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INTRODUCTION

The differential operator Monte Carlo perturbation 
method [1, 2] can be used to estimate keff eigenvalue 
perturbations and sensitivities in MCNP5 [3].  However, 
the method was originally developed for fixed-source 
problems in which the perturbation does not affect the 
source, and its application to eigenvalue problems must 
be made cautiously [4–6].  Recently [6, 7], it was 
observed that the differential operator method in MCNP5 
had some trouble with scattering cross section 
perturbations compared with other cross section 
perturbations.  This paper attempts to explain the 
differences using an approach that was previously 
presented [5]. 

THE keff-EIGENVALUE AND THE DIFFERENTIAL 
OPERATOR METHOD  

Consider the one-group homogeneous transport 
equation with isotropic scattering, 
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The notation is standard and vacuum boundary conditions 
are assumed.  The scalar flux is )ˆ,(ˆ)(

4
rdr .  The 

total cross section is 
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Whether Eq. (1) is solved with Monte Carlo or 
deterministic methods, the following discussion is valid.  
Let the flux be normalized to 

.)()( efff krrdV

Define the fission source as )()()( rrrS f .  When the 
fission source distribution is converged and the flux is 
normalized as in Eq. (3), then the inhomogeneous 
equation 
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has the same solution as the homogeneous equation 
[Eq. (1)], and this solution satisfies the normalization of 
Eq. (3).  Note that the transport operator L of Eq. (4) does 
not include the fission source, but the total cross section 
does include fission; thus, in Eq. (4), fission is treated as 
capture.

One way of thinking about Monte Carlo estimates of 
keff is that “inactive cycles” are used to converge the 
fission source, then “active cycles” are run as fixed-
source problems to estimate tallies (the quoted 
terminology is MCNP’s).  The keff eigenvalue can be 
estimated as a track-length flux tally, as in Eq. (3). 

In the differential operator Monte Carlo perturbation 
method, the tally (in this case, keff) is expanded in a Taylor 
series about the initial, unperturbed parameter.  For 
example, for a cross-section perturbation, keff is 
estimated using 
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where subscript DO indicates the differential operator 
estimate, subscript 0 indicates initial, unperturbed 
quantities, and 0XXX , with a prime indicating 
perturbed quantities. 

The derivatives in Eq. (5) are calculated during active 
cycles using the normal neutron histories.  Contributions 
are scored based on what the neutrons might have done if 
the cross section were x rather than 0,x .  Thus, the 
unperturbed fission source is used, but the goal is to 
estimate the effect of the perturbed transport operator. 

To summarize, the initial, unperturbed system 
satisfies
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where the source is the converged, properly normalized 
fission source.  The perturbed system satisfies  
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The exact value of the eigenvalue perturbation is 
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The differential operator estimate of the eigenvalue 
perturbation is 
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where 
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For later convenience, define k~  to be the first term on the 
right side of Eq. (9): )(~)(

~
rrdVk f .

Assuming that the Taylor expansion order is 
sufficient and that necessary cross terms are included, the 
accuracy of the differential operator method is limited 
only by the assumption that the fission source is 
unperturbed.  However, the issue is not only whether 

)(0 rS  is a good approximation of )(rS  [Eq. (10)], but, 

more importantly, whether )ˆ,(~ r  is a good 

approximation of )ˆ,(r  [Eq. (9)].   
This analysis of the differential operator method as 

applied to keff-eigenvalue problems has been presented 
previously [5].  In this paper, the first numerical 
demonstration is given.  This demonstration was 
developed to understand why the differential operator 
method was less accurate for computing the sensitivity of 
keff with respect to scattering cross sections than to capture 
cross sections [6, 7]. 

