LA-UR-11-02817

Approved for public release; distribution is unlimited.

Title:	MCNP Monte Carlo & Parallel Computing
Author(s):	Forrest B. Brown
Intended for:	UNM Workshop on Monte Carlo for Particle Therapy Treatment Planning, University of New Mexico, Albuquerque NM,
	May 16-18, 2011

.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

University of New Mexico Workshop on Monte Carlo for Particle Therapy Treatment Planning, 16-18 May 2011

LA-UR-11-02817

MCNP Monte Carlo & & Parallel Computing

Forrest Brown

Monte Carlo Codes, XCP-3 Los Alamos National Laboratory

University of New Mexico Workshop on Monte Carlo for Particle Therapy Treatment Planning, 16-18 May 2011

LA-UR-11-02817

MCNP Monte Carlo & Parallel Computing

Forrest Brown, Monte Carlo Codes, LANL

MCNP is a general purpose Monte Carlo particle transport code developed at Los Alamos National Laboratory over the past 30+ years. The most recent production versions, MCNP5 and MCNPX, have been merged into MCNP6. MCNP6 provides very general capabilities for modeling geometry, defining particle sources, tallying a wide variety of physical phenomena, high fidelity representation of collision physics, variance reduction techniques, and criticality calculations. MCNP6 will track 32 different types of particles over a wide range of energies, including neutrons, photons, electrons, protons, muons, etc., plus heavy ions.

MCNP has a wide range of capabilities which make it useful for medical physics calculations. These abilities span its geometry representation, physics models, and source, tally and variance reduction capabilities. This talk reviews the history and capabilities of MCNP, and provides numerous examples of MCNP applications to medical physics and proton radiography experiments. Because all applications of Monte Carlo methods are limited by computer speeds, present and planned MCNP capabilities for parallel computation are also reviewed.

MCNP Monte Carlo & Parallel Computing

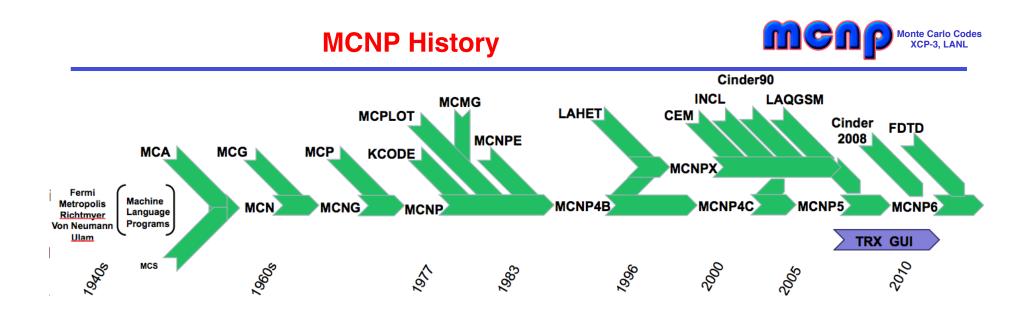
• MCNP

- History & Overview
- Applications General
- Applications Medical Physics
- MCNP6 Capabilities & Status
- Applications Proton Radiography

Parallel Computing

- Hierarchical Parallelism
- Parallel Scaling MPI & Threading
- Future New Approach for Exascale

MCNP Monte Carlo Code


- General purpose Monte Carlo N-Particle radiation transport code.
 MCNP5 & MCNPX → MCNP6
- Tracks 32 different kinds of particles

Neutrons, photons, electrons, protons, muons, etc., plus heavy ions.

• Standard features that make MCNP versatile and easy to use include:

- A powerful general source, criticality source, and surface source
- Both geometry and output tally plotters
- Many variance reduction techniques
- A flexible tally structure
- An extensive collection of cross-section data
- 3D general geometry
- PC, Mac, Linux, Unix, Sun support
- Parallel (MPI + threads)
- 350K+ lines of code
- Extensive verification / validation

- 400+ person-years development
- 10,000+ users world wide
- 15,000+ reference citations
- Distributed by RSICC code center
- Export controlled

Monte Carlo transport of particles

- MCNP5 neutrons, photons, electrons
- MCNPX neutrons, photons, electrons + many more particles & ions
- MCNP6 merged code + more, 2011 beta, 2012 full release
- For 30+ years, MCNP & its data libraries have been supported by the Monte Carlo team at LANL
 - Roots of MCNP go directly back to von Neumann, et al.
 - Continuous development, support, R&D, V&V

Detailed models of geometry & physics

- General 3D combinatorial geometry
- Repeated structures
- Lattice geometries
- Geometry, cross section, tally plotting
- ENDF/B-VII physics interaction data

Calculate nearly any physical quantity

- Flux & current
- Energy & charge deposition
- Heating & reaction rates
- **Response functions**
- Mesh tallies & radiography images
- K-effective, β_{eff} , η
- Fission distributions

Unique features for criticality calc's

- Shannon entropy of the fission source for assessing convergence
- Dominance ratio, k_1 / k_0
- Stochastic geometry
- Isotopic changes with burnup (mcnpx)
- Wielandt acceleration (soon)

> 10,000 users around the world

- Fission and fusion reactor design
- Nuclear criticality safety
- Radiation shielding
- Waste storage/disposal
- Detector design and analysis
- Nuclear well logging
- Health physics & dosimetry
- Medical physics and radiotherapy
- Transmutation, activation, & burnup
- Aerospace applications
- Decontamination & decommissioning
- Nuclear safeguards

Portable to any computer

- Windows, Linux, Mac, Unix
- Multicore, clusters, netbooks, ASC, ...
- Parallel, scalable MPI + threads
- Built-in plotting

Support

- Extensive V&V against experiments
- Web site, user groups, email forum
- Classes 1 week, 6x / year

- Stockpile Stewardship
 - Criticality Safety
 - Radiography
- Nuclear regulation
 - Verify requests from NRC & industry
- Nuclear reactor design & analysis
 - Reactor physics analysis
 - Verification/validation
- Threat reduction
 - Urban consequences
- Non-proliferation
 - Reactor actinide inventories
 - Portal monitors
 - Active interrogation
 - Detectable Quantities of materials

- Medical & health physics
 - Shielding design
 - Radiology, radiation therapy
 - Treatment planning
- Proton radiography simulation, for beams in the GeV range
 - Experiments
 - Simulation
- Benchmarking & data testing
 - ENDF/B-VII data testing,
- Parallel calculations
 - ASC teraflop systems
 - Linux clusters
- Others...
 - Fukushima reactor accident
 - Oil well logging tool design
 - Semiconductor radiation damage
 - Radiography for BP oil well damage

Nuclear Regulatory Commission Use of MCNP

Criticality Safety:

 To assess the criticality safety of licensed facilities that handle fissionable materials.

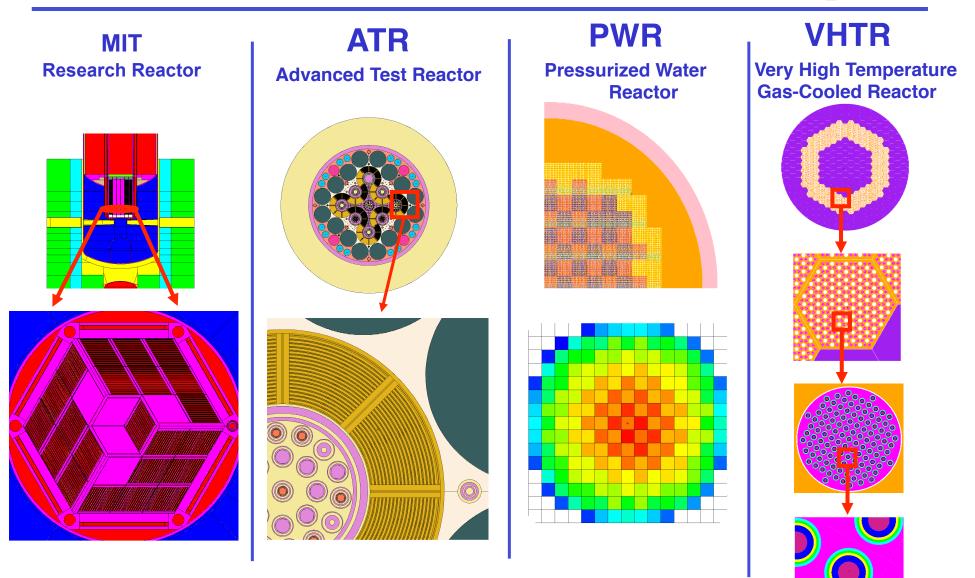
Radiation Shielding:

- To benchmark other shielding and dose calculation computer codes and methods used by NRC staff.
- To verify licensees' shielding and dosimetry calculations.

