LA-UR-12-25156

Approved for public release; distribution is unlimited.

Title:	Fission Matrix Capability for MCNP Monte Carlo	
Author(s):	Brown, Forrest B. Carney, Sean E. Kiedrowski, Brian C. Martin, William R.	
Intended for:	NECDC - 2012, 2012-10-22/2012-10-26 (Livermore, California, United States)	

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

NECDC 2012

Fission Matrix Capability for MCNP Monte Carlo

Forrest Brown (LANL), Sean Carney (Michigan), Brian Kiedrowski (LANL), William Martin (Michigan)

Fission Matrix Capability for MCNP Monte Carlo

Forrest Brown, Sean Carney, Brian Kiedrowski, William Martin

We describe the initial experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost during the normal simulation for criticality calculations. It can be used to provide estimates of the fundamental mode fission distribution, the dominance ratio, the eigenvalue spectrum, and higher mode spatial eigenfunctions. It can also be used to accelerate the convergence of the power method iterations and to provide basis functions for higher-order perturbation theory. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. The new fission matrix capabilities provide a significant advance in the state-of-the-art for Monte Carlo criticality calculations.

Monte Carlo K-effective Calculation

- 1. Start with fission source & eigenvalue guess
- 2. Repeat until converged:
 - Simulate neutrons, save fission sites for next cycle
 - Calculate k-eff, renormalize source
- 3. Continue iterating & tally quantities of interest

Transport equation, k-eigenvalue form

$$\begin{split} \mathsf{M} \cdot \Psi(\vec{r},\mathsf{E},\hat{\Omega}) &= \frac{1}{\mathsf{K}} \cdot \frac{\chi(\mathsf{E})}{4\pi} \cdot \mathsf{S}(\vec{r}), \end{split} \begin{aligned} \mathsf{M} \cdot \Psi(\vec{r},\mathsf{E},\hat{\Omega}) &= \hat{\Omega} \cdot \nabla \Psi(\vec{r},\mathsf{E},\hat{\Omega}) + \Sigma_{\mathsf{T}}(\vec{r},\mathsf{E})\Psi(\vec{r},\mathsf{E},\hat{\Omega}) \\ &- \iint \mathsf{d}\mathsf{E}' \,\mathsf{d}\hat{\Omega}'\Sigma_{\mathsf{S}}(\vec{r},\mathsf{E}' \to \mathsf{E},\hat{\Omega}' \to \hat{\Omega})\Psi(\vec{r},\mathsf{E}',\hat{\Omega}'), \end{aligned} \\ \mathsf{S}(\vec{r}) &= \iint \mathsf{d}\mathsf{E}' \,\mathsf{d}\hat{\Omega}' \mathsf{V}\Sigma_{\mathsf{F}}(\vec{r},\mathsf{E}')\Psi(\vec{r},\mathsf{E}',\hat{\Omega}'), \end{split}$$

• Define Green's function & integral transport equation

$$\begin{split} \mathsf{M} \cdot \mathsf{G}(\vec{r}_0,\mathsf{E}_0,\hat{\Omega}_0 \to \vec{r},\mathsf{E},\hat{\Omega}) &= \delta(\vec{r}-\vec{r}_0) \cdot \delta(\mathsf{E}-\mathsf{E}_0) \cdot \delta(\hat{\Omega}-\hat{\Omega}_0), \\ \Psi(\vec{r},\mathsf{E},\hat{\Omega}) &= \frac{1}{\mathsf{K}} \cdot \iiint \mathsf{d}\vec{r}_0 \, \mathsf{d}\mathsf{E}_0 \, \mathsf{d}\hat{\Omega}_0 \, \frac{\chi(\mathsf{E}_0)}{4\pi} \cdot \mathsf{S}(\vec{r}_0) \cdot \mathsf{G}(\vec{r}_0,\mathsf{E}_0,\hat{\Omega}_0 \to \vec{r},\mathsf{E},\hat{\Omega}) \end{split}$$

• Multiply by $v\Sigma_F$, integrate over E, Ω , & initial regions (r_0) & final regions (r)

$$S_{I} = \frac{1}{K} \cdot \sum_{J=1}^{N} F_{I,J} \cdot S_{J} \qquad F_{I,J} = \int_{\vec{r} \in V_{J}} d\vec{r}_{j} \int_{\vec{r}_{j} \in V_{J}} d\vec{r}_{j} \frac{S(\vec{r}_{0})}{S_{J}} \cdot \int \iiint dE d\hat{\Omega} dE_{0} d\hat{\Omega}_{0} \cdot v\Sigma_{F}(\vec{r},E) \cdot \frac{\chi(E_{0})}{4\pi} \cdot G(\vec{r}_{0},E_{0},\hat{\Omega}_{0} \rightarrow \vec{r},E,\hat{\Omega}) \\ S_{J} = \int_{\vec{r}' \in V_{J}} S(\vec{r}') d\vec{r}' = \iiint_{\vec{r}' \in V_{J}} d\vec{r}' dE' d\hat{\Omega}' v\Sigma_{F}(\vec{r}',E') \Psi(\vec{r}',E',\hat{\Omega}'),$$

