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Abstract"

Fission Matrix Capability for MCNP, Part I – Theory"

Forrest Brown, Sean Carney, Brian Kiedrowski, William Martin"

The theory underlying the fission matrix method is derived using a rigorous Greenʼs function"
approach. The method is then used to investigate fundamental properties of the transport equation"
for a continuous-energy physics treatment. We provide evidence that an infinite set of discrete, real"
eigenvalues and eigenfunctions exist for the continuous-energy problem, and that the eigenvalue"
spectrum converges smoothly as the spatial mesh for the fission matrix is refined. We also derive"
equations for the adjoint solution. We show that if the mesh is sufficiently refined so that both"
forward and adjoint solutions are valid, then the adjoint fission matrix is identical to the transpose"
of the forward matrix. While the energy-dependent transport equation is strictly biorthogonal, we"
provide surprising results that the forward modes are very nearly self-adjoint for a variety of"
continuous-energy problems. A companion paper (Part II – Applications) describes the initial"
experience and results from implementing this fission matrix capability into the MCNP Monte"
Carlo code."
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Fission Matrix Capability for MCNP, Part I - Theory"

•  Introduction"
–  Higher eigenmodes"
–  Green's functions & transport"
–  Motivation!

•  Theoretical Basis of the Fission Matrix"
–  Integral equation for the neutron source"
–  Integral equation for the adjoint source"
–  Comments of forward vs adjoint"

•  Forward & Adjoint Fission Matrix Equations"
–  Forward fission matrix equations"
–  Adjoint fission matrix equations"
–  Relationship between forward & adjoint"

•  Fission Matrix Eigenmodes & Eigenvalue Spectrum"
–  Higher mode analysis"
–  Spectrum convergence with mesh refinement"
–  Real vs Complex eigenvalues"
–  Near-orthogonality of eigenfunctions"

•  Conclusions & Future Work"

Carney, Brown, Kiedrowski, Martin, “Fission Matrix Capability for MCNP Monte Carlo”,  TANS 107, San Diego, 2012"

Carney, Brown, Kiedrowski, Martin, “Fission Matrix Capability for MCNP, Part II - Applications”,  M&C-2013, 2013"
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Introduction"
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Introduction - Higher Eigenmodes"

Vibrating strings:"

•   Higher modes add "tone",  
    but die away quickly"

•   Fundamental mode persists"

•   Feedback, instability, nonlinear  
   effects, …, may excite higher modes"
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1 

2 

3 

4 

5 

etc."



6!

LA-UR-13-23152

•  F(AB)"
–  Green's function,  "here-to-there" function"
–  Probability that source at point A produces source at point B!

•  Transport theory - Peierl's equation for multiplying system"

–  Discretize space into blocks, or mesh regions"
–  Compute  F(rʼr)  with Monte Carlo"
–  Solve matrix eigenvalue problem for sources:"

–  Can also solve for higher modes!

SB = SA ⋅F(A→B)
B 

A 

Introduction - Green's Functions & Transport Theory"

 
S(r )  =   1

keff
  ⋅  d′r ⋅S(′r ) ⋅F(′r →

r )
all  ′r
∫

 


S  =   1

keff
 ⋅   F ⋅


S
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Introduction – Who Cares?"

•  Knowledge of fundamental & all higher modes"
–  “Crown Jewels” of analysis – explains everything!

•  Reactor theory & mathematical foundations"
–  Existence of higher modes!
–  Eigenvalue spectrum – discrete ?  real ?!
–  Forward & adjoint modes!
–  Assessment of spatial refinement!

•  Fundamental reactor physics analysis"
–  Higher modes for stabiility analysis of Xenon & void oscillations!
–  Slow-transient analysis!
–  Startup, probability of initiation!