Radiation Dosimetry:

<u>men</u>

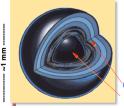
Monte Carlo Codes XCP-3, LANL

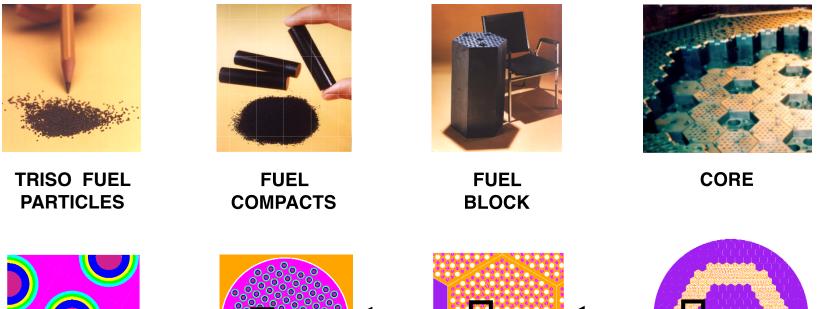

- Assess planned and unplanned worker radiation exposures.
- Assess public exposure from planned licensing actions.

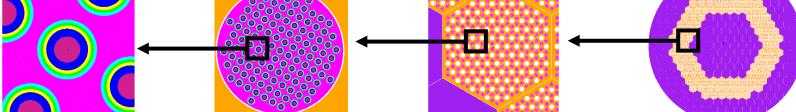
Medical:

To understand the radiation safety implications of using radiation in medical diagnosis and treatments.

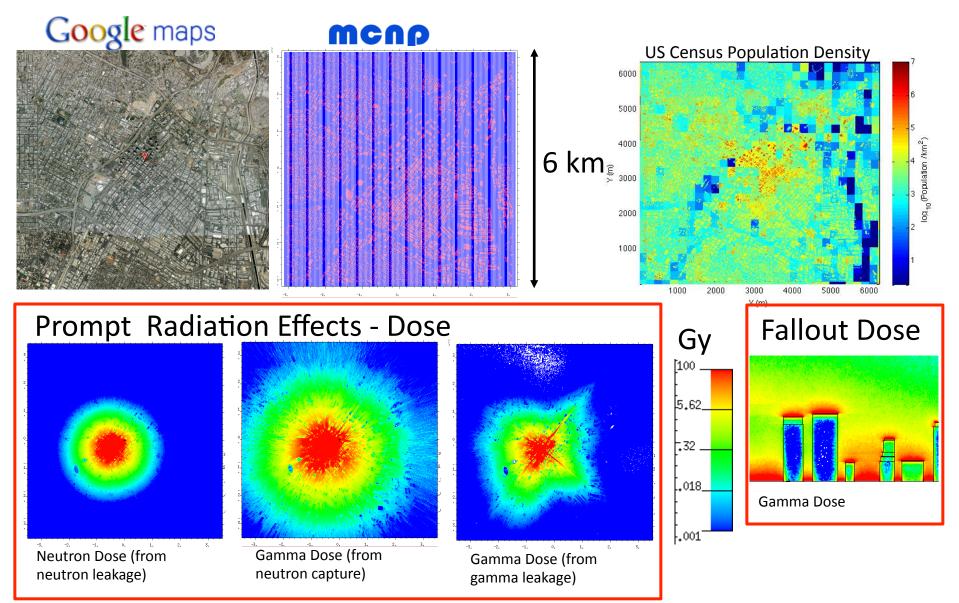
MCNP = Benchmark for Nuclear Reactor Design codes




- Accurate & explicit modeling at multiple levels
- Accurate continuous-energy physics & data

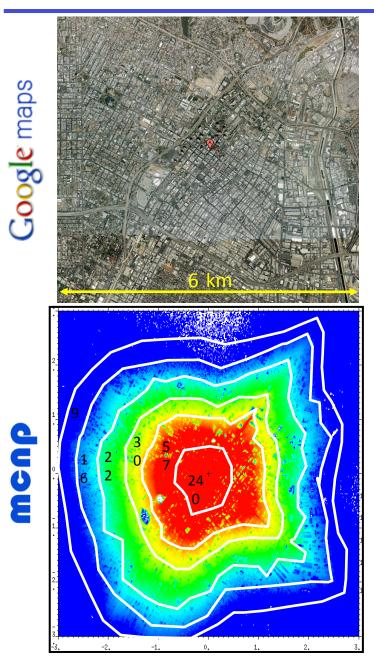

Advanced Reactor Design - VHTR, HTGR, ...

Ceramic Coatings Fuel Kernel



MCNP model - accurate & explicit at multiple levels

Analysis of IND Dose Effects



Dose contours from a 20 kT Little Boy device in downtown LA

Analysis of IND Circuit Effects

- Surface burst of Fat Man ~ 10 kT
- White contours: electric field strength in kV/m
- Circuit failure expected above 10 kV/m
- Color scale: photon flux

g Flux g cm³

+10

1000000000

10000000

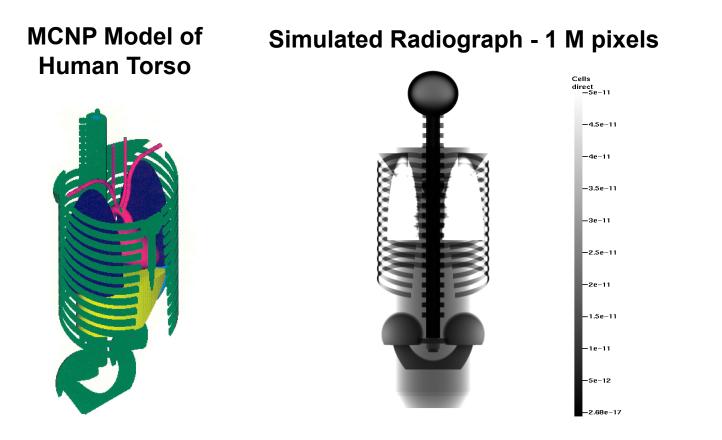
1000000

 Note 4 orders of magnitude decrease in underlying photon flux

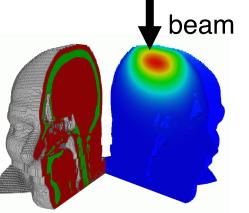
The results presented here are based on source region simulation levels from MCNP. This is part of the LANL EMP start-up project's goal of incorporating first physics principle source region calculations.



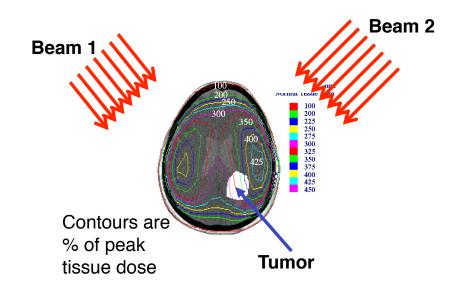
Some real examples, not all-inclusive:


- External Radiation Source Design
 - Optimize filter materials thickness to get optimum energy, angle and spatial characteristics.
- Shielding Design
 - Analyze shielding to minimize staff radiation dose & determine construction costs.
 - Investigate skyshine & calculate build up factors
- Radiation Detection
 - Investigate scattering in design of CT machines
- Dose reconstruction
 - Dose received after event
 - Dose to various organs from internal radiation exposure
- Treatment Planning
 - Determine optimum radiation beams
- Evaluate proposed forms of radiation therapy

