LA-UR-07-8410

Approved for public release; distribution is unlimited.

Title:	MCNP Generated Detector Response and Blur Functions for CsI Detectors
Author(s):	Brian Temple
Intended for:	MCNP references

.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

MCNP Generated Detector Response and Blur Functions for CsI Detectors

Brian Temple

Abstract

MCNP simulations were performed using the *F8 tally to calculate the detector blur and detector response of a CsI detector. Different methods of representing the beam and tallying the energy deposition were explored for calculating blur functions for use in post-processing radiography simulations.

Introduction

The purpose of a scintillator in a detector is to convert higher energy photons from the radiograph into lower energy photons that are either read (absorbed) on film or converted into a charge that is read by electronics in order to obtain an image. The conversion of higher energy photons into lower energy photons involves a series of photon/electron chain reactions from the initial reaction of the incident photon with the scintillator. The chain reactions produce a number of secondary electrons and photons that spatially spreads out in the scintillator as more reactions occur. This spatial spread of the secondary photons is the blur that results from the scintillator. The blur is a function of the scintillator material, incident angle of the photon into the scintillator, and the energy of the photon. The amount of energy deposition in these chain reactions is proportional to the amount of lower energy photons produced. This relationship is used to determine the blur from the energy deposition calculated in the scintillator.

In MCNP radiography simulations the photon reactions in the scintillator are not explicitly modeled due to two main factors. First, the computational expense of trying to model the photon conversion in the scintillator is usually significant when compared to the expense of simulating the radiograph. Secondly, the physics in MCNP are not capable of modeling photons down to the low energies (less than 1 keV) measured on films or captured by imaging electronics.

The blur is incorporated into the simulations from pre-calculated information. Blur calculations are obtained from MCNP simulations by using the *F8 tally to calculate the energy deposition in concentric cylindrical cells from an incident beam of photons normal to the scintillator surface. The concentric cylindrical cells capture the radial distribution of the energy deposition. The radial contributions from all cells can be added together for each energy bin to give a detector response for the scintillator modeled. This summation of radial contributions gives a mapping function that correlates the tallied photon of a specific energy range to a corresponding energy deposition in the scintillator. Energy dependence can be modeled by calculating a single blur function using the entire spectrum of photons hitting the scintillator or by calculating multiple blur functions using discrete energies of photons over the entire spectral range of interest. While the detector response energy deposition corresponds to the number of lower energy photons created in the scintillator, it does not have any relationship to the spatial diffusion of photons in the scintillator. The spatial spread in the energy deposition is used to create a spatial blur

function that is post-processed on the simulation data. This post-processing of a spatial blur decouples the energy dependency of the blur from its spatial distribution.

The angular dependence of the blur is not usually accounted for in blur calculations since it is too computationally expensive to break the incident photon energy deposition into energy, radial, and angular sets of information. Thus the incident photons in the calculations are normal to the surface of the scintillator. Some of the angular dependence of the incident photons on the scintillator can be captured in MCNP by using a FMESH tally plotted over the scintillator volume. This type of tally counts the path length of the photons traveling through the FMESH voxels. Photons entering the scintillator at an angle will have a shorter path length in the voxel than photons entering the scintillator at 90 degrees to the surface and can travel into neighboring voxels (see Figure 1). Angular trajectories into the scintillator are correctly weighed in the voxel, but the units of measurement are either particles/cm² or MeV/cm² which have no relationship to the energy deposition in the voxel. Thus the FMESH tally cannot capture all the physical properties of the blur.

Figure 1 – Path lengths for different photon trajectories.

An artifact of spatially blurring the image after it has been tallied is the loss of the continuous spatial distribution of the blurring. If the photon's trajectory is normal to the surface, the blurring is centered at the location of the photon entering the scintillator on average. In simulations the photons are counted across the front facial area of the pixels and their tally data is represented at a single location in the pixel (frequently it is the pixel center). When the pixelized data is blurred, the blur function acts on all photons counted in the pixel as if their location of incidence is the center of the pixel. Most pixels are rectangular or square, so any photons counted near a corner of the pixel are shifted to the center of the pixel and then diffused to the center of the neighboring pixels. The natural spatial diffusion of a photon entering the pixel near a corner is discretized into diffusion occurring from and to pixel centers.

Four types of detector blurring simulations were performed to try to account for the blurring that occurs in reality and the blurring that occurs in simulations. All calculations used a billion photons incident on the scintillator. Four different methods were used to calculate the detector blur for discrete energies ranging from 0-6 MeV. The energy bins are smallest below 300 keV and are increased in size gradually up to 6 MeV. Two different incident beam spatial distributions were used. A pencil beam distribution is used to correspond to individual photons incident on the scintillator. The other spatial distribution projects a square beam with a cross-section equal in area to a pixel onto the scintillator. This square beam shape reflects simulation image data that is discretized into uniform values across the pixels. Two different energy deposition tallies were also used. Concentric cylindrical cells that tally the energy deposition in radial bins are used in half the calculations. The other half tallies energy deposition in square pixel cells equal in size (0.035cm by 0.035cm) to the image pixels.

The simulations were run on the FLASH LINUX cluster computers. The executable used for the simulations was a beta version of MCNP6 code with a special FMESH cell tagging capability produced by Jeremy Sweezy. This executable has all the same run options as the default MCNP6 executable located in the /usr/projects/mcnp/ directory on FLASH.

