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INTRODUCTION 

 
This summary describes the initial experience and 

results from implementing a fission matrix capability into 
the MCNP Monte Carlo code [1]. The fission matrix is 
obtained at essentially no cost during the normal 
simulation for criticality calculations. It can be used to 
provide estimates of the fundamental mode power 
distribution, the reactor dominance ratio, the eigenvalue 
spectrum, and higher mode spatial eigenfunctions. It can 
also be used to accelerate the convergence of the power 
method iterations. Past difficulties and limitations of the 
fission matrix approach are overcome with a new sparse 
representation of the matrix, permitting much larger and 
more accurate fission matrix representations. 

Continuous-energy Monte Carlo codes simulate 
neutron behavior using the best available nuclear data, 
accurate physics models, and detailed geometry models. 
Reactor criticality calculations for keff and the power 
distribution are carried out iteratively, using the power 
method, where batches of neutrons are simulated for a 
single generation. The first-generation fission neutrons 
produced in a batch become the starting neutron sites for 
the next batch. A suitable number of “inactive” initial 
batches are required to converge to the fundamental mode 
eigenvalue and eigenfunction, and then succeeding 
iterations with “active” batches are used to accumulate 
Monte Carlo tallies for estimating desired reaction rate 
distributions.  

Most Monte Carlo codes perform the power iteration 
without acceleration and can sometimes exhibit very slow 
convergence. Statistical noise for batch results precludes 
the use of common outer iteration acceleration methods 
(e.g., Chebyshev). Also, since production Monte Carlo 
codes restrict neutron statistical weights to be non-
negative,  higher eigenmodes cannot be evaluated directly 
from the Monte Carlo neutron simulation. 

The fission matrix approach was proposed in the 
earliest works on Monte Carlo criticality calculations [2-
5] and has been tried by many researchers over the years. 
The present work takes advantage of the very large 
computer memories available today and a new sparse 
matrix representation to overcome past difficulties. 

  
THEORETICAL BASIS OF THE FISSION MATRIX 

 
The neutron transport equation can be written as 
  M ⋅Ψ(r,E,Ω̂) = 1

K ⋅ χ(E,Ω̂) ⋅S(
r ),  (1) 

where M is the net loss operator defined by 

 
 

M ⋅Ψ(r,E,Ω̂) = Ω̂ ⋅∇Ψ(r,E,Ω̂)+ ΣT(
r,E)Ψ(r,E,Ω̂)

− d ′E d ˆ ′Ω ΣS(
r, ′E →E, ′Ω̂ → Ω̂∫∫ )Ψ(r, ′E , ˆ ′Ω ),

 

S is the fission source, defined by 
 

 
S(r ) = d ′E d ˆ ′Ω νΣF(

r, ′E )Ψ(r, ′E , ˆ ′Ω )∫∫ ,  
and χ  is the emission energy spectrum of fission 
neutrons. All other terms are defined in the usual way. 

The Green’s function for this problem is defined by 
the equation 
  M ⋅G(r,E,Ω̂; r0,E0,Ω̂0 ) = δ(r − r0,E −E0,Ω̂ − Ω̂0 ),  
where the “0” subscript denotes an initial point in phase 
space, and δ is the Dirac delta function. It then follows 
that 

 
 

Ψ(r,E,Ω̂) = 1
K ⋅ dr0 dE0 dΩ̂0∫∫∫ χ(E0,Ω̂0 ) ⋅S(

r0 )

⋅G(r,E,Ω̂; r0,E0,Ω̂0 )
 (2) 

Now perform the following steps on Eq. (2): 1) 
Multiply by  νΣF(

r,E)  and integrate over all E and Ω̂ , 
and 2) segment the problem into N spatial regions, and 
integrate over the volumes of each region I. These steps 
lead to  

 SI = 1
K ⋅ FI,J ⋅SJ

J=1

N

∑  (3) 

where 

 

 

FI,J =
1
SJ

⋅ dr
r∈VI
∫ dr0

r0∈VJ
∫ dEdΩ̂νΣF(

r,E)∫∫
⋅ dE0 dΩ̂0χ(E0,Ω̂0 ) ⋅S(

r0 )∫∫ ⋅G(r,E,Ω̂; r0,E0,Ω̂0 )
 (4) 

The kernel FI,J is equal to the number of fission neutrons 
born in region I due to one average fission neutron 
starting in region J, and is called the fission matrix. The 
fundamental mode eigenvalue of this matrix is identical to 
the eigenvalue K in Eq. (1), and the fundamental mode 
eigenvector is the regionwise fission neutron source 
distribution. 