Radiography Calculations

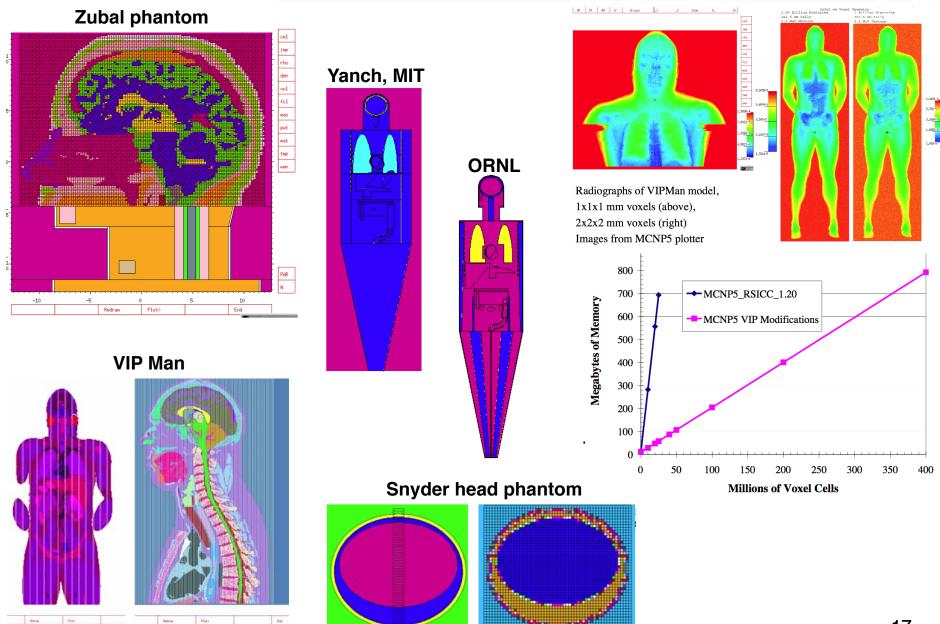


- Neutron and photon radiography uses a grid of point detectors (pixels)
- Each source and collision event contributes to all pixels



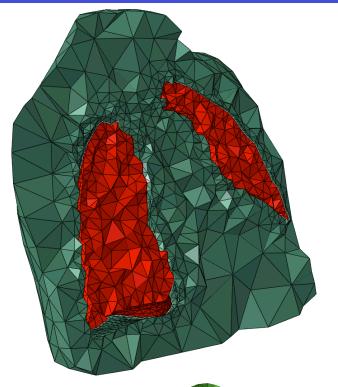
Treatment Planning with MCNP

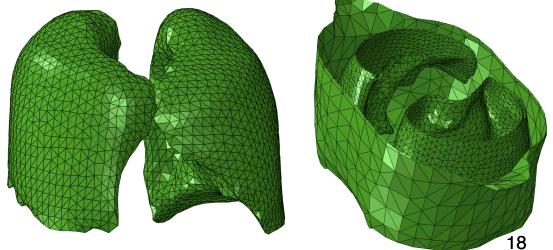
- MCNP is used to calculate dose distributions throughout a target region from different radiation beam orientations.
- Post processing programs are then used to (perhaps) combine different beams to maximize dose to tumor while minimizing dose to surrounding healthy tissue. These programs usually overlay the dose contours over patient specific CT images.
- While the peak tumor and tissue dose are usually based on in-phantom dose rate measurements, the simulation is necessary to determine more advanced parameters, such as the dose volume histogram.



CT Based geometries are possible to represent in MCNP

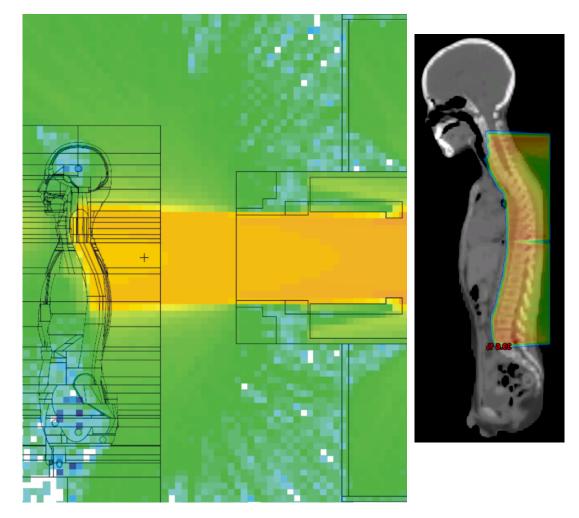
Medical Physics – Phantoms & Voxel Models




Medical Physics - Treatment Planning

• MCNP6

- 3D unstructured mesh
- Embedded in 3D MCNP geometry
- Many applications
 - Radiation treatment planning
 - Linkage to Abaqus
- Under development


MCNP is widely used for radiation cancer therapy research Monte Carlo Codes XCP-3, LANL

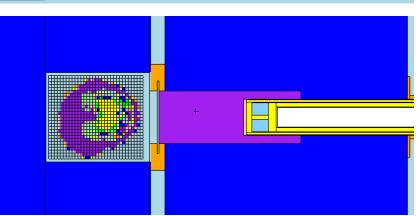
The code is ideally suited for use in medical applications because of the accuracy of its physics models, the unique set of clinically relevant features, and the responsive support provided by the developers and the user community.

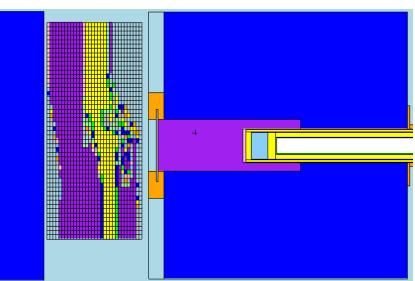
We used MCNPX to verify the Mass General Hospital Proton Center, and this information has gone into the design of the MDACC proton center and others, which are used to treat > 5K people a year.

Wayne Newhauser, Ph. D. Dept of Radiation Physics

proton fluence and dose contours (arb units)

20

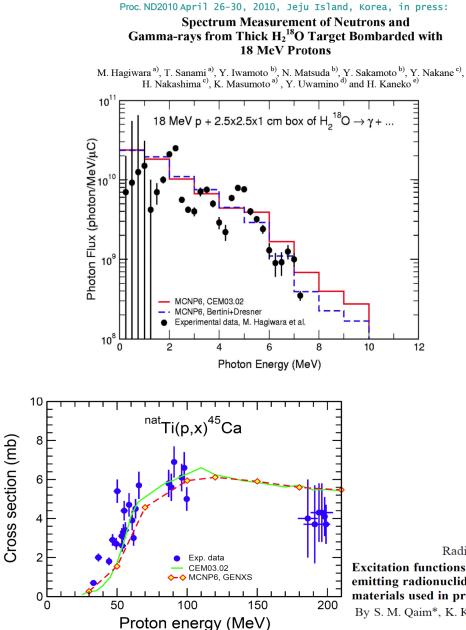

Medical Physics - Dose Calculations

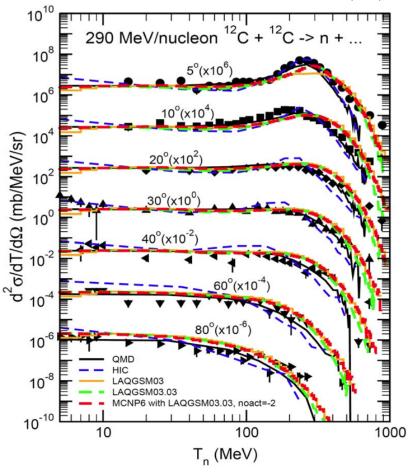

- Patient-CT based model of knee
 & end of accelerator
- Calculate dose throughout knee
- Study impact of moderating/ shielding materials & B¹⁰ conc. in knee
- Need other code to determine neutron production in accelerator target

J. R. Albritton, "Analysis of the SERA treatment planning system and its use in boron neutron capture synovectomy," M. S. thesis, Massachusetts Institute of Technology, 2001.

Gierga DP, Yanch JC, Shefer RE, "An investigation of the feasibility of gadolinium for neutron capture synovectomy", Med Phys. 2000 Jul;27(7):1685-92.