•  Source convergence testing & acceleration"
–  May provide robust, reliable, automated convergence test !
–  Acceleration of source convergence!
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Theoretical Basis of the"
Fission Matrix"
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Integral Equation for the Neutron Source    (1)"

•  Transport equation, k-eigenvalue form "

M = net loss operator"

S(r) = fission neutron source"

χ(E) = emission spectrum,   
"   following analysis is same if replaced by"

 
M ⋅Ψ(r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(r )

 

M ⋅Ψ(r,E,Ω̂) = Ω̂ ⋅∇Ψ(r,E,Ω̂)+ ΣT(
r,E)Ψ(r,E,Ω̂)

− d ′E d ˆ ′Ω  ΣS(
r, ′E →E, ′Ω̂ → Ω̂∫∫ ) Ψ(r, ′E , ˆ ′Ω )

 
S(r ) = d ′E d ˆ ′Ω  νΣF(

r, ′E ) Ψ(r, ′E , ˆ ′Ω )∫∫

 

χ(E,r ) =
d ′E d ˆ ′Ω  χ( ′E →E) νΣF(

r, ′E ) Ψ(r, ′E , ˆ ′Ω )∫∫
d ′E d ˆ ′Ω  νΣF(

r, ′E ) Ψ(r, ′E , ˆ ′Ω )∫∫
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Integral Equation for the Neutron Source    (2)"

•  Define Greenʼs function & integral transport equation"

•  Multiply by νΣF(r,E),  integrate over E, Ω"
•  Define energy-angle averaged Source & Greenʼs function"

 M ⋅G(r0,E0,Ω̂0 →
r,E,Ω̂) = δ(r − r0 ) ⋅ δ(E −E0 ) ⋅ δ(Ω̂ − Ω̂0 ),

 
Ψ(r,E,Ω̂) = 1

K ⋅ dr0 dE0 dΩ̂0∫∫∫
χ(E0 )
4π

⋅S(r0 ) ⋅G(
r0,E0,Ω̂0 →

r,E,Ω̂ )

 
S(r ) = 1

K
dr0 ⋅S(

r0 ) ⋅H(∫
r0 →

r )

 
H(r0 →

r ) = dEdΩ̂ dE0 dΩ̂0∫∫∫∫ ⋅ νΣF(
r,E)⋅ χ(E0 )

4π
⋅G(r0,E0,Ω̂0 →

r,E,Ω̂)

 
S(r ) = d ′E d ˆ ′Ω ⋅ νΣF(


′r , ′E ) ⋅Ψ(′r , ′E , ˆ ′Ω )∫∫

H(r0r) can be tallied directly in MC simulation"
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Integral Equation for the Adjoint Neutron Source    (1)"

•  Adjoint transport equation, k-eigenvalue form "

M† = adjoint to operator M"

S† (r) = adjoint fission neutron source"

Bell & Glasstone & others have shown that forward & adjoint K eigenvalues are the"
same,    K† = K,   so will just use K in the following analysis."

 
M† ⋅Ψ†(r,E,Ω̂) = 1

K ⋅
νΣF (


r,E)

4π
⋅S†(r )

 

M† ⋅Ψ†(r,E,Ω̂) =  −Ω̂ ⋅∇Ψ†(r,E,Ω̂)+ ΣT(
r,E)Ψ†(r,E,Ω̂)

− d ′E d ˆ ′Ω ⋅ ΣS(
r,E→ ′E ,Ω̂→ ˆ ′Ω∫∫ ) ⋅Ψ†(r, ′E , ˆ ′Ω )

 
S†(r ) = d ′E d ˆ ′Ω ⋅ χ( ′E )

4π
⋅Ψ†(r, ′E , ˆ ′Ω )∫∫
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Integral Equation for the Adjoint Neutron Source    (2)"

•  Adjoint Greenʼs function & integral transport equation"

•  Multiply by χ(E),  integrate over E, Ω"
•  Define energy-angle averaged adjoint Source & Greenʼs function"

 M
† ⋅G†(r0,E0,Ω̂0 →

r,E,Ω̂) = δ(r − r0 ) ⋅ δ(E −E0 ) ⋅ δ(Ω̂ − Ω̂0 )

 
Ψ†(r,E,Ω̂) = 1

K ⋅ dr0 dE0 dΩ̂0∫∫∫ ⋅ νΣF(
r0,E0 ) ⋅S†(r0 ) ⋅G†(r0,E0,Ω̂0 →

r,E,Ω̂ )

 
S†(r ) = 1

K
dr0 ⋅S†(r0 ) ⋅H†(∫

r0 →
r )

