
Form 836 (7/06) 

LA-UR- 
Approved for public release;  
distribution is unlimited. 

 
 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Title:  

Author(s):  

Intended for:  

12-00577

Evaluation of Computing c-Eigenvalues with Monte Carlo

Brian C. Kiedrowski

2012 ANS Annual Meeting
June 24-28, 2012
Chicago, IL



Evaluation of Computing c-Eigenvalues with Monte Carlo

Brian C. Kiedrowski

Los Alamos National Laboratory, P.O. Box 1663 MS A143, Los Alamos, NM 87545,

bckiedro@lanl.gov

INTRODUCTION

Typically, criticality is determined by the computation
of a system’s k-eigenvalue that is the ratio of the produc-
tion of fission neutrons to the losses from capture and leak-
age. Alternative eigenvalues exist, but are usually com-
puted only for specialized applications. The second most
commonly computed eigenvalue is the α-eigenvalue that
measures how much of a 1/v (v is the neutron speed) ab-
sorber must be inserted to achieve criticality; this eigen-
value is often used quasi-static analysis of transients be-
cause it arises from the separation of time from the other
dimensions of phase space.

Another eigenvalue, which is used for theoretical stud-
ies but very rarely used for applications, is the c-eigenvalue
(sometimes this is referred to as the γ-eigenvalue) that is
the ratio of production of secondaries from all sources (fis-
sion, scattering, n,xn) to losses. This eigenvalue was pro-
posed by Davison [1], and has been studied theoretically by
Sahni and others [2]. Ronen, et. al. [3] also showed for fast
plutonium systems that the c-eigenvalue may be less sen-
sitive to distortions in the energy spectrum when a system
departs from criticality.

There is, perhaps, some motivation to study the c-
eigenvalue for continuous energy. The ability to calculate
of the c-eigenvalue is implemented in a research version
of MCNP6 [4] and validated with some simple problems.
Preliminary results show that the c-eigenvalue is often less
variant and is sometimes computed more efficiently than
the k-eigenvalue. Since the c- and k-eigenvalue equations
are identical at criticality, the c-eigenvalue may be a more
efficient quantity to use for criticality searches.

METHOD

Eigenvalue Equations

The c-eigenvalue relation is derived in a very similar
fashion to that of the k-eigenvalue. The time derivative in
the neutron transport equation is arbitrarily set to zero, and,
to balance the equation, an artificial factor is applied some-
where. The formulation of the k-eigenvalue form of the
neutron transport equation is

(L + T − S)ψk =
1
k

Fψk. (1)

Here ψk is the neutron angular flux or k-eigenfunctions,
and the operators are L for leakage, T for collision, S for
emergence of neutrons from scattering or multiplicity reac-
tions, and F for fission. The c-eigenvalue equation is very
similar except that an artificial factor of 1/c is applied to
both the scattering and fission terms as

(L + T )ψc =
1
c
(S + F )ψc. (2)

By solving for k or c, physical meanings of the eigenvalues
as being ratios of production from either fission (for k) or
fission plus scatter (for c) to the losses from leakage and ab-
sorption. Like with k, the criticality condition for c is such
that c = 1 denotes a critical system, c < 1 is subcritical,
and c > 1 is supercritical. The off-critical values of k and
c differ, as do their corresponding eigenfunctions – there is
no known general relationship between the eigenfunctions.
Note that, unlike k, c (like α) is defined for configurations
with no fissile material.

Iterative Method Adaptation

Both the k- and c-eigenvalue equations have terms
on the left- and right-hand sides of the equations that are
treated differently in terms of an iterative scheme. The
terms on the right-hand side are assumed to be known for
the duration of the iteration, and a solution to the function
ψ on the left-hand side is desired. Mathematically, the c-
eigenvalue equation for an iteration (denoted by superscript
(n)) is

(L + T )ψ(n+1)
c =

1
c(n)

(S + F )ψ(n)
c . (3)

Formally, the operators of the equation are inverted such
that a new value of the eigenfunction is obtained. This “in-
version” can be done via solving the equation via numer-
ical techniques or direct simulation by Monte Carlo. For
the latter, the terms on the right-hand side define the source
neutrons for the iteration and the terms on the left are sim-
ulated via particle transport. To compute a new estimate
of the right-hand side, tallies or estimators are employed
during the particle transport.

In the familiar k-eigenvalue equation, neutron stream-
ing (L), collisions (T ), and scattering (S) are simulated via
transport with particles obtained from the fission source. A
new estimate of k and the fission source are obtained by
some combination of track-length or reaction-rate estima-
tors; in the case of MCNP, k is obtained by a combination



of track-length, collision, and absorption estimators and the
fission source is obtained via a collision estimator of fission
neutron production.