Pictures from mcnp plotter





Proton & Carbon Therapy Applications

Experimental data are from: Y. Iwata et al., Phys. Rev. C64 (2001) 054609; QMD, HIC, and LAQGSM03 results are from: H. Iwase et al., AIP 769 (2005) 1066

Radiochim. Acta 98, 447–457 (2010)

Excitation functions of nuclear reactions leading to the soft-radiation emitting radionuclides ⁴⁵Ca, ⁴⁹V and ²⁰⁴Tl in beam collimator materials used in proton therapy

By S. M. Qaim*, K. Kettern, Yu. N. Shubin+, S. Sudár# and H. H. Coenen

References

High energy transport in MCNPX & MCNP6 have been validated & used in proton therapy for a variety of clinical and research applications, see, e.g.:

- M. R. James et al., NIM A562 (206) 819
- J. D. Fontenot et al., Med. Phys. 34 (2007) 489
- M. C. Harvey et al., Med. Phys. 35 (2008) 2243
- J. Herault et al., Med. Phys. 35 (2008) 2243
- W.D. Newhauser et al., Phys. Med. Biol. 52 (2007) 4569
- J. C. Polf et al., Med. Phys. 34 (2007) 4219
- P. J. Taddei et al., Phys. Med. Biol. 53 (2008)
 2131
- Y. Zheng et al., J. Nucl. Mater. 361 (2007) 298
- T. Urban and J. Kluson, PNST10136 (2010)

Low-energy transport code MCNP5 has been validated & even more widely used in a variety of medical applications, see, e.g.:

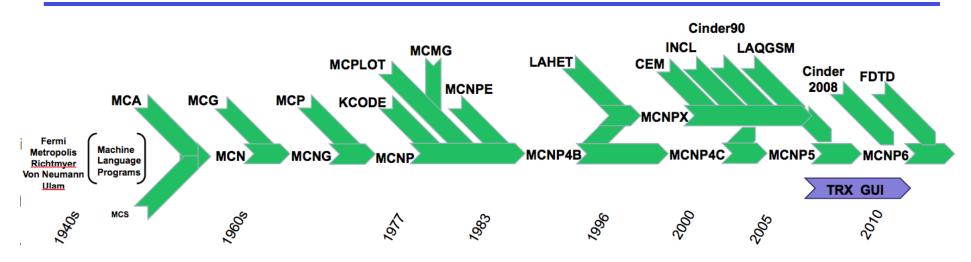
- J. T. Goorley et al., LANL Report LA-UR-02-7205
- T. Goorley and D. Olsher, LA-UR-05-2755
- A. Lazarine and T. Goorley LANL Reports LA-UR-05-4598,LA-UR-05-6402, and LA-UR-06-4904
- A. L. Reed, LA-UR-10-4133
- I. Gerardy et al., J. Phys.: Conf. Ser. 102 (2008) 012012
- J. Zhang et al., Health Phys. 91 (2006) S59
- I. Gerardy, Appl. Rad. Isot. 68 (2010) 735
- Y.J. Huang and M. Blough, J. Appl. Clinic. Med. Phys.,11 (2010) 46
- H. G. Hughes and J. T. Goorley, LA-UR-10-05424 (2010)

Distributed with MCNP:

Medical Physics Calculations With MCNP: A Primer,

A.L. Reed, LA-UR-07-4133, Los Alamos (2007)

Resources: mostly code intercomparisons, but some benchmarks


- Computing Radiation Dosimetry CRD 2002 (published by OECD) http://www.oecdbookshop.org
- QUADOS European lead Code Intercomparison (2003)
 http://www.oecd-nea.org/download/quados/quados.html
- EURADOS & CONRAD (EU intercomparison) (Active & Ongoing) http://www.eurados.org
- American Nuclear Society Computational Medical Physics Working Group (Active & Ongoing) http://cmpwg.ans.org/

MCNP6 Status

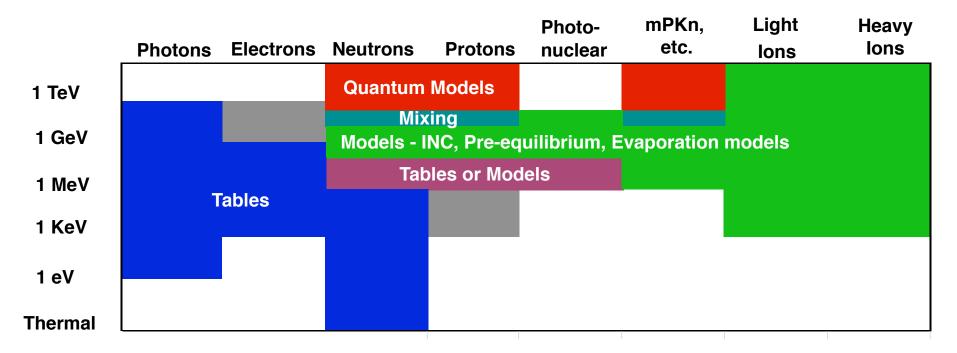
MCNP6 Beta Release

- MCNP6 beta release sent to RSICC for a limited set of beta testers
- MCNP6 full release by RSICC expected in 2012
- Culminates 5 years of effort combining all features of MCNPX-2.7.0 into MCNP5
- Both MCNP5 & MCNPX are now frozen future development will occur in MCNP6

The LANL MCNP6 team has more than 12 full time and 5 part time staff working on the following:

- Improved Physics
 - Incorporate new INCL, add delta rays, improve stopping power, add Rutherford scattering, allow particle to pick up charge as they slow down
- Improved Software parallelism
 - to be able to utilize >10K processors w/ mpi, R&D into Cray Fortran
- Improved Delayed Particle Emissions
 - · better energy and angle correlations, beta and alpha emissions
- Efforts for EMP
 - Adding Electric Fields, Improved magnetic fields, specialized tallies
- Integration of Unstructured Mesh
 - · work with weight windows mesh, charged particle tracking
- Optical Light
 - · refraction, reflection, Cherenkov radiation
- Moving Objects
 - Realistic simulation of moving vehicles
- Sensitivity and Uncertainty
- Automatic Weight Windows Generation
 - from SN calculations LANL's PARTISN.

• Incorporates other codes as libraries:


– LAHET	high energy transport	LANL
– CEM	high energy transport	LANL
– LAQGSM	high energy transport	LANL
– CINDER	unstable nuclei database	LANL
– ITS	electron transport	SNL
– MARS	high energy transport	FNAL
– HETC	high energy transport	ORNL

Utilizes Nuclear and Atomic Data

- LANL, LLNL, BNL, EU, Japan
- Large energy range (eV 100s of GeV)

• MCNP is physics rich – try to use best data, models, & theory

Recent physics improvements include:

- Photon induced fission multiplicity
- Characteristic muonic X-rays
- Exact delayed gamma emissions
- Visible light
- Improved photoatomic form factors
- Upgrades to CEM & LAQGSM 3.03
- GEF photofission yield

- MCNP6 contains:
 - MCNP6 = development version of MCNP at LANL, since 2004
 - Includes:
 - All MCNP5-1.60 capabilities (mpi + threads)
 - High energy protons & magnetic fields, for proton radiography
 - All MCNPX 2.7.D capabilities (mpi)
 - CINDER 2010 decay & depletion
 - Unstructured mesh, for linking with ABAQUS
 - Structured mesh, for linking with PARTISN
 - Adjoint-weighted perturbation estimators
- MCNP6 in (very) limited beta release to outside LANL
 - Recipients are active collaborators and sponsors
 - Full beta access within LANL and LLNL

MCNP6 Status

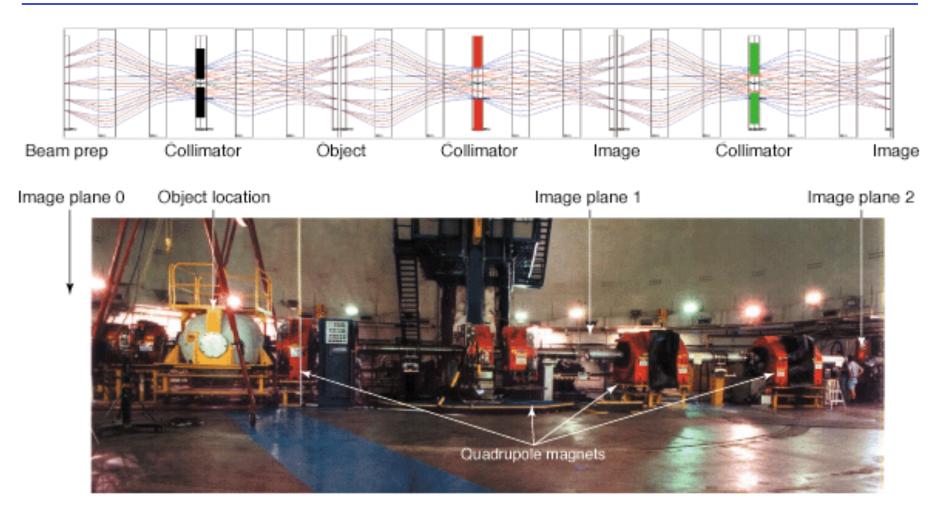
- Active Validation Efforts
 - Comparisons with experiments included in test suites
 - High energy proton, heavy ion interactions
 - Delayed photon and neutron spectra
 - Subcritical multiplication
 - Expanded criticality suite (119 problems)
 - Perturbation verification suite
 - Kobayashi benchmarks streaming through ducts & voids
 - Reactor kinetics parameter benchmarks
 - Production / depletion (CINDER) soon
- Nightly Regression Test suites
 - 3 platforms (Linux 32, Linux 64, Windows 64)
 - 5 compilers (Intel 10+11, PGI 7, Pathscale 3, gfortran)
 - Serial, mpi, omp, mip+omp
 - Array bounds checking
 - 875 problem input files
 - Total: 10,000 runs each night