 
H†(r0 →

r ) = dEdΩ̂ dE0 dΩ̂0∫∫∫∫ ⋅ χ(E)
4π

⋅ νΣF(
r0,E0 ) ⋅G†(r0,E0,Ω̂0 →

r,E,Ω̂)

 
S†(r ) = d ′E d ˆ ′Ω ⋅ χ( ′E )

4π
⋅Ψ†(′r , ′E , ˆ ′Ω )∫∫

H† (r0r) can be tallied directly in MC simulation"
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Forward & Adjoint Integral Equations for Source"

•  Reciprocity for direct & adjoint Greenʼs function"

!Because of irreversible energy dependence, neither G nor G† is symmetric 
in initial and final arguments. Same is true for H and H† !

•  Using reciprocity, comparing H and H†  gives"

•  S and S† are bi-orthogonal"

 G
†( r0,E0,Ω̂0 →

r,E,Ω̂ )  =  G( r,E,Ω̂→
r0,E0,Ω̂0  )

 

S(r )  =   1K dr0 ⋅S(
r0 ) ⋅ H(∫

r0 →
r )

S†(r ) =   1K dr0 ⋅S†(r0 ) ⋅H(∫
r → r0 )

 H
†(r0 →

r )  =  H(r → r0 )
 

H (r0 →
r )  ≠  H (r → r0 ),

H†(r0 →
r )  ≠  H†(r → r0 )

 
(Kp −Kq) ⋅ dr ⋅Sp(

r∫ ) ⋅Sq
†(r )  =  0
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K-eigenvalue Form of Transport Equation"

•  Structure & properties"
–  60+ years ago:"
" "A single, non-negative, real, fundamental  
"eigenfunction & eigenvalue exist"

–  50+ years ago:!
" "For 1-speed or 1-group:   A complete set of self-adjoint,  
"real  eigenfunctions & discrete eigenvalues  exists"

–  Energy-dependent transport equation is bi-orthognal,  
!forward & adjoint modes are orthogonal"

–  Nothing else proven,    always assumed that higher-mode solutions exist!

•  In the present work based on the Fission Matrix:"

–  We provide evidence that higher modes  exist,   are real,   have discrete 
eigenvalues,   and are very nearly self-adjoint    (for reactor-like problems)"

–  Approach is similar to Birkhoffʼs original proof for fundamental mode"

–  This has never been done before using continuous-energy Monte Carlo"

 
M ⋅Ψ(r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(r )
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Forward & Adjoint"
Fission Matrix"

Equations"
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Forward Fission Matrix Equations    (1)"

•  Segment the physical problem into N disjoint spatial regions"
–  Initial regions (r0) for fission neutron source emission!
–  Final regions (r) for production of a next-generation fission neutron!

•  Integrate the forward integral fission source equation over r0 & r"
–  Initial:    r0 ∈ VJ,       Final:   r ∈ VI!

" "Exact equations for integral source SI"
" "N = # spatial regions,   F = N x N  matrix, nonsymmetric"

SI = 1
K ⋅ FI,J ⋅SJ

J=1

N

∑

 
FI,J = dr

r∈VI
∫ dr0

r0∈VJ
∫

S(r0 )
SJ

⋅H(r0 →
r )          SJ = S(′r )d′r


′r ∈VJ
∫
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Forward Fission Matrix Equations    (2)"

•  FI,J  =  next-generation fission neutrons produced in region I, 
"  for each average fission neutron starting in region J     (JI)"

•  In the equation for F,"
–  S(r0)/SJ  is a local weighting function within region J!
–  As  VJ  0:      "

•  S(r0)    SJ / VJ!
•  Discretization errors  0"
•  Can accumulate tallies of FI,J  even if not converged"

•  FI,J   tallies:"
–  Previous  F-matrix  work: !tally during neutron random walks!
–  Present   F-matrix work: !tally only point-to-point,  

" " " "using fission-bank in master proc (~free)"
•  Eliminates excessive communications for parallel!
•  Provides more consistency, FI,J  nonzero only in elements with actual sites!
•  Analog-like treatment, better for preserving overall balance!
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Adjoint Fission Matrix Equations"

•  Segment the physical problem into N disjoint spatial regions"
–  Initial regions:   r0 ∈ VJ,       Final regions:    r ∈ VI!

