LA-UR-11-05868

Approved for public release; distribution is unlimited.

ī

Title:	MCNP6 Delayed Neutron Emission Validation with Experimental Measurements
Author(s):	Madison Sellers, Tim Goorley Los Alamos National Laboratory
	Emily Corcoran, Davbid Kelley, RMC
Intended for:	

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

MCNP6 Delayed Neutron Emission Validation with Experimental Measurements

Presented by: Madison Sellers

Supervisors: Dr. Tim Goorley, LANL Dr. Emily Corcoran, RMC Dr. David Kelly, RMC LA-UR 11-05868

October 11 2011

Overview

- Introduction, Background & Theory
- Experimentation
- MCNP6 Model
- Results & Discussion
- Conclusions

The Delayed Neutron Counting System

- Constructed in 2010
- Validated for ²³⁵U analysis, aqueous samples
- Current experiments include ²³³U samples
- Expanding analysis to include ²³⁹Pu analysis and mixtures of two or more fissile isotopes
- Winter 2011/2012 will be updated with new hardware to increase sensitivity and efficiency

Delayed Neutron Generation

Many delayed neutron precursors

Group	t _{1/2} [s]	λ [s-1]	$\beta_i = \nu_i / \nu_{d[\%]}$		
1	55.6	0.014267	0.0328 ± 0.0042		
2	24.5	0.028292	0.1539 ± 0.0068		
3	16.3	0.042524	0.091 ± 0.009		
4	5.21	0.133042	0.197 ± 0.023		
5	2.37	0.292467	0.3308 ± 0.0066		
6	1.04	0.666488	0.0906 ± 0.0046		
7	0.424	1.634781	0.0812 ± 0.0016		
8	0.198	3.554600	0.0229 ± 0.0095		

Introduction

Delayed Neutron Generation

Eight (or 6) groups, denoted by $t_{1/2}$ and production ratio

Introduction

Delayed Neutron Generation

Production ratios dictated by fission fragment yields

7

*Li X, Henkelmann R, Baumgartner F (2004) Nucl Instrum Methods Phys Res B 215:246–251

Count Rate / (cps)

Conclusions

Sample Preparation

Conclusions

The Delayed Neutron Counting System Procedure

The SLOWPOKE-2 Reactor

20 kW research reactor enriched to 19.89%

Delayed Neutron Counting Arrangement

Hardware & Software Control

The Fissile Analysis Program

• Imports count excel file:

SLOWPOKE Test Data				
11/04/2011	11:47:49 AM			
Standard? YES				
Sample #	Cycle	Time	Counts	Total Counts
1	А	1.015625	1863	79306
		1.546875	1821	
		2.0625	1759	
		2.59375	1691	

- Corrects for background, dead time, normalizes to counts per second
- Outputs fissile (U-235) content in µg

Fissile Analysis Program Output

MCNP6 Geometry

Visual Editor

MCNP6 Input Deck Summary

Visual Editor

• tme = 0 -60e8 sh

- Sample is exposed to defined neutron flux
- DN activity builds
- tme = 60e8 180e8 sh
 - F8 tallies record delayed neutron activity

MS8 Describe the INPUT DECK

Madison, 10/11/2011

³He Detectors & System Efficiency

- F8 tallies (pulses) in active zone of detector
- User-defined delayed neutron energies and temporal behaviour using 8-group model

$$S(t)_{j} = m_{j} \frac{\varepsilon v_{j} N_{A} \sigma_{jj} \Phi}{M_{j}} \sum_{i=1}^{8} \beta_{ij} (1 - e^{-\lambda_{i} t_{irr}}) (e^{-\lambda_{i} t_{d}}) (e^{-\lambda_{i} t})$$

- Experimental Efficiency: 34 ± 5%
- MCNP6 Efficiency: 37%

Conclusions

Detector Wall Effects – Experimental Measurements

Conclusions

Detector Wall Effects

S(a,B) for Paraffin & Aqueous Solution

Molecular binding and crystalline effects are important at low neutron energies

Introduction

Conclusions

Neutron Flux Estimate in SLOWPOKE-2

- 69 Group Energy Spectrum from K. Khattab, I. Sulieman, (2010, Syrian MNSR)
- Magnitude of flux determined experimentally in DNC irradiation site

Neutron Flux & DN Behavior

Temporal DN Behavior

28

Experimental Measurements & MCNP6

Irradiation Duration

CINDER vs. ACE Model

MCNP6 Initial Release Notes:

PHYS:N EMAX EMCNF IUNR DNB unused* FISNU COILF CUTN

DNB =delayed neutron control

-1001 Analog delayed neutrons from ACE tables (if available, otherwise from CINDER tables)

-101 Analog delayed neutrons from CINDER only

-1 Analog delayed neutrons from ACE tables only

o No delayed neutrons produced

1-15 biased number of neutrons produced per fission.