- MCNP & MCNPX teams have adopted MCNP6 as the base for all future development
- To go from Beta release to Production release:
 - Assurance of reliability and accuracy for criticality
 - Assurance of reliability and accuracy for other apps
 - Comparable performance
 - Complete documentation
- Future Work
 - Cleanup coding style
 - Remove duplicate features
 - Extend parallel threading capability to new features
 - New Features

General release through RSICC

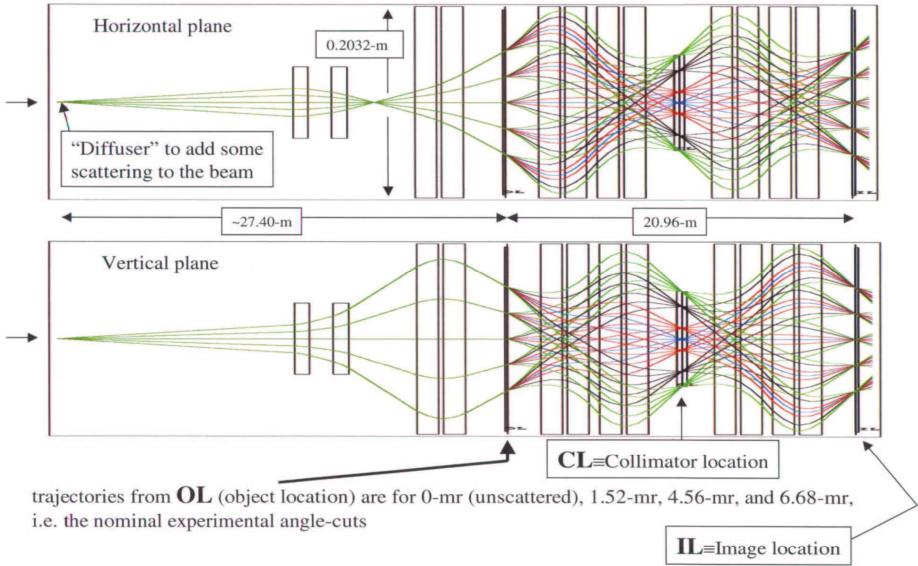
- 2012

Proton Radiography

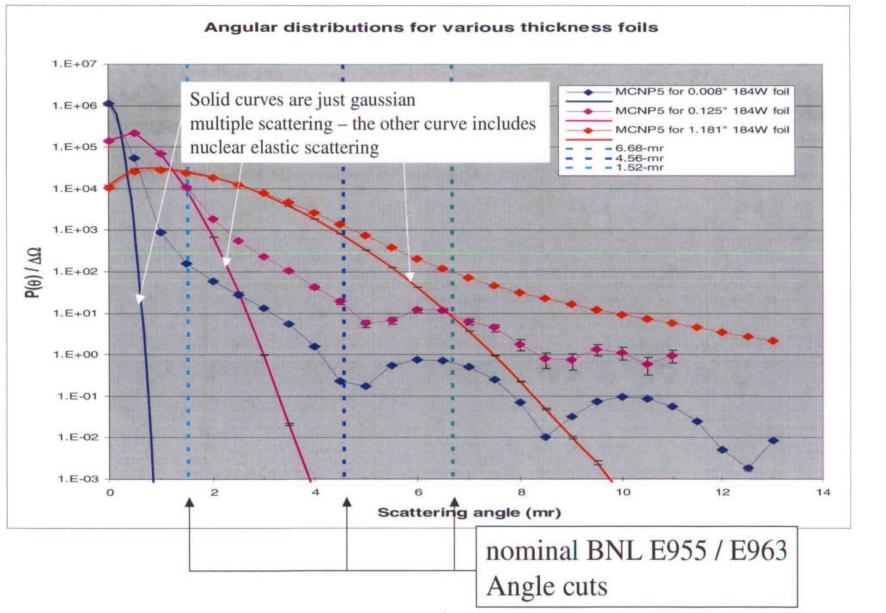

Richard Prael, Grady Hughes, John Zumbro, John Sarracino, Jeff Bull, Lon-Chang Liu, Stepan Mashnik, Arnold Sierk, Forrest Brown, Tim Goorley, Jeremy Sweezy, Robert Little, Morgan White, Elizabeth Selcow, Nikolai Mokhov (FNAL), Sergei Striganov (FNAL), Konstantin Gudima (Acad. Sci. Moldova)

- For many experiments being conducted now at LANL & BNL, high-energy proton beams are directed at test objects to produce radiographic images
 - LANL: 800 MeV proton beams
 - BNL: 24 GeV proton beams
 - Proposed: 50 GeV proton beams
- Proton beams are collimated & focused by magnetic lenses
- Both the design of the experiments & analysis of results are carried out using MCNP6, the latest LANL development version of MCNP
 - All MCNP5 features plus:
 - Continuous-energy proton physics up to 50 GeV
 - Models for multiple Coulomb scatter, nuclear elastic scatter, etc.
 - Direct tracking of protons through magnetic fields
 - COSY-map tracking of protons through magnetic fields
 - Many additional particle types being added to account for background

Proton Radiography

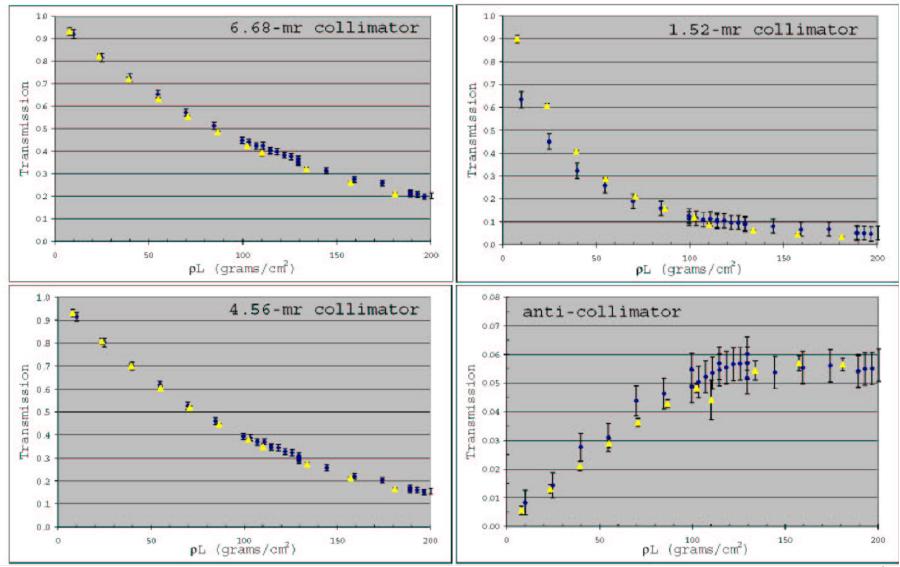


Explosive proton radiography experiments are conducted at the Los Alamos Neutron Science Center facility. In these experiments, a proton beam traveling inside a tube penetrates a target placed in a spherical vessel (left) to contain the explosion. Quadrupole magnets (orange) focus the scattered protons onto imaging detectors. This particular setup uses three imaging stations, including one installed in front of the target to examine the profile of the incoming proton beam. Collimators are located inside the beam tube.



