is not self-adjoint; due to neutron 
slowing down, the kernel for the integral operator is not symmetric. Accordingly, eigenfunctions need not form 
a complete, real, orthogonal set of basis functions. The forward and adjoint fission sources are biorthogonal. 
The fundamental mode eigenvalues and eigenfunctions have been proven to exist, even for continuous-energy 
transport [6]. The fundamental mode eigenvalue is real and positive, and the fundamental mode eigenfunction 
is real and non-negative. For 1-speed transport with isotropic scattering, it has been proven [7] that all of the 
higher modes exist, with discrete real eigenvalues and real eigenfunctions. The 1-speed equation for the scalar 
flux is self-adjoint due to the symmetry of the integral operator kernel. This proof was later extended to include 
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Fig. 1. First 10 eigenmodes for PWR obtained from a fission matrix using a 120x120x1 spatial mesh. 
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anisotropic scattering [8]. For multigroup and continuous-energy transport, it is conventional practice to assume 
that higher modes exist, with real eigenvalues and eigenfunctions, even though that has not been proven.  

In [3,4], very fine spatial resolution was used in computing the fission matrix for realistic problems. It was 
shown that, for fine enough spatial resolution, the adjoint fission matrix is simply the transpose of the forward 
fission matrix, so that the fission source distribution and its higher modes are right eigenvectors, while the 
adjoint and its higher modes are left eigenvectors. The fission source and its adjoint were proven to be 
biorthogonal. Numerical evidence for every problem analyzed to date indicates that: 

• As spatial resolution is refined, the eigenvalue spectrum of the fission matrix converges smoothly. For N 
spatial regions and an NxN fission matrix, there are N eigenvalues. As N is increased, the lowest modes 
converge smoothly. See Fig. 2 for an example. 

• The eigenvalues are discrete and real. (This is debatable, since some complex eigenvalues appear for some 
of the highest modes. However, as N is increased and statistical noise decreased by using more neutrons, 
the complex parts become smaller and shift to even higher modes.) 

• The forward eigenfunctions form a very-nearly orthogonal set. Theory dictates that the forward and adjoint 
solutions are biorthogonal, and that the forward modes alone need not be orthogonal to each other. The 
numerical evidence in [3,4] for several realistic problems shows the near-orthogonality of the forward 
modes. See Fig. 3 for an example. 

4. Conclusions 

Further study is ongoing into the above and additional aspects of the fundamental theoretical basis of the keff  
form of the transport equation. The accuracy of the fission matrix method using continuous-energy and very 
fine spatial resolution – made possible by the new sparse storage algorithms – provides a valuable new tool for 
both theoretical and practical studies of critical systems.  
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Fig. 3. Inner products of first 25 forward 

mode eigenfunctions for 2D PWR. 

 
Fig. 2.  Eigenvalue spectrum for PWR model. Real part of Ki is 

shown for various fission matrix spatial meshes. 
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Figure 2. Convergence of the first 10 
eigenvalues for whole-core 2D PWR model 
as N is increased (i.e., finer resolution).  

4.3 Real vs. Complex Eigenvalues 

While it has almost always been assumed that 
the eigenvalues of the transport equation are 
strictly real, there is no proof of that for 
continuous-energy problems. Since the fission 
matrix is nonsymmetric, complex eigenvalues 
could be present. In the present study, we have 
also examined this issue. Figure 3 shows the 
real and imaginary parts of the eigenvalue 
spectrum for the whole-core 2D PWR model 
corresponding to Figures 1 and 2. In Fig. 3, 
the mesh resolution is fixed at N = 14,400, and 
the number of neutron histories in the 
calculations is varied, with the blue points 
corresponding to twice the number of 
histories. It is seen that the imaginary portion 
of the eigenvalues is negligible or zero for the 
first few hundred eigenvalues. With more 
neutron histories (blue points in the plots), 
hence smaller uncertainties in the tallies for 
the fission matrix elements, the imaginary 
components become smaller and are shifted to 
higher portions of the spectrum. It is 

 
Figure 1.  Eigenvalue spectrum for whole-core 2D PWR model, with explicit geometry, 
ENDF/B-VII.0 cross-sections, and continuous energy physics. Real part of Ki is shown for 
various spatial mesh resolutions. 