Exact equations for integral source S_{I} , N = # spatial regions, F is NxN matrix

- $F_{I,J}$ = next-generation fission neutrons produced in region I, for each fission neutron starting in region J (J \rightarrow I)
- In the equation for F,
 - $S(r_0)/S_J$ is a local weighting function within region J
 - As $V_J \rightarrow 0$:
 - $S(r_0)/S_J \rightarrow 1$
 - Discretization errors → 0
 - Can accumulate tallies of F_{I,J} even if not converged

• F_{I,J} tallies:

- Previous F-matrix work: tally during neutron random walks
- Present F-matrix work: tally only point-to-point,

using fission-bank in master proc (~free)

- Eliminates excessive communications for parallel
- Provides more consistency, F_{I,J} nonzero only in elements with actual sites
- Analog-like treatment, better for preserving overall balance

- For a spatial mesh with N regions, F matrix is N x N
 - 100x100x100 mesh → F is $10^6 \times 10^6$, **8 TB** memory
 - In the past, memory storage was always the major limitation for F matrix
- Sparse storage for F matrix
 3D reactor with
 15x15 spatial mesh,
 225x225 F matrix
 - Don't store zero elements
 - Nearest-neighbor scheme to only store "most" contributions
 - In practice, ~ 99.5% of sites is sufficient
 - Reduces F matrix storage, 9 GB for 100x100x100 mesh
 - For now, matrix bandwidth is determined empirically to preserve physics, could readily be automated for future production

- 60 years ago it was proven that:

•

- A single, non-negative, real, fundamental eigenfunction & eigenvalue exist
- 50 years ago it was proven that:
 - If energy dependence is ignored (1-speed or 1-group), then a complete set of self-adjoint, real eigenfunctions & discrete eigenvalues exist
- Nothing else has been proven on structure & properties for energy-dependent form of transport equation
- It is always assumed that higher-mode solutions exist
 - Due to energy dependence, higher modes are **not** orthogonal
 - Energy-dependent transport equation is bi-orthognal, forward & adjoint modes are orthogonal
- In the present work based on the Fission Matrix:
 - We provide empirical evidence that higher modes <u>exist</u>, are <u>real</u>, have <u>discrete</u> eigenvalues, and are very <u>nearly self-adjoint</u> (for reactor-like problems)
 - Approach is similar to Birkhoff's original proof for fundamental mode
 - This has never been done before using continuous-energy Monte Carlo

mcn

 $\mathsf{M} \cdot \Psi(\vec{r},\mathsf{E},\hat{\Omega}) = \frac{1}{\kappa} \cdot \frac{\chi(\mathsf{E})}{4\pi} \cdot \mathsf{S}(\vec{r}),$

LA-UR-12-xxx

Whole-core 2D PWR

Eigenvalue spectrum Spatial Eigenmodes

Whole-core 2D PWR Model

2D PWR (Nakagawa & Mori model)

- 48 1/4 fuel assemblies:
 - 12,738 fuel pins with cladding
 - 1206 1/4 water tubes for control rods or detectors
- Each assembly:
 - Explicit fuel pins & rod channels
 - 17x17 lattice
 - Enrichments: 2.1%, 2.6%, 3.1%
- Dominance ratio ~ .98
- Calculations used whole-core model, symmetric quarter-core shown at right
- ENDF/B-VII data, continuous-energy
- Tally fission rates in each quarter-assembly

PWR – Eigenvalue Spectrum & Fundamental Mode

500 k neutrons / cycle fission matrix tallies for cycles 4-55 Local distance \geq 2 assembly widths

- Fission matrix computed during MCNP k-effective inactive cycles
- Fundamental eigenmode of the fission matrix for a 2D whole-core PWR model, for various spatial meshes used to tally the fission matrix

Eigenvalue Spectra with Varying Meshes

Spectrum Convergence from Mesh Refinement

# Mesh Regions			K ₀
5x5	=	25	1.29444
10x10	=	100	1.29453
15x15	=	225	1.29469
30x30	=	900	1.29477
60x60	=	3600	1.29479
120x120	= 1	4400	1.29480

For fine-enough spatial mesh, eigenvalue spectrum converges

The appearance of complex eigenvalues appears to be strictly an artifact of Monte Carlo statistical noise

When more neutrons/cycle are used to decrease statistical noise, complex components diminish or vanish

The first few 100s or 1000s of discrete eigenvalues are real, and presumably <u>all</u> would be with sufficiently large neutrons/cycle

PWR – First 100 Eigenmodes, with More Neutrons

16

 $\int d\vec{r} \,\psi_n(\vec{r})\psi_m(\vec{r})$ $= \delta_{nm} \ if \ fission \ kernel$ is self adjoint/symmetric

Strictly, eigenfunctions of the transport equation are bi-orthogonal. As shown above, **forward eigenfunctions are very nearly orthogonal**. **MCNP Fission Matrix**