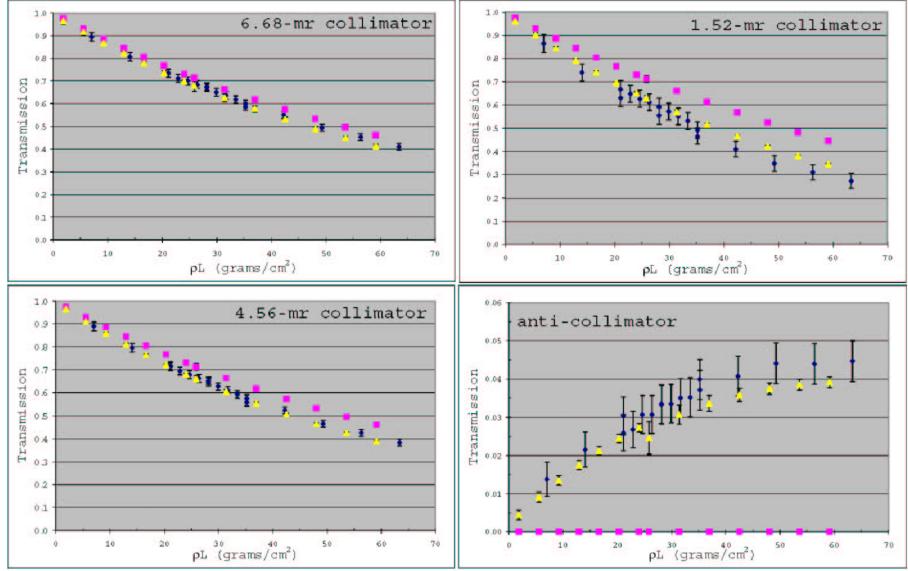
Nominal trajectories for BNL AGS E955 / E963 beamline

MCNP6 Simulation

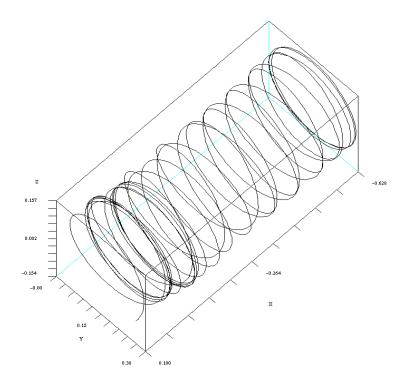


Brookhaven Experiments

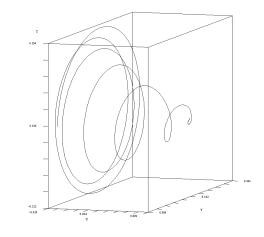
Iron target:

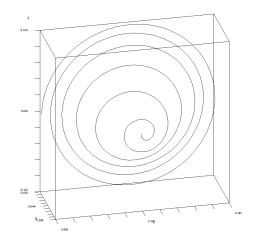

Blue = data, Yellow = MCNP6 simulation.

Brookhaven Experiments



Proton Radiography



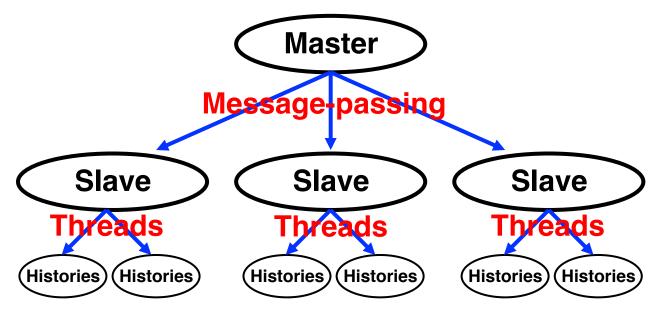

Proton in Air & Constant B Field

No Energy Straggling

With Energy Straggling

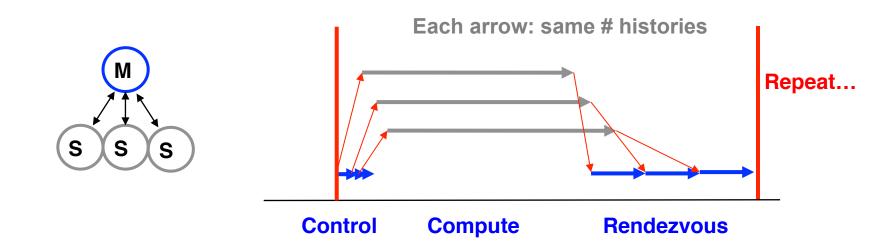
Parallel Monte Carlo

•	Commodity chips					
	 Microprocessor speed 	\rightarrow	~2x gain / 18 months			
	 Memory size 	\rightarrow	~2x gain / 18 months			
	 Memory latency 	\rightarrow	~ no change (getting worse)			
•	High-end scientific computing					
	 Key driver (or limit) 	<i>→</i>	 economics: mass production of desktop PCs & commercial servers power: reduced energy usage for very large parallel clusters 			
	 Architecture 	<i>→</i>	clusters : with small/moderate number of commodity microprocessors on each node multicore: multiple CPUs per processor permits threading within each node processor			
•	Operating systems					
	 Desktop & server 	\rightarrow	Windows, Linux			
	 Supercomputers 	\rightarrow	Unix, Linux			

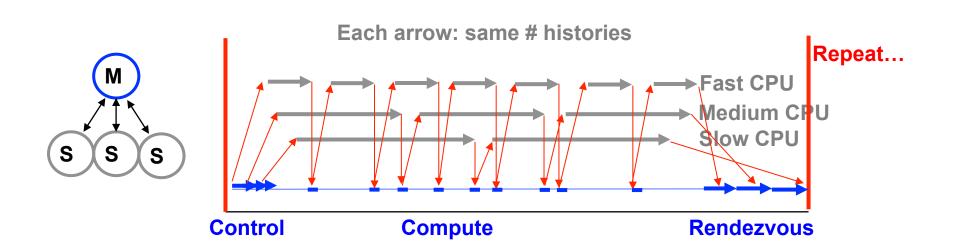

CPU performance on supercomputer -> same as desktop PC

High-performance scientific computing → parallel computing

• For clustered SMPs,


- Use message-passing to distribute work among slaves ("boxes")
- Use threading to distribute histories among individual processors on box

- Only the master thread on each slave uses MPI send/recv's
- Threads on each slave share memory

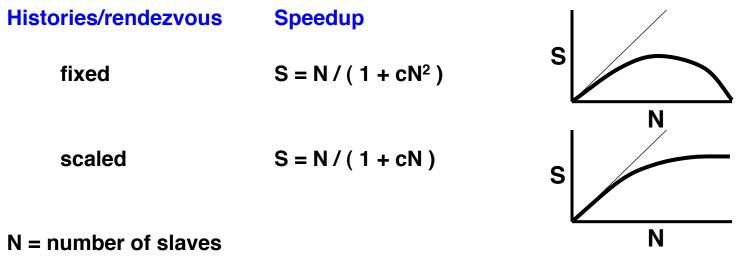

Simplified Master/Slave MPI Scheme

- For efficiency, want (compute time) >> (rendezvous time)
 - Compute time: Proportional to #histories/task
 - Rendezvous time: Depends on amount of tally data & latency+bandwidth for message-passing

MCNP – With Load Balancing & Fault Tolerance

- Load balancing: Self-scheduling of histories on slaves
- Fault tolerance: Periodic rendezvous to save restart files
- Parallel efficiency: [compute time] / [compute + rendezvous time]

ncn


Monte Carlo Codes

XCP-3 I AN

• Scaling models, for master/slave with serial rendezvous

- "fixed" = constant number of histories/rendezvous, M (constant work)
- "scaled" = M histories/slave per rendezvous, NM total (constant time)

 $c = (s + L/r) / T_1$

 $T_1 \sim M$,more histories/rendezvous \rightarrow larger T_1 , smaller cS+L/r,fixed, determined by number of tallies,

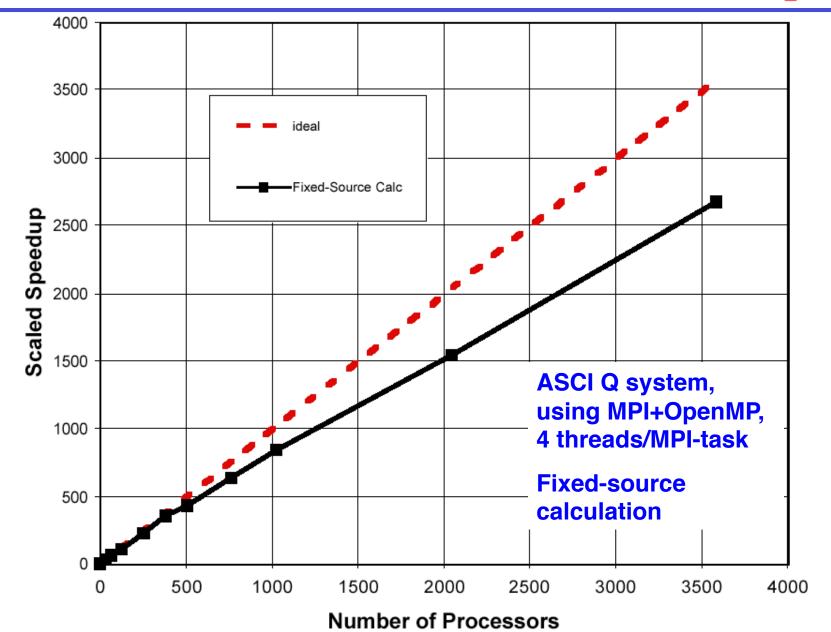
As $M \rightarrow infinity, c \rightarrow 0, S \rightarrow N$ (limit for 1 rendezvous)