Simulation methods

The four different methods were used to calculate detector blurs for the CsI detector composed of the material layers given in Figure 2. The front layer is 0.9cm of CsI followed by 0.0127cm of amorphous silicon. After the silicon layer is 0.1143cm of glass, followed by 0.254cm of aluminum.

Figure 2 – Layers of the CsI detector.

The first set of simulations is named "pen_rad" and is the standard simulation technique used to calculate blur functions. This calculation reflects the spread of the incident

photons in the scintillator *minus the angular effects from the photon trajectory into the CsI* and better represents real photon blur in an experiment. The pen_rad response was created from a pencil beam of photons striking the CsI scintillator normal to the surface at the center of the cylindrical tally cells. The energy deposition in the CsI is tallied in concentric cylindrical cells to measure the radial diffusion of the energy deposition. A schematic of the simulation is shown on the left side of Figure 3.

The second set of simulations is named "pix_rad" and has a photon beam with a crosssectional area equal in area to the face of a pixel. The photons strike the scintillator at an angle normal to the surface and in the center of concentric cylindrical cells used to measure the energy deposition as a function of radius. The energy deposition is tallied in the same manner as the "pen_rad" method. Having the cross-sectional area of the photons equal to the facial area of a pixel is meant to represent the simulation image data that is uniform across the pixel. Using this beam rather than a pencil beam approximates the spatial distribution of counts across the entire pixel face as a constant value. The schematic for this method is given on the right side of Figure 3.

Figure 3 – Schematics of the "pen_rad" and "pix_rad" detector blur calculations.

The third set of simulations is named "pix_pix" and has a photon beam with a crosssectional area equal in area to the face of the pixels. The photons strike the scintillator at an angle normal to the surface. The square photon beam approximates the spatial distribution of counts across the pixel center in the same manner as the "pix_rad" method. The energy deposition in the scintillator is tallied in neighboring pixels (pixels are made into cells) rather than radial cells to reflect the fact that the image data is divided into pixels. In simulations the blur diffuses from one pixel to another when postprocessing the image. The distance from the center of the neighboring pixels to center pixel will be used to get the radial distance for the energy deposition for comparison with the first two methods. This means of tallying the energy deposition better reflects how blur is diffused from pixel to pixel when data is discretized. A schematic of the simulation is shown on the left side of Figure 4.

The fourth set of calculations is named "pen_pix" and has a pencil beam of photons normally incident on a set of square pixels used for tallying the energy deposition. Having the beam strike the center of a pixel shows how the blur will diffuse from the center of a pixel to neighboring pixel centers. This method reflects how blurring is actually performed when it is post-processed on discretized image data stored at the pixel centers. This method will have no pixel corner blurring effects and can be compared to the third method to provide an insight into the magnitude of corner blurring. A schematic of the method is given on the right side of Figure 4.

Figure 4 – Schematics of the "pix_pix" and "pen_pix" detector blur calculations.

Example MCNP input files are given in Appendix A. The "pen_rad" and "pix_pix" input files are provided to give inputs for the both sets of beam shapes and both types of energy deposition tallies. The sdef cards in each input file can be interchanged to get all four simulation methods.

Detector blur calculation results

The detector blur results for all methods are given in the four appendices at the end of the paper. Each appendix contains 3-D plots from two different software packages (JMP and EXCEL) to assist in the visualization of the blur. In the 3-D JMP plots the red data points are data for radii under 0.05 cm. The green data points are for data from 0.05-0.1cm radii. The blue data points are for data from radii 0.1cm to 0.2cm. The purple data points are for radii above 0.2cm. Appendix B contains the "pen_rad" plots in Figures 10-14. Appendix C contains the "pix_rad" plots in Figures 15-19. Appendix D contains the "pix_pix" plots in Figures 20-24. Appendix E contains the "pen_pix" plots in Figures 25-29.

All sets of three dimensional plots differ for each simulation method. All sets show the radial diffusion of the blur increasing for higher incident energies. The "pen_rad", "pix_pix", and "pen_pix" plots all peak at about the same amount at the same energy. The "pix_rad" peak is significantly lower. This difference can be explained by the incident beam area being spread over a several cells in the "pix_rad" case while all other sets have the incident photons striking the centermost tally cell only. Having the incident beam enter the scintillator across more than one cell has other effects on the energy deposition as seen in the detector response plots in Figure 5 and Figure 6. The detector response will be addressed in greater detail in the next section.

A discrepancy in the results is the different radial distribution for the "* rad" results and the "* pix" results. The "* rad" results spatially drop off more gradually than the "* pix" results. This is a function of the pixel cells being different in size and shape than the cylindrical cells. The amount of energy deposition to neighboring pixels is a partial function of the common surface area between the pixels and the volume of the pixel cell. The surface area between and the volume of concentric cylindrical cells increases as a function of radius and differs from the pixel cells. The cell volume is constant for pixel cells and the surface area between cells differs by the location of the neighboring cells around the center cell. These factors all contribute to the different radial diffusion profiles for the blur. The cylindrical cells do not have a larger volume than the pixel cells until a radius of 0.04 cm or larger. Likewise the cylindrical cell surface area with neighboring cells is not larger than the pixel cell surface area until a radius of 0.025 cm or larger. That difference contributes to the "* pix" results having a larger energy deposition at shorter distances from the center that spatially falls off quicker. This difference in the radial distribution does not explain why the energy deposition for the "* pix" methods is consistently lower than the "*_rad" results in Figures 5 and 6. We will explore the lower energy deposition results in greater detail in the next section.