Kord Smith Challenge Problem

3D Whole-Core PWR

Full core, 3D benchmark for assessing MC computer performance

- Specified by Hoogenboom & Martin for OECD/NEA (2010)
- LWR model: 241 assemblies, 264 fuel pins/assembly
- Fuel contains 17 actinides + 16 fission products; borated water
- Detailed 3D MCNP model
 - Mesh tallies for pin powers, (63,624 pins) x (100 axial) = 6.3M pin powers
 - Runs easily on deskside computer (Mac Pro, 2 quad-core, 8 GB memory)

Standard MCNP & the "Kord Smith Challenge"

menp Kord Smith Challenge Eigenvalue Spectrum LA-UR-12-xxxxx 1.2 0.8 0.6 0.4 First 15 eigenvalues for 0.2 21x21x20 and 42x42x20 mesh 0 -0.2L 0.99 21x21x20 1000 2000 3000 4000 5000 6000 7000 8000 9000 42x42x20 21x21x20 mesh entire Real(spectrum) 0.98 0.97 0.96 0.95 0.94

0.93

5

10

15

Eigenfunctions from Fission Matrix

XY plots of eigenfunctions at various Z elevations, 55 cycles with 1 M neutrons/cycle 42x42x20 spatial mesh, 35280x4913 fission matrix Top of Core m**0**6 1000 mode 11 mide 2 rode**3**3 r 0 0 mr 4 4 9.9 1 00 4 mode mode 3 moat 5 mode 1 k=20 k=18 K=2

Bottom of Core

Eigenvalues & Inner Products of Eigenfunctions

42x42x20 spatial mesh, 35280x4913 fission matrix

55 cycles, 1 M neutrons/cycle fission matrix tallies for cycles 4-55

0	0.99919
1	0.98483
2	0.98362
3	0.98469
4	0.96956
5	0.96950
6	0.96693
7	0.96591
8	0.96043
9	0.95671
10	0.95178
11	0.95078
12	0.94524
13	0.94497
14	0.94472

K_n

n

- Fission matrix can be used to accelerate convergence of the MCNP neutron source distribution during inactive cycles
- Very impressive convergence improvement

Spent Fuel Storage Vault

(idealized benchmark)

Loosely-Coupled Problem

Fuel Vault Problem

For this calculation,

- Should discard ~20 cycles if calculating Keff only
- Should discard ~2000 cycles if calculating heating distribution

Real(k_i), i = 1,2,..360

36 semi-coupled assemblies -> Mini-groups of 36 in size

XY Eigenmodes of Fuel Vault Problem, 96 by 12 by 10

XY planes mid-height. Axial shape is sine, #10,13,15 have change in sign in z

Fuel Vault Problem Convergence Acceleration- 200 cycles

It takes ~2,000 cycles for standard MC to converge for this problem,

Using the fission matrix for source convergence acceleration, only ~20 cycles are needed

Advanced Test Reactor

Idaho National Laboratory

Advanced Test Reactor

S. S. Kim, B. G. Schnitztler, et. al., "Serpentine Arrangement of Highly Enrichment Water-Moderated Uranium-Aluminide Fuel Plates Reflected by Beryllium", HEU-MET-THERM-022, Idaho National Laboratory (September 2005).

Matrix structure (50x50 spatial mesh)

Can't use sparse storage

Four matrix columns (100x100 spatial mesh)

ATR - Fundamental Eigenvector, Eigenvalues

Fundamental mode, 100x100 spatial mesh

menp ATR - Eigenmodes (100x100 spatial mesh) LA-UR-12-xxxxx 4 x 10 4 x 10 4 x 10 3 0 0 -2 -2 -**4** 4 4 x 10 x 10 4 _x 10 2 z 2 Λ 0 0 -2 -2 -2

-4 ₫ x 10

0

4

x 10

0

-2

4

x 10

5

п

-5 4

x 10 5

-0

-5

ATR - Fission Matrix Orthogonality

n	K _n	100x100x1 spatial mesh, no sparsification
0	0.99490	55 cycles, 1 M neutrons/cycle
1	0.85630	fission matrix tallies for cycles 4-55
2	0.84612	
3	0.78265	
4	0.64564	1.5 Inner products of eigenfunctions
5	0.55461	
6	0.55207	
7	0.53659	0.5
8	0.47004	
9	0.46173	
10	0.45794	5
11	0.41144	10 10 11 12 13 14 15 10
12	0.32865	15 7 8 ⁹ 10
13	0.29454	20 1 2 3
14	0.28401	
15	0.28327	

- Fission matrix capability has been added to MCNP (R&D for now)
- Tested on variety of real problems (3D, continuous-energy)
- Can obtain fundamental & higher eigenmodes
 - Empirical evidence for existence of higher modes, real, discrete eigenvalues, very nearly orthogonal eigenmodes (for reactor-like problems)
 - Higher eigenmodes are important for BWR void stability, Xenon oscillations, control rod worth, higher-order perturbation theory, intercycle correlation effects on predicting statistics, quasi-static transient analysis, accident behavior, etc., etc.
- Can provide very effective acceleration of source convergence
- Adjoint Fission Matrix can provide source importance, relevant to POI & other calculations