DOE Advanced Simulation & Computing – ASC

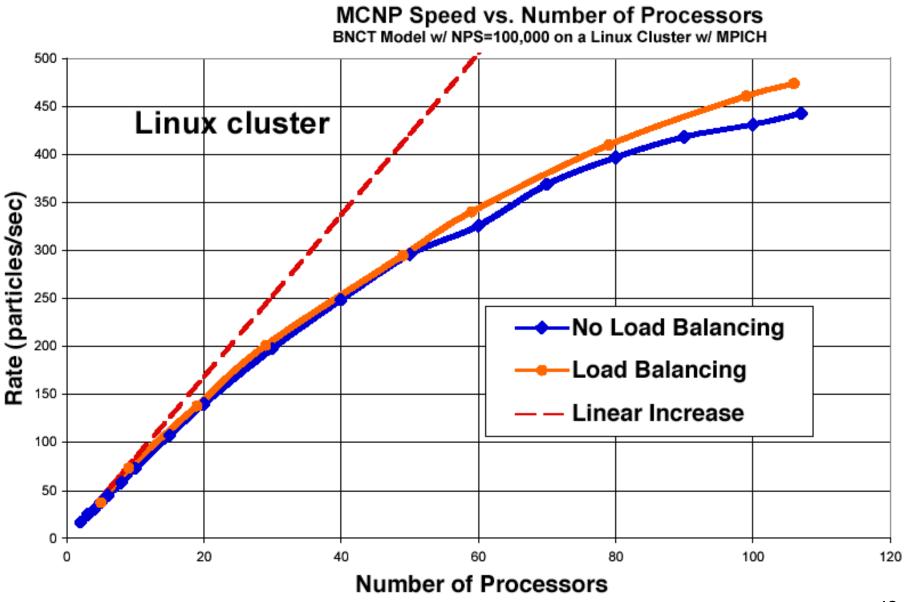
Blue Mountain – 3 TeraOps (R.I.P.)

Q – 20 TeraOps (R.I.P.)

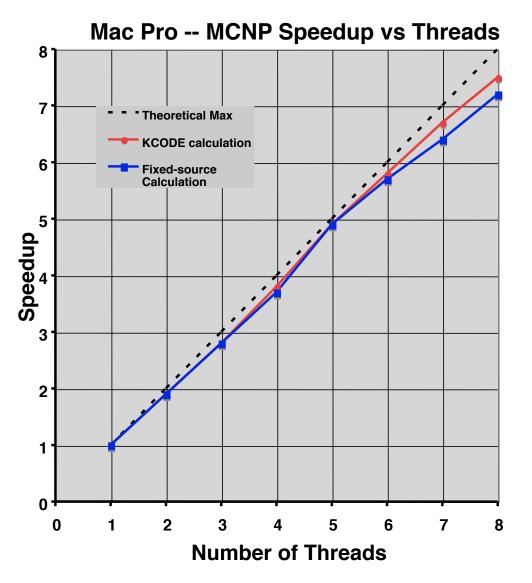
Red Storm Blue Gene/L Hurricane Turing Cielo


Lightning – 30 TeraOps

Roadrunner – 1.3 PetaOps [with Cell processors]


MCNP5 Parallel Scaled Speedup

MCNP5 Parallel Calculations



- MCNP5 performance both serial & parallel depends strongly on the Fortran-90 compiler & options used
 - Runtime factors of 2-4x with different compilers on same hardware
 - Runtime factors of 2-4x with <u>different options</u> on same hardware & compiler

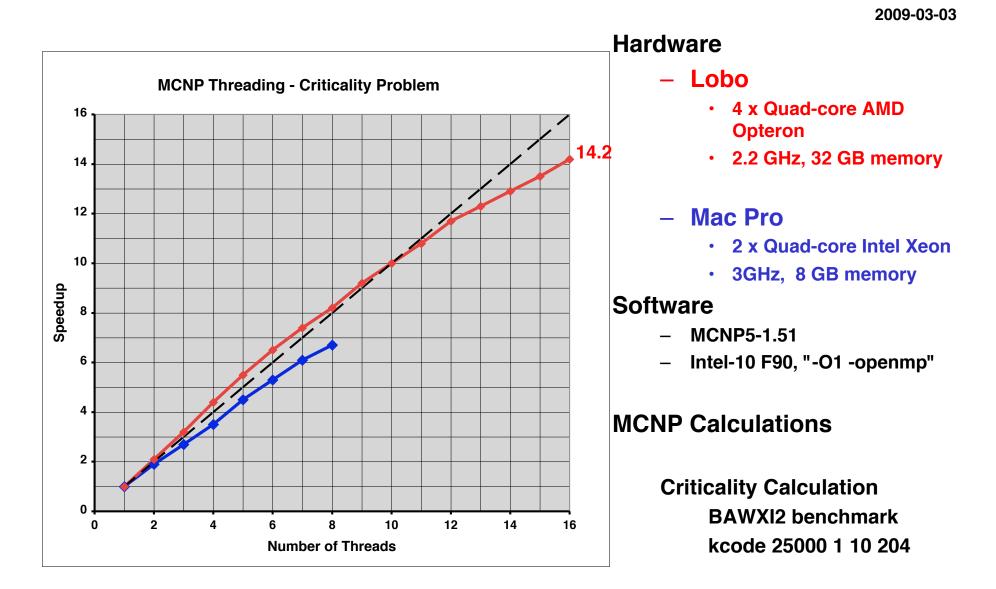
Parallel performance

- MCNP5 has always supported parallel calculations with message-passing (MPI) & threading (OpenMP)
- Prior to mid-2006, Fortran compilers for Windows/Linux/Mac did a terrible job at threading. We recommended using only MPI.
- Recently, using OpenMP threading with Intel compilers on Windows/Linux/ Mac shows excellent speedups -- nearly 2x on dual-core, 3-4x on quad-core

Hardware

- Mac Pro
- 2 x Quad-core Xeon
- 3GHz
- 8 GB memory

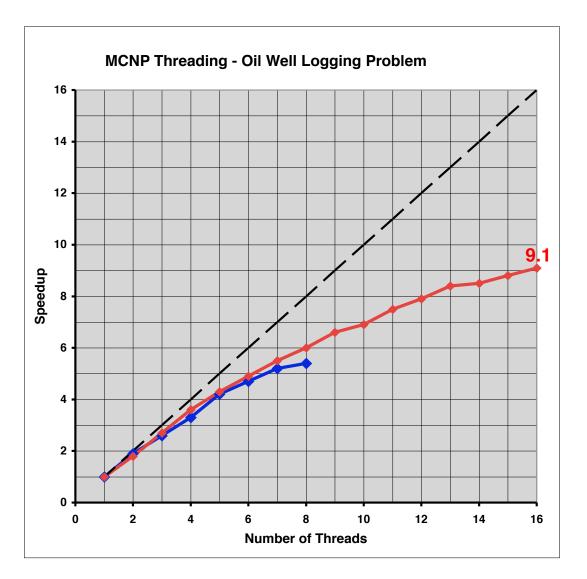
Software


- Mac OS X 10.4.11
- Intel F90, 10.0.017
 -O1 -openmp
- MCNP5 / 1.50

MCNP Calculations

- KCODE
 - BAWXI2
 benchmark
 - kcode 5000 1 10 204
- Fixed-source
 - oil-well log, mode n
 - nps 500000