•  Integrate the adjoint integral fission source equation over r0 & r"

" ""
" "Exact equations for adjoint integral source S†

I"

S†
I = 1

K ⋅ F†
I,J ⋅S†

J
J=1

N

∑

 
F†
I,J = dr

r∈VI
∫ dr0

r0∈VJ
∫

S†(r0 )
S†
J

⋅H(r → r0 )          S†
J = S†(′r )d′r


′r ∈VJ
∫
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Relationship Between Forward & Adjoint Fission Matrix"

•  Compare  FI,J  &  F†
J,I ,   interchange integration order for F†

J,I"

! ! !Same form, but different spatial weighting functions"

•  If the spatial discretization is fine enough that"

"then"

" "For fine spatial mesh,    F†   =  transpose of F"

 

FI,J = dr
r∈VI
∫   dr0

r0∈VJ
∫ ⋅

S(r0 )
SJ

 ⋅ H(r0 →
r )

F†
J,I = dr0

r0∈VJ
∫ dr

r∈VI
∫  ⋅S

†(r )
S†
I

⋅ H(r0 →
r )

 

S(r0 )
SJ VJ

≈1    for r0 ∈VJ          and          
S†(r )
SI VI

≈1    for r ∈VI

F†  =  FT
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Monte Carlo Estimation of Fission Matrix"

Monte Carlo K-effective Calculation"
  1. Start with fission source & k-eff guess"
  2. Repeat until converged:"

•  Simulate neutrons in cycle"
•  Save fission sites for next cycle"
•  Calculate k-eff, renormalize source"

  3. Continue iterating &  tally results"

For Fission Matrix calculation"
  During standard k-eff calculation,  at the end of each cycle:"

•   Estimate  FI,J  tallies from start & end points in fission bank        ( ~ free )"

•   Accumulate  FI,J  tallies,  over all cycles                   (even inactive cycles)"

•   Normalize  FI,J  accumulators,  divide by total sources in J regions"

•   Find eigenvalues/vectors of  F  matrix      (power iteration, with deflation)"
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Fission Matrix Eigenmodes "
& "

Eigenvalue Spectrum"
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Higher Eigenmode Analysis with the Fission Matrix"

•  Run Monte Carlo, get fission matrix, then solve for eigenvalues & 
eigenfunctions"
–  Matlab, if full-storage F matrix can fit in memory!
–  Power iteration with deflation, if sparse-format F matrix required!

–  F is nonsymmetric!
–  Sn is a right eigenvector of F,      S†

n is a left eigenvector of F"
–  Sn  and  S†

m  are biorthogonal"

 


Sn = 1

Kn ⋅F ⋅

Sn             k0 > k1 > k1  ... > kN


S†
n = 1

Kn ⋅F
T ⋅

S†
n                 n = 0,1,...N

(kp − kq ) ⋅ (

Sp ⋅

Sq
† ) = 0
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Whole-core 2D PWR Model"

2D PWR         (Nakagawa & Mori model)"

•  48 1/4  fuel assemblies:"
–  12,738 fuel pins with cladding"
–  1206 1/4  water tubes for  

    control rods or detectors"

•  Each assembly:"
–  Explicit fuel pins & rod channels"
–  17x17 lattice "
–  Enrichments:    2.1%,  2.6%,  3.1%"

•  Dominance ratio  ~  .98"

•  Calculations used whole-core model, 
symmetric quarter-core shown at right"

•  ENDF/B-VII data, continuous-energy"

For numerous other examples, see companion talk at this meeting:"
"Carney, et al, “Fission Matrix Capability for MCNP, Part II – Applications”"
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Fission Matrix Analysis of PWR Model"

•  Next 2 slides:"

–  Spatial mesh for fission matrix: "

•  8 x 8 x 1 mesh per assembly!
•  120 x 120 x 1 overall mesh!
•  14,400 spatial regions"

–  Eigenvalues & eigenfunctions from Matlab:"

•  For this specific fission matrix size of 14,400 x 14,400!
•  Fission matrix has    207 M elements   =   1.6 GB!
•  Use Matlab to get all 14,400 eigenvalues & eigenvectors!