The elements of the fission matrix can be estimated at 
essentially no extra cost during the normal Monte Carlo 
simulation – simply remember the region a fission 
neutron was born in (J), determine the region a next-
generation fission neutron is produced in (I), and tally the 
(I,J)-th element of the fission matrix. The tallies need to 
be normalized by dividing each (I,J)-th element by the 
total number of starters in region J. Thus, the tallies for 
fission matrix elements can be made using only the 



locations of fission neutron sources at the start and end of 
each batch, without incurring any overhead during the 
random walk simulation of the neutrons. This approach 
also eliminates any inter-process communications 
overhead during MPI parallel processing, since the entire 
fission matrix estimation can be performed on the master 
node, using only the existing “fission bank” information. 

It is also important to note that the fission matrix 
elements can be estimated even during inactive batches in 
the iteration process. That is, fission matrix elements can 
be estimated based solely on fixed-source calculations, 
even without knowing the converged fundamental mode 
distribution. Doing so, however, relies on the assumption 
that the fission matrix elements FI,J are insensitive to the 
local distribution of S(r0) in Eq. 4. With a fine enough 
spatial mesh for tallying the fission matrix, this 
assumption is valid; with a coarse mesh this 
approximation will introduce inaccuracies. This raises the 
prospect of determining the fission matrix during inactive 
batches, assuming a fine-enough spatial resolution, and 
using it to accelerate convergence of the Monte Carlo 
history simulation. 

The principal limitation on the accuracy of the fission 
matrix approach is, and always has been, the size of the 
regions for each fission matrix element. Typically, a 
regular 3D spatial mesh with N = NI x NJ x NK elements is 
used, giving an NxN fission matrix, with N2 entries. A 
100x100x100 spatial mesh would give rise to a fission 
matrix with 1012 elements, which could not be stored even 
on today’s computers.  
 
SPARSE FISSION MATRIX REPRESENTATION 

 
As noted in the Theory section above, the principal 

disadvantage of using a fission matrix is the matrix size, 
which grows as the square of the number of spatial mesh 
regions. For the 60x60x1 mesh case discussed above, the 
fission matrix requires about 0.1 GB of memory storage. 
Extending this case to 100 axial mesh increments would 
increase the storage requirements to about 1000 GB, 
which is excessive.  

To overcome this limitation, we are investigating the 
use of a sparse fission matrix. Clearly, not every region in 
a large 3D problem is tightly coupled to every other 
region; fission neutrons induce most further fissions in 
neighboring regions, and few or none in distant regions. 
To investigate this, we have incorporated tallies into 
MCNP to diagnose the fractions of induced fission 
neutrons in neighboring regions, and have examined the 
structure of the fission matrix for a typical 2D PWR 
problem. Fig. 1 shows the structure of the fission matrix 
for the 15x15x1 mesh case, where each mesh element 
corresponds to an assembly-sized region. It is evident 
from the banded structure of the fission matrix that 
neutrons from one assembly cause nearly all of their 
fissions in that assembly and the nearest 2 neighboring 

assemblies in each direction. Only about 0.5% of the 
fission matrix tallies correspond to more distant fissions. 
Thus, storing a sparse, banded fission matrix (rather than 
the full matrix) offers a promising mechanism for 
mitigating the storage problem. Of course, as the spatial 
mesh is refined, more neighbor bands will need to be 
retained. For the testing described below, we have used 
the sparse fission matrix representation, with the number 
of bands in the matrix chosen to include spatial regions 
corresponding to the nearest 2 neighboring assemblies in 
each direction. That is, for a 15x15x1 spatial mesh, the 
fission matrix sparse storage is 225x25 elements, rather 
than the full 225x225 elements. For the 30x30x1 mesh, 
the sparse matrix representation is 900x81; for the 
60x60x1 mesh, the matrix is 3600x289. Additionally, the 
very few tallies outside of the matrix bands were 
accumulated in the nearest banded fission matrix element 
in order to preserve overall neutron balance. 
 