The two closest matching plots are the "pix_pix" and the "pen_pix' data. This consistency indicates that the using a pencil beam or a beam with a cross-sectional area equal to a pixel area does not significantly affect the blur or the energy deposition as long as the incident area of the beam is smaller than the cell boundaries. The results for the "*_pix" methods and the "pix_rad" method indicates that the biggest factor affecting the simulated blur appears to be the surface area of the incident beam being larger than the energy deposition cell area. We shall explore this discrepancy in greater detail by looking at the detector response for the four methods in the next section.

Detector response calculation results

Detector response functions can be obtained from the blur calculations by summing up all the radial contributions over the entire spatial region. The response functions for all the blur calculations are given in Figure 5 and Figure 6.

Figure 5 – Detector response for the CsI detector.

Figure 6 – CsI absorption efficiency for detector from detector blur simulations.

Figure 7 – Calculated Absorption efficiency for CsI from the Bicron manual.

The plot of the detector responses is shown as the energy deposited as a function of incident energy in Figure 5. In Figure 6 the same data is shown as the percentage of energy absorbed as a function of incident energy. The data in Figure 6 can be compared to the CsI response calculated for CsI only listed in the Bicron manual and shown in Figure 7.¹ In Figure 7 the percent absorption is $(I_0-I)/I_0$ where:

$$I = I_0 e^{-\mu x}$$

- I_0 = Number of photons incident on material of thickness x
- x = Thickness of material
- I = Number of photons that have passed through material of thickness x
- μ = Linear attenuation coefficient

The only response function that appears consistent with the analytical results in Figure 7 is the "pen_rad" results. The calculation for the 9mm thick scintillator peaks below 100% at around 100keV and plateaus at the higher energies at around 8%, which is similar to the ¹/₄ in. (6.35mm) and the ¹/₂ in. (12.7mm) curves in Figure 7. The curve shapes are not exactly the same since the simulation uses full transport on all materials in detector, while the analytical results are only for CsI. The presence of the amorphous silicon, glass, and aluminum behind the CsI will affect the photon and electron absorption and scatter characteristics. The fact that we tallied energy deposition using radial cells

rather than a linear deposition in slabs has no effect on the detector response because we are tallying the total energy deposited across the entire spatial region in both cases.

The differences between the analytical results and the other three simulation methods are puzzling. One significant problem seen in the detector response plots for the "pix_rad" method is the lack of energy conservation at lower energies. At 160 keV and below the "pix_rad" energy deposition is greater than the incident energy of the beam. The radial thicknesses of the cylindrical cells are small (less than a tenth of a millimeter) in the "*_rad" simulations. In the "pix_rad" case the beam has a cross-sectional area of 0.035 cm by 0.035 cm and covers over the first five concentric cylindrical cells out to a radius of 0.02475 cm. This broader deposition area is seen in the "pix_rad" detector blur plots in Figures 15-17 in Appendix C. In the other cases the incident beam hits the scintillator at the centermost tally cell only. The broad deposition of incident photons across multiple cells increases the spread of photons (and their subsequent electrons) across the cells and appears to worsen the energy conservation problem.

Another big problem is with the "*_pix" results having lower total energy deposition than the "*_rad" results using concentric cylindrical cells. Both sets of simulations should give the same total energy deposited since the sum of their cells measures around the same total volume. In the three dimensional radial plots in the last four appendices, the radial energy distribution falls of significantly within a millimeter of the incident cell radius for lower incident energies. Thus the volumes covered by the concentric cylindrical cells and the pixel cells are more than adequate to capture nearly all the energy deposition and avoid edge losses at lower energies. Only the highest incident energy photons deposit energy at larger radii and could have edge losses. Yet the pixel cells have a consistently lower total energy deposition than the concentric cylindrical cells for all energy ranges.

It was suggested that the energy-straggling model used in the simulations be investigated.^{2,3} The MCNP calculations used full photon-electron transport down to a cut-off energy of 10 keV and used the *F8 tally for counting the cell energy deposition. Statements in the MCNP manual on the idiosyncrasies of the *F8 tally describe energy conservation issues with the tally. The problem occurs mainly with electrons that have mean free path's larger than the tally cell dimensions. A correction to the energy straggling model in the code was made by Grady Hughes, but this option was not available in the executable used when these calculations were begun.

Five sets of additional calculations were performed for energies from 50-200 keV to verify if the energy straggling issue across cells is a problem. First the "pix_rad" calculations were repeated with the Hughes energy straggling model turned on ("pix_rad_H"). Next the energy deposition for the pencil beam and pixel area beam were replicated using a single large cylindrical tally cell equal in volume to the multiple cylindrical cells used before ("pen_one" and "pix_one"). Next the Hughes energy straggling was used with a pixel area beam incident on a single large cylindrical tally cell equal in volume to the multiple cells used before ("pix_H_1"). Finally the "pix_rad" simulations using the Hughes energy straggling model run option ("pix_rad_H" results) were repeated using the default MCNP6 executable located in the /usr/projects/mcnp/

directory on FLASH. The default executable and the Sweezy MCNP6 beta version executable gave identical results. The results for the first four sets of additional simulations along with the original simulation results in the same energy range are given in Figure 8 and Figure 9.