The analogous simulation for the c-eigenvalue is a
straightforward modification. Within an iteration, the only
physics simulated is streaming and collisions. The source
now consists of neutrons that arise from both scatter-
ing and fission, which is obtained from estimators. The
reaction-rate multiplier for the estimators is the macro-
scopic secondary-production “cross section” ΣP that is de-
fined as

ΣP = νΣf +
∞�

x=1

xΣn,xn, (4)

where ν is the average number of neutrons per fission, Σf is
the macroscopic fission cross section, x is the multiplicity
of the reaction, and Σn,xn is the macroscopic multiplicity
reaction cross section where x = 1 is the sum of the elastic
and inelastic scatter cross sections. For the moment, only
collision estimators are used for the estimators of c and the
secondary-neutron source.

Algorithm Description

The algorithm for computing c is very similar to that of
computing k. Prior to the calculation, the user must specify
an initial guess for c, define an initial source, and provide
the total weight of each iteration M . M source neutrons are
generated from this source guess with weight w of unity,
and neutrons are followed until they either leak out of the
system or have a collision. When a neutron has a collision,
ΣP is calculated, and an estimate for secondary production
P is made:

P =
wΣP

Σt
, (5)

where Σt is the total cross section for the material. The
estimate of the eigenfunction is done by banking (the po-
sition, energy, and direction arising from the collision are
recorded) some number of neutrons B given by

B =
�

P

c
+ ξ

�
, (6)

where the c used is either the initial guess or the estimate
from the previous iteration and ξ is a uniform random vari-
able from zero to one. The nuclide for computing outgoing
energies and directions is selected based on a histogram
of ratios of ΣP for each isotope to the total ΣP for the
material, and collision mechanics is performed according
to randomly selected nuclear reactions. Once all histories
within the iteration are run, the banked secondary neutrons
become the new source for the next iteration. The statistical
weight w is adjusted such that each particle has the same
weight and the total weight sums to M .

With the new source, the process repeats until some
user defined cutoff is reached. Like with k-eigenvalue cal-
culations, since the secondary-production source is typi-
cally unknown, some iterations must be spent reaching a
converged secondary-production source. Once the con-
verged source is reached, since all that is available is a ran-
dom realization of it, additional iterations must be done to
converge mean values of any desired responses such as c-
eigenvalue. In the MCNP parlance, the iterations for source
convergence are referred to as inactive cycles, and the iter-
ations for statistical convergence of responses are the active
cycles.

VERIFICATION & TESTING

Analytic Verification

To show that the method and implementation in
MCNP is correct, c is computed for very simple systems
where an analytic result may be obtained. Test case 1 is a
critical (k = c = 1) bare sphere of one-group plutonium-
239, which is test problem 8 in Ref. [5]. Test case 2 is
an two-group infinite medium problem with cross sections
given in Table I and all neutrons are produced in group 1.
The value for c = (7 +

√
145)/24 ≈ 0.79340). Results

from MCNP agree to five decimal digits of accuracy.

Table I. Cross sections (cm−1) for test case 2.

g Σt Σc Σf ν Σg→1 Σg→2

1 4 1 0 – 1 2

2 6 3 1 3 0 2

Eigenvalue Convergence

The eigenvalue trend must be converged before it may
be tallied. Convergence of the eigenfunction must also be
completed before any other responses may be tallied, but
for now, the attention is solely on the eigenvalue. The
method for c differs from k in that only one path to collision
is sampled per history, as opposed to following the neutron
over potentially many collisions until it causes fission or is
removed by leakage or capture. Because less transport is
done per iteration, convergence of c is expected to require
more iterations than for k.

To test convergence, test problem consisting of a 3× 2
array of cans of plutonium-nitrate solution from Sec. 5.2 of
the MCNP Criticality Primer [6] is used. Source neutrons
begin in the center of one of the corner cans at an energy of
1 MeV, which is not a very good initial guess, but it makes
convergence trends more apparent. The c-eigenvalue as a
function of iteration with a curve fit is given in Fig. 1, and
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Fig. 1. Convergence of c-eigenvalue for the array of pluto-
nium nitrate solution cans.

it shows that about 150 iterations are required for conver-
gence of the trend. The convergence in k for an equivalent
calculation takes about 20 iterations. In terms of wall-clock
time, it takes 4.7 minutes for convergence in c and 1.6 min-
utes for convergence in k (for M = 10,000). Placing a
source point in each of the six cans (energy still 1 MeV)
halves the time for convergence of the eigenvalues. This
relatively large difference in time required suggests that c

is more sensitive to spatial and spectral departures from the
fundamental mode than k, and a good starting guess in both
space and energy for a c-eigenvalue calculation is more im-
portant for efficient convergence.

The value of c computed for this system using 300
active iterations with M = 100,000 is 0.99852(3); the
value of k with the same number of iterations and M is
0.98792(59). As expected c and k are different; however,
the statistical uncertainty for the same number of histories
in k is about twenty times higher than that of c. This finding
is discussed in greater detail later.