MCNP5 - Threading



MCNP5 - Threading

2009-03-03

Hardware

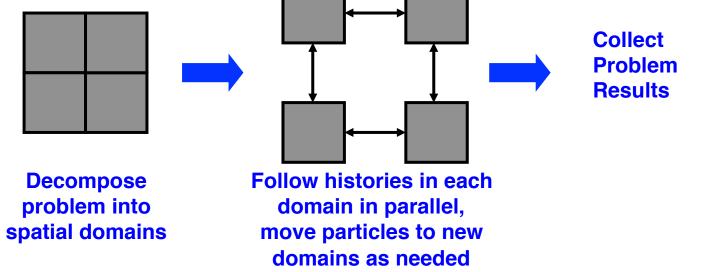
- Lobo
 - 4 x Quad-core AMD Opteron
 - 2.2 GHz, 32 GB memory
- Mac Pro
 - 2 x Quad-core Intel Xeon
 - 3GHz, 8 GB memory

Software

- MCNP5-1.51
- Intel-10 F90, "-O1 -openmp"

MCNP Calculations

Oil Well Logging Calculation inp12 benchmark Nps 500000


- Master/slave algorithms work well
 - Load-balancing: Self-scheduling
 - Fault-tolerance: Periodic rendezvous
 - Random numbers: Easy, with LCG & fast skip-ahead algorithm
 - Tallies: Use OpenMP "critical sections"
 - Scaling: Simple model, more histories/slave + fewer rendezvous
 - Hierarchical: Master/slave MPI, OpenMP threaded slaves
 - Portability: MPI/OpenMP, clusters of anything
- Remaining difficulties
 - Memory size: Entire problem must fit on each slave
 - Domain-decomposition has had limited success
 - Should be OK for reactor problems
 - May not scale well for shielding or time-dependent problems
 - For general 3D geometry, effective domain-decomposition is unsolved problem
 - Random access to memory distributed across nodes gives huge slowdown
 - May need functional parallelism with "data servers"

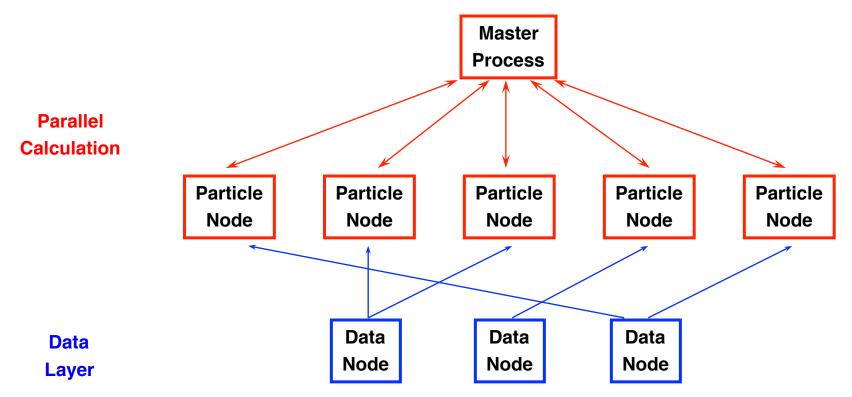
Parallel Processing For Large Monte Carlo Calculations

If a Monte Carlo problem is too large to fit into memory of a single processor

- Need periodic synchronization to interchange particles among nodes
- Use message-passing (MPI) to interchange particles
- Domain decomposition is often used when the entire problem will not fit in the memory of a single SMP node

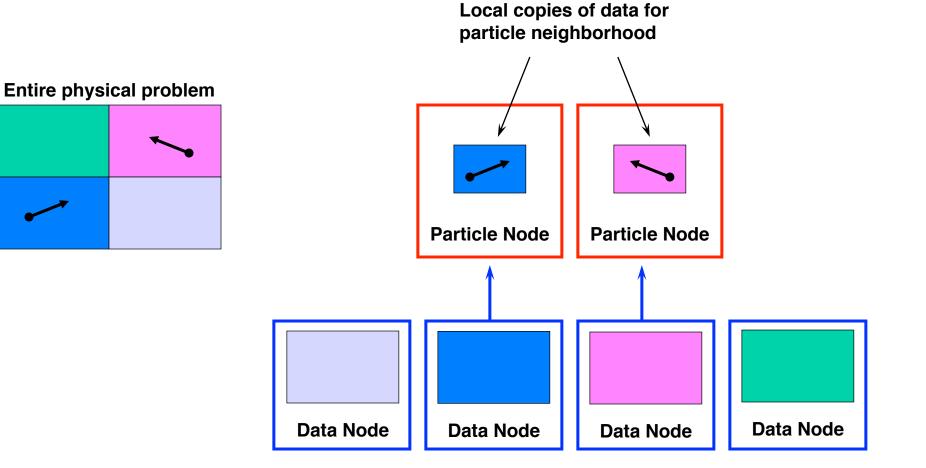
- Inherent parallelism is on particles
 - Scales well for all problems
- Domain decomposition
 - Spatial domains on different processors
 - Scales OK for Keff criticality calculations, where particle distribution among domains is roughly uniform
 - Does **not** scale for time-dependent problems due to severe load imbalances among domains
- Domain decomposition scaling with N processors
 - Best: performance ~ N (uniform distribution of particles)
 - Worst: performance ~ 1 (localized distribution of particles)

•*	•	*	۲.	*	5	٩	•*
•*	*•	•*	•	K.	•	•	*
*	•	*		~	×	٩	*•
•	×.	•*		× •	•	*	۲.
•	•	*		*	×.	٩	•


- Data is distributed by domain decomposition, but parallelism is on particles
- Solution ?

Parallel on particles + distributed data

- Particle parallelism + Data Decomposition
 - Existing parallel algorithm for particles
 - Distribute data among processor nodes
 - Fetch the data to the particles as needed (dynamic)
 - Essentially same approach as used many years ago for CDC (LCM) or CRAY (SSD) machines
 - Scales well for all problems (but slower)


• Particle parallelism + data decomposition -- <u>logical</u> view:

- Mapping of logical processes onto compute nodes is flexible:
 - Could map particle & data processes to different compute nodes
 - Could map particle & data processes to **same** compute nodes
- Can replicate data nodes if contention arises

Particle parallelism + data decomposition

History modifications for data decomposition

source

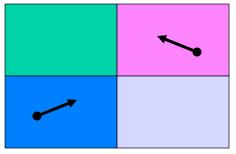
.

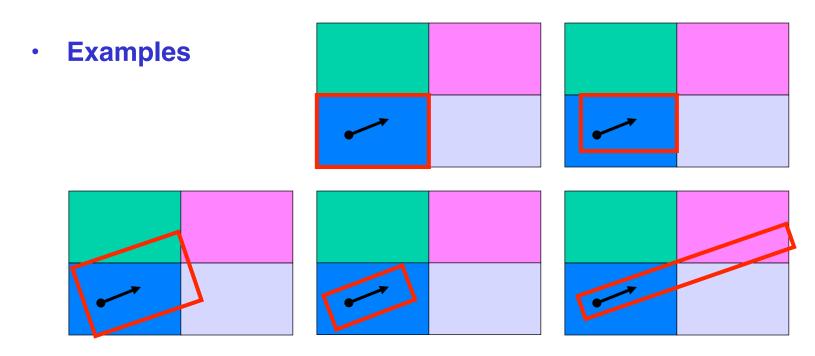
. . .

- while wgt > cutoff
 - compute distances & keep minimum:
 - dist-to-boundary
 - dist-to-time-cutoff
 - dist-to-collision
 - dist-to-data-domain-boundary
 - move particle
 - pathlength tallies

if distance == dist-to-data-domain-boundary fetch new data

- collision physics
- roulette & split


Parallel Monte Carlo



Data windows & algorithm tuning

- Defining the "particle neighborhood" is an art
- Anticipating the flight path can guide the pre-fetching of blocks of data
- Tuning parameters:
 - How much data to fetch ?
 - · Data extent vs. particle direction ?

Entire physical problem

For Monte Carlo problems which <u>can fit in memory</u>:

- Concurrent scalar jobs ideal for Linux clusters
- Master/slave parallel algorithm (replication) works well
 - Load-balancing: Self-scheduling
 - Fault-tolerance: Periodic rendezvous
 - Random numbers: Easy, with LCG & fast skip-ahead algorithm
 - Tallies: Use OpenMP "critical sections"
 - Scaling: Simple model, more histories/slave + fewer rendezvous
 - Hierarchical: Master/slave MPI, OpenMP threaded slaves
 - Portability: MPI/OpenMP, clusters of anything

For Monte Carlo problems too large to fit in memory:

- Spatial domain decomposition (with some replication) can work for some problems
- Particle parallelism + data decomposition is a promising approach which should scale for all problems