–  Expensive, time-consuming – requires nonsymmetic eigensolver!
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PWR – Eigenmodes for 120x120x1 Spatial Mesh"

n         Kn!
0     1.29480"
1     1.27664"
2     1.27657"
3     1.25476"
4     1.24847"
5     1.24075"
6     1.22160"
7     1.22141"
8     1.19745"
9     1.19743"
10   1.18825"
11   1.18305"
12   1.15619"
13   1.14633"
14   1.14617"
15   1.14584"
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PWR – First 100 Eigenmodes, with More Neutrons"
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Fission Matrix Analysis of PWR Model"

•  Following 2 slides:"

–  Vary the spatial discretization"

–  Find eigenvalue spectrum for each discretization"

–  Examine eigenvalue spectrum vs number of spatial regions"
•  N regions  ⇒  N eigenvalues"
•  For small N,  fewer eigenvalues to represent problem,  inaccurate"

–  As N increases,  spectrum extends & converges smoothly"
•  No anomalies, no oscillations"
•  Provides measure of adequate mesh refinement 

for fission matrix accuracy"
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Eigenvalue Spectra with Varying Meshes"

Real( ki )!

14400!
3600!

900!

225!
100!

25!

N = number of mesh regions"

  ( Fission matrix size = N x N )"

Ki"

i"
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Spectrum Convergence from Mesh Refinement "

   # Mesh Regions           K0"

      5x5         =       25      1.29444"
  10x10       =     100      1.29453"
  15x15       =     225      1.29469"
  30x30       =     900      1.29477"
  60x60       =   3600      1.29479"
120x120     = 14400      1.29480!

K0"

K1"
K2"

K3"
K4"

K5"

K6"K7"

K8"
K9"

For fine-enough spatial mesh,  
eigenvalue spectrum converges"
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Are the Eigenvalues Real or Complex ?"

Real( ki ):"

Imag( ki ):"

5 M neutrons/cycle"
500K neutrons/cycle"

The appearance of complex 
eigenvalues appears to be strictly 
an artifact of  Monte Carlo 
statistical noise"

When more neutrons/cycle are 
used to decrease statistical noise, 
complex components diminish or 
vanish"

The first few 100s or 1000s of 
discrete eigenvalues are real, and 
presumably all would be with 
sufficiently large neutrons/cycle"

120 by 120 Spectrum, Varying  Neutrons/cycle"
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PWR – Inner Products of Forward Eigenmodes"

Inner products of "
forward eigenfunctions"

Strictly, eigenfunctions of the transport equation are bi-orthogonal."
As shown above, forward eigenfunctions are very nearly orthogonal.!
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Conclusions"
&"

Future Work"
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Conclusions"

•  Derived theory underlying fission matrix method"
–  Rigorous Greenʼs function approach, no approximations"
–  Specific conditions on spatial resolution required for fission 

matrix accuracy"
–  If spatial resolution fine enough, adjoint fission matrix identical 

to transpose of forward fission matrix"

•  Applied to realistic continuous-energy MC  analysis of typical 
reactor models. Numerical evidence that:"
–  Infinite set of discrete, real-valued eigenvalues & 

eigenfunctions exist for the integral fission neutron source & 
adjoint"

–  As spatial resolution is refined, eigenvalue spectrum 
converges smoothly"

–  While forward & adjoint are biorthogonal, forward modes are 
very nearly self-adjoint (for reactor-like problems)"
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Future Work"

•  Use fission matrix to accelerate source convergence"
–  Already demonstrated;   very effective;   needs work to automate!

•  Use fission matrix for automatic, on-the-fly determination of 
source convergence"
–  Automate the determination of “inactive cycles”!

•  Use fission matrix to assess problem coverage"
–  Need more neutrons/cycle to get adequate tallies?!

•  Higher modes can be used to reduce/eliminate cycle-to-cycle 
correlation bias in statistics"
–  Replicas & ensemble statistics may be better, for exascale computers!

•  Apply higher-mode analysis to reactor physics problems"
–  Xenon & void stability, slow transients, etc.!
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Questions ?"

See Sean Carneyʼs talk for more "
examples, applications, ideas"