Figure 8 – Detector response for the CsI detector from 50-200keV.

Figure 9 – Percent absorption for the CsI detector from 50-200keV.

The addition of the Hughes energy straggling model did nothing to correct the energy conservation problem with the pixel area beam. The "pix_rad_H" response data points lay nearly on top of the "pix_rad" results. The substitution of the multiple energy deposition cells with the single cell gave consistent results for all simulations regardless of the beam area used or the addition of the Hughes energy straggling. The use of a single energy deposition cell gave energy conservation for all beam shapes and energy straggling models. As the incident energy increases beyond 150 keV, the "pen_rad" results start to diverge from the single cell results. All of the "*_pix" results are different from the single cell results. These discrepancies for different multiple cell tallies suggest that there is a transport issue across cell boundaries with the *F8 tally.

Speculation arose that the "knock-on" electron problems addressed in the MCNP manual was another problem.³ The number of "knock-ons" listed in the MCNP outp files for the simulations are given in the table below for the 80 keV and 150 keV results.

	80 keV	150 keV
"pix_rad_H"	139366597	501181692
"pix_one"	176056701	613395253
"pix_rad"	175911508	612447437
"pen_one"	176048873	613423998
"pen_rad"	176023642	613216973

The only difference seen in the "knock-on" electron amount is between the simulations with and without the Hughes energy straggling. As seen in Figure 8 and Figure 9 the energy-straggling model had minimal effect on the response results. The consistency of the 'knock-on" values for the single cell and multiple cell simulations suggest that the "knock-on" electron problem in the code is not the problem for these energy deposition results.

Conclusions

The general 3-D shape from all detector blur simulations verifies that the blur is a function of the incident photon energy. The discrepancy in the blur shapes is a result of using different cell shapes to measure the energy deposition and different incident beam shapes. The lack of consistency for the detector response results indicates a deeper problem with the *F8 tally across cell boundaries. The consistency of the single cell results and the disparity in the multiple cell results show the discrepancies in energy deposition to be related to the transport of the energy deposition across cell boundaries and the application of the incident beam across multiple cell surfaces. Further investigation of these issues is required by the Eolus team.

It is recommended at this time that the "pen_rad" method be the method used for calculating blur functions. This method has the most consistent detector response results with the single cell tally data and the analytical calculations. All four methods should be compared again once the issues presented above have been addressed.

Appendix A

```
"pen rad" method MCNP input file
```

```
C CsI ptspr using 6x cylinders
C @@@ ENERGY = 0.05 0.06 0.07 0.08 0.09 0.10
С
          2 -4 -1
1 0
20 3 -4.51 4 -5 -70
21 3 -4.51 4 -5 70 -71
22 3 -4.51 4 -5 71 -72
23 3 -4.51 4 -5 72 -73
24 3 -4.51 4 -5 73 -74
25 3 -4.51 4 -5 74 -75
26 3 -4.51 4 -5 75 -76
27 3 -4.51 4 -5 76 -77
28 3 -4.51 4 -5 77 -78
29 3 -4.51 4 -5 78 -79
30 3 -4.51 4 -5 -10 79
31 3 -4.51 4 -5 10 -11
32 3 -4.51 4 -5 11 -12
33 3 -4.51 4 -5 12 -13
34 3 -4.51 4 -5 13 -14
35 3 -4.51 4 -5 14 -15
36 3 -4.51 4 -5 15 -16
37 3 -4.51 4 -5 16 -17
38 3 -4.51 4 -5 17 -18
39 3 -4.51 4 -5 18 -19
40 3 -4.51 4 -5 19 -20
41 3 -4.51 4 -5 20 -21
42 3 -4.51 4 -5 21 -22
43 3 -4.51 4 -5 22 -23
44 3 -4.51 4 -5 23 -24
131 3 -4.51 4 -5 24 -25
132 3 -4.51 4 -5 25 -26
133 3 -4.51 4 -5 26 -27
134 3 -4.51 4 -5 27 -28
135 3 -4.51 4 -5 28 -29
136 3 -4.51 4 -5 29 -30
137 3 -4.51 4 -5 30 -31
138 3 -4.51 4 -5 31 -32
139 3 -4.51 4 -5 32 -33
140 3 -4.51 4 -5 33 -34
141 3 -4.51 4 -5 34 -35
142 3 -4.51 4 -5 35 -36
143 3 -4.51 4 -5 36 -37
144 3 -4.51 4 -5 37 -38
145 3 -4.51 4 -5 38 -39
146 3 -4.51 4 -5 39 -40
147 3 -4.51 4 -5 40 -41
148 3 -4.51 4 -5 41 -42
149 3 -4.51 4 -5 42 -43
150 3 -4.51 4 -5 43 -44
151 3 -4.51 4 -5 44 -45
152 3 -4.51 4 -5 45 -46
153 3 -4.51 4 -5 46 -47
154 3 -4.51 4 -5 47 -48
```