INITIAL TESTING RESULTS 

 
The fission matrix capability was implemented in a 

local version of MCNP5, with both full and sparse matrix 
representations. All of the testing results described below 
were accomplished using a 2D whole-core PWR model 
shown in Fig. 2 (previously used in [6], based on [7]) with 
ENDF/B-VII.0 continuous-energy nuclear data. The 
fission matrix was accumulated during standard KCODE 
calculations with 500K neutrons/batch. Tallies for the 
fission matrix elements were made only for the 4th and 
successive batches. keff, the fundamental mode 
eigenfunction, and the dominance ratio  from the fission 
matrix were determined via an iterative method. Higher-

 
 
Fig. 1. Fission matrix structure for a 2D whole-core 

PWR model, for a 15 x 15 x 1 spatial mesh. Matrix 
dimensions are 225 x 225. Points in blue are non-
zero elements of the fission matrix. 



mode eigenvalues and eigenfunctions for the fission 
matrix were determined by either a direct non-symmetric 
matrix routine or by using Matlab. 

Fig 3. shows the fundamental mode eigenfunction for 
various spatial resolutions used in tallying the fission 
matrix. Note that the 15x15x1 mesh corresponds to 
assembly-size elements, the 30x30x1 mesh corresponds to 
quarter-assembly-size elements, and the 60x60x1 mesh 
corresponds to 1/16th-assembly-size elements. The 

10x10x1 mesh does not match assembly geometry, and is 
shown as an example of a poor choice of meshes. 

Fig. 4 shows the eigenvalue spectra for various 
choices of spatial resolution in determining the fission 
matrix. All of the eigenvalues are shown  for the first 2 
cases (25 or 100), and only the first 200 for the others. 
Conventional intuition suggests that all eigenvalues of the 
fission matrix should be real and discrete. Because the 
fission matrix is non-symmetric, complex eigenvalues can 
arise, and indeed are evident in the anomalous low values 
in the spectra plots for the 5x5x1 and 10x10x1 cases. 
(Only the real parts of the eigenvalues are plotted in Fig. 
4. The anomalous low values correspond to the 
eigenvalues having a complex component.) For the 
15x15x1 case, the first 40 eigenvalues are well-behaved, 
and complex eigenvalues only appear for the much higher 
modes. It appears that complex eigenvalues only arise if 
the spatial mesh for tallying the fission matrix is too 
coarse, and/or statistical noise from the Monte Carlo 
tallies leads to non-physical solutions for the eigenvalue 
solution. The 30x30x1 and 60x60x1 cases each behave as 
expected, and it is evident from the figure that at least the 
lowest-mode portion of the spectrum converges as the 
spatial mesh is refined. 

Fig. 5 shows the fundamental eigenmode (i.e., the 
fission neutron source distribution) and 11 higher 
eigenmodes for the 60x60x1 mesh case. These plots are 
especially interesting, since the higher eigenmodes cannot 
normally be obtained directly from a Monte Carlo 
calculation. The 1st and 2nd higher modes show a slight tilt 
that is being investigated. It may be a result of incomplete 
convergence that was not apparent from standard 
diagnostics of the problem convergence, an artifact of 
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Fig. 3. Fundamental eigenmode of the fission matrix for 

a 2D whole-core PWR model, for various spatial 
meshes used to tally the fission matrix.  

 

 
 
Fig. 4. Eigenvalue spectrum of the fission matrix for a 2D 

whole-core PWR model, for various spatial 
resolutions.  

              
 

Fig. 2.  2D quarter-core PWR model, with detail shown 
for the center 1/4-assembly. For the current work, 
a whole-core model was used. 
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either tallying or plotting, or the effect of statistical noise 
on the eigenmode calculation. 
 
WORK IN PROGRESS 
 

We are also investigating the use of the fission matrix 
to accelerate the power method convergence of Monte 
Carlo criticality calculations. Because the fission matrix 
can be determined accurately with only a few batches 
during the inactive portion of the calculation, the 
fundamental eigenmode can be used to bias the fission 
neutron source, forcing the source distribution based on 
Monte Carlo histories to converge more quickly. Initial 
testing of this method is encouraging, and further study 
and development are in progress. 

 
SUMMARY & CONCLUSIONS 

 
Initial implementation and testing of a fission matrix 

capability in MCNP5 has demonstrated that the method 
can be used to obtain interesting and valuable information 
for reactor physics analysis, including the higher mode 
eigenvalues and eigenfunctions. The fission matrix 
approach is well-founded in theory, does not significantly 
increase the cost of standard Monte Carlo criticality 
calculations, and does not significantly increase code 
complexity. The accuracy of the method improves as the 
spatial mesh is refined. Detailed 2D representations are 
performed easily on today’s computers, and a sparse 
fission matrix representation is being investigated to 
permit scaling to detailed 3D problems. 
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Fig. 5. Fundamental and higher eigenmodes for 2D whole-core PWR model obtained from a fission matrix using a 

60x60x1 spatial mesh. Sparse matrix size was 3600x17. 