Neutrons in Thermal Equilibrium

The c-eigenvalue, unlike k, is defined for systems with
no fission. The steady eigenfunction solution for ψc is a
system of neutrons in thermal equilibrium with its medium
– neutrons that are lost are replaced on average by the am-
plification factor of 1/c each collision. For continuous-
energy Monte Carlo, the effect of upscatter is captured via
either free-gas or S(α, β) scattering laws in the collision
mechanics.

A test of this feature in a c-eigenvalue calculation is
performed by evaluating a system with no fissionable ma-
terial. The test problem used is a sphere of water at 1.0
g/cc with a diameter of 5 cm. Two cases are run: the first
is with only free-gas scattering, and the second includes
the S(α, β) scattering law for hydrogen bonded to a water

molecule.
The value of c for the free-gas case is 0.84430(6), and

is 0.94568(3) with S(α, β). This makes sense as the effect
of S(α, β) increases the elastic scattering cross section of
hydrogen, so more secondary neutrons should be produced
relative to the loss rate of neutrons from leakage or capture.
The spectra for both cases show a stable Maxwellian shape;
had no upscattering treatment been included, the neutrons
would downscatter to zero energy.

EIGENVALUE CALCULATION EFFICIENCY

In the convergence test case for a 3 × 2 array of cans
of plutonium nitrate solution, the c-eigenvalue estimation
is less variant than that for the k-eigenvalue. A standard
metric for assessing efficiency of a Monte Carlo calculation
is the Figure of Merit:

FOM =
1

R2τ
. (7)

Here R is the relative uncertainty of the response and τ is
the computation time during the active cycles. The draw-
back of the FOM is that it does not take into account time
spent in the inactive iterations, which is an added cost onto
a calculation that will generally be higher for c than will be
for k. Nonetheless, this serves as a crude way to compare
the efficiency of computing the eigenvalues. Since the val-
ues of the FOM depend on the speed of the computer used
to run the problem, the ratio of the FOMs for c and k is
perhaps more relevant; this ratio is called the gain G.

The test cases used are (1) a beryllium-reflected sphere
of highly-enriched uranium [7], (2) the 3 × 2 array of cans
discussed previously, (3) and a 3-D full core pressurized
water reactor (PWR) [8]. For each case, the following is
computed: k, c, the wall-clock time (in minutes) of inac-
tive cycles required for each eigenvalue (Wk and Wc re-
spectively), and the gain G; these results are given in Table
II. All calculations are run sequentially to ensure consistent
timing, use M = 10,000 and 200 active iterations. Initial
source guesses are chosen in accordance with the best prac-
tices for criticality calculations [9].

In all cases, the gain G is greater than one, implying
that during the active iterations c is estimated more effi-
ciently than k. This is not to say, however, that it is nec-
essarily faster to compute c because, in all cases, it takes

Table II. Performance data for three test cases.
case k Wk c Wc G

1 0.9955(4) 0.3 0.9954(3) 0.8 3.1

2 0.9866(7) 0.8 0.9989(1) 2.4 15.2

3 0.9992(5) 3.4 0.9986(1) 7.4 51.4



more wall-clock time to converge the trend in the eigen-
value before active iterations may even start. It appears
that the biggest gains for using c are for systems with a
significant amount of scattering, where the PWR (case 3)
has the largest gains of the three. This suggests the pos-
sibility that, if the convergence of test case 3 is typical of
PWRs, the c-eigenvalue may be a possible alternative for
criticality searches for reactor applications. Note that, as
for the eigenvalues themselves, cases 1 and 3 appear to have
matching k and c, whereas case 2 has a difference of over
0.01.

CONCLUSIONS & OUTLOOK

The c-eigenvalue can be computed via Monte Carlo
using a straightforward modification of the k-eigenvalue it-
eration procedure. The MCNP6 implementation produces
results that match analytic solutions for multigroup and ex-
pected behavior for continuous energy. The c-eigenvalue
typically takes longer to converge than the k-eigenvalue,
but, once converged, it can be evaluated more efficiently
(for the test problems presented). The case with the great-
est gain in efficiency is a 3-D, full core PWR, which sug-
gests the c-eigenvalue may be useful for doing criticality
searches on these types of systems.

Issues still remain open. First, it is not entirely clear
what applications the c-eigenvalue is useful for, and it is
likely k will remain the quantity of interest for fields such
as criticality safety, since k deals directly with the addition
and removal of fissile material, reflectors, etc. Nonetheless,
since both are the same at criticality, there may be advan-
tages to employing c over k. For instance, claims by Ronen,
et. al, about greater spectral preservation away from criti-
cality warrants further investigation, as it may be possible
to obtain more accurate estimates of the neutron spectrum
for the critical configuration despite the fact that the model
indicates the system is not critical. Furthermore, the issue
of convergence of the c-eigenfunction and how it may be
assessed or accelerated remains an open topic, especially
considering energy (and possibly directional) dependence
seems important.
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