155 3 -4.51 4 -5 48 -49 156 3 -4.51 4 -5 49 -50 157 3 -4.51 4 -5 50 -51 158 3 -4.51 4 -5 51 -52 159 3 -4.51 4 -5 52 -53 160 3 -4.51 4 -5 53 -54 161 3 -4.51 4 -5 54 -55 162 3 -4.51 4 -5 55 -56 163 3 -4.51 4 -5 56 -57 164 3 -4.51 4 -5 57 -58 165 3 -4.51 4 -5 58 -59 166 3 -4.51 4 -5 59 -60 167 3 -4.51 4 -5 60 -61 168 3 -4.51 4 -5 61 -62 169 3 -4.51 4 -5 62 -63 170 3 -4.51 4 -5 63 -1 901 4 -2.35 5 -6 -1 902 5 -2.18 6 -7 -1 903 6 -2.70 7 -8 -1 7 0 8:-2:1 c surface cards 1010 cx 1.e-05 1 cx 10 2 px -3.2532 4 px 0.0 5 px 0.9 \$ scintillator is 9 mm thick 6 px 0.9127 \$ amorphous silicon is 0.0127 cm 7 px 1.0270 \$ glass thickness 0.1143 cm 8 px 1.2810 \$ aluminum thickness 0.254 cm 70 cx .005 71 cx .010 72 cx .015 73 cx .020 74 cx .025 75 cx .030 76 cx .035 77 cx .040 78 cx .045 79 cx .050 10 cx .055 11 cx .060 12 cx .065 13 cx .070 14 cx .075 15 cx .080 16 cx .085 17 cx .090 18 cx .095 19 cx .100 20 cx .105 21 cx .110 22 cx .115 23 cx .120 24 cx .125 25 cx .130 26 cx .135

27 cx .140

28 cx .145
29 cx .150
30 cx .155
31 cx .160
32 cx .165
33 cx .170
34 cx .175
35 cx .180
36 cx .185
37 cx .190
38 cx .195
39 cx .200
40 cx .205
41 cx .210
42 cx .215
43 cx .220
44 cx .225
45 cx .230
46 cx .235
47 cx .240
48 cx .245
49 cx .250
50 CX .255
51 CX .260
52 CX .205
55 CX .270
54 CX .275
55 cv 285
50 CX .205
57 CX 295
50 CX 300
60 cx 305
61 cx 310
62 cx .315
63 cx .320
c physics cards
cut:p j 0.010
cut:e j 0.010
phys:p 2j 1
imp:p 1 68r 0
imp:e 1 68r 0
mode p e
C
m2 71000 2 14000 1 8016 5
c m3 80000 1 53000 2 \$ Mercury Iodide HgI2 rho = 6.36 g/cm3
m3 55000 1 53000 1 \$ Cesium Iodide rho = 4.51 g/cm3
m4 14000 2 1001 6 \$ Amorphous silicon rho = 2.35 g/cc
m5 14000 1 8000 2
m6 13000 1 \$aluminum rho = 2.70 g/cc
saer arr=1 vec=1 U U pos -3.2532 U U erg=ENERGY
C c
C Laliles
TT:b 4

cl 0. 1. c above is a probab check to make sure nothing is lost С c Charge deposition +f8:pe 20 21 22 23 23 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 t С c Energy deposition *f18:pe 20 21 22 23 23 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 t nps le9 prdmp 2j 1

"pix_pix" method MCNP input file

CsI	pt	tspr us	sin	g 6x	cyli	Indei	ſs						
1 0 C	2	2 - 4 - 1	1	\$ (1	.)								
100	3	-4.51 501 5 511 5 521 5 531 5	4 502 512 522 532	-5 503 513 523 533	-1 1 3 504 3 514 3 524 3 534	LO 505 515 525 535	50 51 52 53) 6 . 6 . 6 . 6	507 517 527 537	508 518 528 538	509 519 529 539	510 520 530 540	\$(2)
С	-			_									
11	3	-4.51	4	-5	-11		Ş	()	3)				
c 101 102	3	-4.51 -4.51	4 4	-5 -5	-101 -102		\$	(4	1)				
103	3	-4.51	4	-5	-103								
104	3	-4.51	4	-5	-104								
105	3	-4.51	4	-5	-105								
106	3	-4.51	4	-5	-106								
107	3	-4.51	4	-5	-107								
108	3	-4.51	4	-5	-108		\$ ((11)				
С													
201	3	-4.51	4	-5	-201		\$ ((12	2)				
202	3	-4.51	4	-5	-202								
203	3	-4.51	4	-5	-203								
204	3	-4.51	4	-5	-204								
205	3	-4.51	4	-5	-205								
206	3	-4.51	4	-5	-206								
207	3	-4.51	4	-5	-207								
208	3	-4.51	4	-5	-208								
209	3	-4.51	4	-5	-209								
210	3	-4.51	4	-5	-210								
211	3	-4.51	4	-5	-211								
212	3	-4.51	4	-5	-212								
213	3	-4.51	4	-5	-213								