101-115 Biased number of delayed neutrons from CINDER tables

1001-1015 Biased number of delayed neutrons from ACE tables, otherwise from CINDER tables

CINDER vs. ACE Model

MCNP6 Initial Release Notes:

PHY	S:N EMAX	EMCNF	IUNR	DNB	unused*	FISNU	COILF	CUTN
			K		Z			
			-1001		-101			
		_			V	-		
			ACE		CINDER	JE	FF [*]	
	Prompt	n	11992		11990			
	Delayed	n	60		96			
	Weight Pron	npt n	1.52e-5		1.52e-5	1.	.58e-5	
	Weight Delay	yed n	7.61e-8		1.22e-7	1.	.06e-7	

Un-normalized Comparisons – ^{235}U (±1 σ)

Future Work

- Continued DNC experimentation and MCNP6 modeling
 - Longer Count Times
 - Plutonium-239 & Uranium-233
 - Mixtures of multiple fissile isotopes
- Delayed Gamma Emission from Special Nuclear Materials
 - System to be built at RMC late 2011/2012
 - To be modeled in MCNP
- Work to be presented and submitted to ANS Conference in 2012

Thank you

Un-normalized Comparisons – ²³⁵U

²³⁸U Fission Contributions

- Used epi/thermal ratio from Andrews thesis
- Account for flux, delayed neutron production, isotopic composition of U samples
- Determined that for natural U < 0.001% of DN recorded are from the fission of ²³⁸U

²³⁸U Fission Contributions

- Samples contain identical amounts of ²³⁵U
- DU sample has ~1.35x the ratio of ²³⁸U to ²³⁵U
- Appears to have no effect on the magnitude of the count rate curve

Fission Fragment Yield & Delayed Neutron Precursors

Introduction

System Reproducibility – Natural Uranium

Introduction Ba	ckground & Theory	Experimental	Results & Discussion	Conclusion	ns & Recommendations
System s		ple Actua Mass	l ²³⁵ U DNC Syste (μg) Determinat	em ²³⁵ U tion (μg)	Relative Error
Validati	on – 1	5.52 ±	0.06 5.3 ±	0.2	-3.45%
Depleted		5.56 ±	0.06 5.3 ±	0.2	-5.35%
Depie	3	5.50 ±	0.06 5.3 ±	0.2	-3.01%
Uranii	um 4	5.56 ±	0.06 5.3 ±	0.2	-4.32%
	5	5.53 ±	0.06 5.3 ±	0.2	-4.78%
	6	5.62 ±	0.06 5.4 ±	0.2	-4.45%
Rolativo Error 7		5.59 ±	0.06 5.4 ±	0.2	-4.24%
-3.6% 8		5.53 ±	0.06 5.3 ±	0.2	-4.47%
Actual ²³⁵ U mass	Total Solution	Experiment	al Relative Error		
(µg)	Mass (g)	Mass (g)	(%)		
1.54 ± 0.04	0.290 ± 0.003	1.5 ± 0.1	-3.2		
1.54 ± 0.04	0.379 ± 0.003	1.5 ± 0.1	-3.2	Erre	or independent
1.54 ± 0.04	0.568 ± 0.003	1.5 ± 0.1	-2.6	of	solution nitric
1.55 ± 0.04	0.660 ± 0.003	1.6 ± 0.1	-0.6	acid	solution volume
1.53 ± 0.04	0.819 ± 0.003	1.5 ± 0.1	-3.9		
1.46 ± 0.04	0.738 ± 0.003	1.5 ± 0.1	-1.4		
1.59 ± 0.04	0.943 ± 0.003	1.5 ± 0.1	-3.8		42

Determining ²³⁵U Content

Actual 235 U Content / (µg)