TEST PROBLEM AND RESULTS 

The one-group keff test problem is a homogeneous 
spherical fuel region (radius 6.12745 cm) surrounded by a 
spherical reflector shell (thickness 3.063725 cm).  It is 
problem 16 from [8].  The macroscopic cross sections are 
listed in Table I.  Scattering is isotropic.  This problem 
was also used in [6].  Using 30 000 neutrons per cycle, 20 
inactive cycles, and 300 active cycles, the MCNP5 track-
length value of keff was 0.999916 ± 0.0000675.  Using a 
mesh spacing of 0.004 cm and S128 quadrature, the 
PARTISN [9] value of keff was 1.0000128. 

Fuel capture and fuel scattering cross section 
perturbations were considered (independently).  For 
perturbations to the capture cross section, Eq. (10) is 
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and for perturbations to the scattering cross section, 
Eq. (10) is 
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Results for a –20% perturbation in the fuel capture 
cross section and a +5% perturbation in the fuel scattering 
cross section (independently) are shown in Table II.  The 
first four rows were computed using PARTISN.  The 
sixth row ( DOeffk , ) was computed using the differential 
operator method with a second-order Taylor expansion 
(via the PERT card in MCNP5).  The error in DOeffk ,  was 
computed by comparing with the PARTISN value of 

effk , which introduces a slight inconsistency. 

Note that keff is much more sensitive to the fuel 
scattering cross section than to the fuel capture cross 
section, since a 5% change in the former has about half 
the effect of a –20% change in the latter.  

Although the s perturbation is smaller than the c
perturbation and has a smaller effect on keff, the 
differential operator method is much less accurate at 
predicting the effect. 

However, in both cases, the differential operator 
method very accurately estimates 0,

~
effkk .  This result 

suggests the correctness of both the analysis of the 
preceding section and the differential operator 
implementation in MCNP5, but it does not prove either. 

Perturbed fluxes )(r  and )(~ r  are plotted in Figs. 1 
and 2 for each problem.  For readability, the fluxes are 
plotted as differences from the unperturbed flux )(0 r .

For comparision, the maximum unperturbed flux (at r
= 0 cm) is 9.745 × 10–3 cm–2s–1.  The flux shift 

)(/)]()([ 00 rrr  at r = 0 cm is 1.12% for the 
capture cross section perturbation and 1.52% for the 
scattering cross section perturbation. 

(8)

(9)

(10)

TABLE I. Test Problem Cross Sections. 
Material f (cm–1) c (cm–1) s (cm–1) t (cm–1)

Fuela 2.797101 0.065280 0.013056 0.248064 0.32640 
Reflectorb 0.0 0.0 0.032640 0.293760 0.32640 
a U-235 (b), Table 9 [8]. 
b H2O (refl), Table 9 [8]. 

(11)

(12)

TABLE II. Perturbation Results. 
c Pert. s Pert. 

effk 1.0130141 1.0069433 
k
~ 1.0132118 1.0060818 

0,effeff kk 0.0130013 0.0069305 

0,
~

effkk 0.0131990 0.0060690 
Error 1.52% –12.43% 

DOeffk , 0.0131810 ± 0.01% 0.0060493 ± 0.12% 
Error 1.38% –12.71% 
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The exact perturbed flux distribution )(r  more 
closely approximates the unperturbed flux distribution 

)(0 r  for the capture cross section perturbation than for 
the scattering cross section perturbation (the difference is 
flatter).  In addition, )(~ r  more closely matches )(r  for 
the capture cross section perturbation than for the 
scattering cross section perturbation. 

CONCLUSIONS 

The notion that the differential operator method 
works by essentially solving the inhomogeneous transport 
equation with a perturbed transport operator and an 
unperturbed fission source [Eq. (10)] and using the 
resulting flux )(~ r  to estimate effk  [Eq. (9)] has been 
demonstrated in a numerical test problem solved 
deterministically and with Monte Carlo.  MCNP5 has 
more trouble estimating effk  due to scattering cross 
section perturbations than capture cross section 
perturbations because )(~ r  differs more significantly 
from )(r  when the scattering cross section is perturbed, 
even when the effect on effk  is smaller. 
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Fig. 1. Fluxes for the capture cross section perturbation. 
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Fig. 2. Fluxes for the scattering cross section perturbation. 
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