214	3	-4.51	4	-5	-214	
215	3	-4.51	4	-5	-215	
216	3	-4.51	4	-5	-216	Ş(27)
210 C 301 302 303 304 305 306 307 308 309 310 311	5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	-301 -302 -303 -304 -305 -306 -307 -308 -309 -310 -311	\$(27) \$(28)
312 313 314 315 316 317 318 319 320 321 322 323 324 c	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51 -4.51	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	-312 -313 -314 -315 -316 -317 -318 -319 -320 -321 -322 -323 -323 -324	\$(51)
$\begin{array}{r} 401\\ 402\\ 403\\ 404\\ 405\\ 406\\ 407\\ 408\\ 409\\ 410\\ 411\\ 412\\ 413\\ 414\\ 415\\ 416\\ 417\\ 418\\ 420\\ 422\\ 423\\ 422\\ 422\\ 422\\ 422\\ 422\\ 422$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} -4.51\\ -5.51\\ -5$	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-401 -402 -403 -404 -405 -406 -407 -408 -409 -410 -411 -412 -413 -414 -415 -416 -417 -418 -419 -420 -421 -422 -423 -424 -425 -426 -427 -428	\$(52)

429 430 431	333	-4 -4 -4	.5 .5 .5	1 1 1	4 4 4	-5 -5 -5	-42 -43 -43	9 0 1	Ċ	(0.2)				
43Z C	3	-4	. ၁	T	4	-5	-43	Σ	Ş	(83))			
c 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-4 -4 -4 -4 -4 -4 -4 -4		1 1 1 1 1 1 1 1 1 1	444444444444444444444444444444444444444	-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	-50 -50 -50 -50 -50 -50 -50 -51 -51 -51 -51 -51 -51 -51	1 22 34 95 96 97 98 99 00 1 22 34 95 90 0 1 22 34 95 90 0 1 22 35 94 95 0 1 22 36 94 95 0 2 3 34 95 95 95 95 95 95 95 95 95 95 95 95 95	\$	(84))			
516 517 518 519 520 521 522 523 524 525 527 528 520 521 522 523 524 525 527 528 530 533 533 534 535 530 537 538 539	* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-4 -4 -4 -4 -4 -4 -4 -4	• • 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		444444444444444444444444444444444444444		-51 -51 -51 -52 -53	6678901223456789012234567890	\$	122)))			
540 C	2	-4	• 0	T	4	-5	-54	0	φ (123)				
901 902 903 7 0	4 5 6 8:	-2 -2 -2 -2	.3 .1 .7 :1	5 8 0	5 6 7	-6 -7 -8	-1 -1 -1		\$ (\$ (124) 127))			
c su 1010 1 cx 2 px 4 px 5 px	irf) c : 1 : - : (: (Eac 20 -3. 0.0	e 1. 25	са е- 32	rd 05	ls	cinti	llat	or	is	9	mm	th	ick

6 pz 7 pz 8 pz	x 0.91 x 1.02 x 1.28	127 27(31(7 \$) \$) \$	amorphous glass thic aluminum t	silicon ckness 0. thickness	is 0.0127 cm .1143 cm s 0.254 cm
10 1	rpp	0	0.9	-0.1925	0.1925	-0.1925 0.1925
с 11 С	rpp	0	0.9	-0.0175	0.0175	-0.0175 0.0175
101	rpp	0	0.9	0.0175	0.0525	-0.0525 -0.0175
10Z	rpp	0	0.9	0.0175	0.0525	-0.01/5 0.01/5
104	rpp	0	0.9	-0.0175	0.0525 0.0175	$0.0175 \ 0.0525$ $0.0175 \ 0.0525$
105	rpp	0	0.9	-0.0175	-0 0175	0.0175 0.0525
106	rpp	0	0.9	-0.0525 -	-0.0175	-0.0175 0.0175
107	rpp	0	0.9	-0.0525 -	-0.0175	-0.0525 -0.0175
108	rpp	0	0.9	-0.0175	0.0175	-0.0525 -0.0175
С						
201	rpp	0	0.9	0.0525	0.0875	-0.0875 -0.0525
202	rpp	0	0.9	0.0525	0.0875	-0.0525 -0.0175
203	rpp	0	0.9	0.0525	0.0875	-0.0175 0.0175
204	rpp	0	0.9	0.0525	0.0875	0.0175 0.0525
205	rpp	0	0.9	0.0525	0.0875	0.0525 0.0875
206	rpp	0	0.9	0.0175	0.0525	0.0525 0.0875
207	rpp	0	0.9	-0.01/5	0.0175	0.0525 0.0875
200	rpp	0	0.9	-0.0325 -	-0.0175	0.0525 0.0875 0.0525 0.0875
210	rpp	0	0.9	-0 0875 -	-0 0525	0.0175 0.0525
211	rpp	0	0.9	-0.0875 -	-0.0525	-0.0175 0.0175
212	rpp	0	0.9	-0.0875 -	-0.0525	-0.0525 -0.0175
213	rpp	0	0.9	-0.0875 -	-0.0525	-0.0875 -0.0525
214	rpp	0	0.9	-0.0525 -	-0.0175	-0.0875 -0.0525
215	rpp	0	0.9	-0.0175	0.0175	-0.0875 -0.0525
216	rpp	0	0.9	0.0175	0.0525	-0.0875 -0.0525
С						
301	rpp	0	0.9	0.0875	0.1225	-0.1225 -0.0875
302	rpp	0	0.9	0.0875	0.1225	-0.0875 -0.0525
303	rpp	0	0.9	0.0875	0.1225 0.1225	-0.0525 -0.0175 -0.0175 -0.0175
304	rpp	0	0.9	0.0875	0.1225 0.1225	0.0175 0.0175
306	rpp	0	0.9	0.0875	0.1225	0.0525 0.0525
307	rpp	0	0.9	0.0875	0.1225	0.0875 0.1225
308	rpp	0	0.9	0.0525	0.0875	0.0875 0.1225
309	rpp	0	0.9	0.0175	0.0525	0.0875 0.1225
310	rpp	0	0.9	-0.0175	0.0175	0.0875 0.1225
311	rpp	0	0.9	-0.0525 -	-0.0175	0.0875 0.1225
312	rpp	0	0.9	-0.0875 -	-0.0525	0.0875 0.1225
313	rpp	0	0.9	-0.1225 -	-0.0875	0.0875 0.1225
314	rpp	0	0.9	-0.1225 -	-0.0875	0.0525 0.0875
315 217	rpp	U	0.9	-0.1225 -	-0.0875	U.UI/5 U.U525
ン⊥り ス1フ	тbb	0	0.9	-0.1225 -	-U.UØ/3 -N N875	-0.01/3 $0.01/5-0.0525$ -0.0175
J⊥/ 31 Q	rpp rpp	0	0.9 0 9	-0.1220 -	-0 0875	-0.0875 - 0.0175
319	rpp	0	0.9	-0.1225 -	-0.0875	-0.1225 - 0.0875
320	rpp	0	0.9	-0.0875 -	-0.0525	-0.1225 -0.0875
321	rpp	0	0.9	-0.0525 -	-0.0175	-0.1225 -0.0875
322	rpp	0	0.9	-0.0175	0.0175	-0.1225 -0.0875
323	rpp	0	0.9	0.0175	0.0525	-0.1225 -0.0875

324	rpp	0	0.9	0.0525	0.0875	-0.1225	-0.0875
С							
401	rpp	0	0.9	0.1225	0.1575	-0.1575	-0.1225
402	rpp	0	0.9	0.1225	0.1575	-0.1225	-0.0875
403	rpp	0	0.9	0.1225	0.1575	-0.0875	-0.0525
404	rpp	0	0.9	0.1225	0.1575	-0.0525	-0.0175
405	rpp	0	0.9	0.1225	0.1575	-0.0175	0.0175
406	rpp	0	0.9	0.1225	0.1575	0.0175	0.0525
407	rpp	0	0.9	0.1225	0.1575	0.0525	0.0875
408	rpp	0	0.9	0.1225	0.1575	0.0875	0.1225
409	rpp	0	0.9	0.1225	0.1575	0.1225	0.1575
410	rpp	0	0.9	0.0875	0.1225	0.1225	0.1575
411	rpp	0	0.9	0.0525	0.0875	0.1225	0.1575
412	rpp	0	0.9	0.0175	0.0525	0.1225	0.1575
413	rpp	0	0.9	-0.0175	0.0175	0.1225	0.1575
414	rpp	0	0.9	-0.0525	-0.0175	0.1225	0.1575
415	rpp	0	0.9	-0.0875	-0.0525	0.1225	0.1575
416	rpp	0	0.9	-0.1225	-0.0875	0.1225	0.1575
417	rpp	0	0.9	-0.1575	-0.1225	0.1225	0.1575
418	rpp	0	0.9	-0.1575	-0.1225	0.0875	0.1225
419	rpp	0	0.9	-0.1575	-0.1225	0.0525	0.0875
420	rpp	0	0.9	-0.1575	-0.1225	0.0175	0.0525
421	rpp	0	0.9	-0.1575	-0.1225	-0.0175	0.0175
422	rpp	0	0.9	-0.1575	-0.1225	-0.0525	-0.0175
423	rpp	0	0.9	-0.1575	-0.1225	-0.0875	-0.0525
424	rpp	0	0.9	-0.1575	-0.1225	-0.1225	-0.0875
425	rpp	0	0.9	-0.1575	-0.1225	-0.1575	-0.1225
426	rpp	0	0.9	-0.1225	-0.0875	-0.1575	-0.1225
427	rpp	0	0.9	-0.0875	-0.0525	-0.1575	-0.1225
428	rpp	0	0.9	-0.0525	-0.0175	-0.1575	-0.1225
429	rpp	0	0.9	-0.0175	0.0175	-0.1575	-0.1225
430	rpp	0	0.9	0.0175	0.0525	-0.1575	-0.1225
431	rpp	0	0.9	0.0525	0.0875	-0.1575	-0.1225
432	rpp	0	0.9	0.0875	0.1225	-0.1575	-0.1225
С							
501	rpp	0	0.9	0.1575	0.1925	-0.1925	-0.1575
502	rpp	0	0.9	0.1575	0.1925	-0.1575	-0.1225
503	rpp	0	0.9	0.1575	0.1925	-0.1225	-0.0875
504	rpp	0	0.9	0.1575	0.1925	-0.0875	-0.0525
505	rpp	0	0.9	0.1575	0.1925	-0.0525	-0.0175
506	rpp	0	0.9	0.15/5	0.1925	-0.01/5	0.01/5
507	rpp	0	0.9	0.1575	0.1925	0.0175	0.0525
508	rpp	0	0.9	0.15/5	0.1925	0.0525	0.08/5
509	rpp	0	0.9	0.15/5	0.1925	0.08/5	0.1225
51U	rpp	0	0.9	0.1575	0.1925	0.1225	0.15/5
511	rpp	0	0.9	0.15/5	0.1925	0.1575	0.1925
512	rpp	0	0.9	0.1225	0.15/5	0.1575	0.1925
513 514	rpp	0	0.9	0.08/5	0.1225	U.15/5	U.1925
J⊥4 ⊑1⊑	трр	0	0.9	0.0525	0.08/5	U.15/5	U.1925
51C	тbb	0	0.9	U.UL/5	U.UJZJ 0 0175	U.13/3 0 1575	U.1923
510 517	трр	0	0.9	-0.01/5	U.UL/3 _0 0175	0.15/5 0.1575	0.1005
510	тbb	0	0.9	-0.0525	-0.01/3	0.15/5 0 1575	0.1923
J⊥0 510	тbb	0	0.9	-0.00/5	-0.0323	0.1575	0.1925
520	- PP	0	0.9	-0.1223	-0.1225	0.1575	0.1925
520	- PP	0	0.9	_0 1025	-0 1575	0.1575	0.1925
522	- PP rnn	0	0.9	-0.1925	-0.1575	0.1225	0.1575
		0	· · ·	0.1020	0.20,0		

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp		0.9 0.9		1925 1925 1925 1925 1925 1925 1925 1925		. 1575 . 1575 . 1575 . 1575 . 1575 . 1575 . 1575 . 1575 . 1575 . 0875 . 0175 . 0175 . 0875 . 0875 . 0875 . 0875 . 1225 . 0875 . 1275		0.087 0.052 0.017 0.052 0.052 0.122 0.122 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192	$\begin{array}{cccccccccccccccccccccccccccccccccccc$).122).08).052).01).052).052).052).052).15).15).15).15).15).15).15).15	25 75 255 755 755 755 755 755 755 755 75			
c ph cut: phys imp: mode c m2 7 c m3 m3 5 m4 1 m5 1 m5 1	ysic p j e j p 1 p 6 1000 800 5000 4000 4000	cs (0.(0.(2j 1 125 125) 2) 00) 1) 2) 1) 1	cards 010 010 5 r 0 5 r 0 1400 1 53 5 300 1002 8000	00 1 3000 00 1 1 6 0 2	8016 2 \$	5 5 \$ 1 5 Ces 5 Amo 5 gla \$ al	Mercu sium orpho ass 1 lumir	ury Iod ous rho num	Iodic ide r silic = 2.1 rho =	de Ho cho = con : L8 g, = 2.	gI2 : = 4.! rho = /cc 70 g,	rho = 51 g = 2.	= 6. /cm3 35 g	36 g/a /cc	cm3
c sdef c sc c si c sp c si3 sp3 si4 sp4 c c ta f1:p c1 0 c ab	sur 1 c 1 1 -0. 0 1 -0. 0 1 11ie 4 . 1. ove	2 2060 .(017 .017 	dir= 0, e1 34695 0078 75 0 75 0	=1 ve rdtma 5 .40 .00 .0175 .0175	ec=1 ann, 5720 0040 5	0 0 1998 .820 .005	x=- 35 ga 618 1 550	-3.2 amma 1.17 99.	532 <u>}</u> s/dis 323 1 860 sure	y=d3 3 99.9	z=d. 251 2 98	4 2.15 .00	erg= 870 08 lost	0.1 2.505 .00000	75)9
c Ch +f8:	arge pe 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	e de 11 201 211 301 311 321 401	202 101 202 212 302 312 322 402	itior 102 203 213 303 313 323 403	103 204 214 304 314 324 404	104 205 214 305 315 405	105 206 215 306 316 406	106 207 216 307 317 407	107 208 308 318 408	108 209 309 319 409	210 310 320 410				

Appendix B The 3-D detector blur plots for the "pen_rad" simulations.

Figure 10 – First view of the pen_rad detector blur.

Figure 11 – Second view of the pen_rad detector blur.

Figure 12 – View of the pen_rad detector blur along the incident energy axis.

Figure 13 - 3-D EXCEL plot of the "pen_rad" detector blur.

Figure 14 – 3-D EXCEL plot of the "pen_rad" detector blur.

Appendix C The 3-D detector blur plots for the "pix_rad" simulations.

Figure 15- First view of the pix_rad detector blur.

Figure 16 - Second view of the pix_rad detector blur.

Figure 18 – 3-D EXCEL plot of "pix_rad" detector blur.

Figure 19 - 3-D EXCEL plot of "pix_rad" detector blur.

Appendix D The 3-D detector blur plots for the "pix_pix" simulations.

Figure 20 – First view of the pix_pix detector blur.

Figure 21 – Second view of the pix_pix detector blur.

Figure 22 – View of the pix pix detector blur along the incident energy axis.

Figure 23- 3-D EXCEL plot of the "pix_pix" detector blur.

Figure 24 – 3-D EXCEL plot of the "pix_pix" detector blur.

Figure 25 – First view of the pen_pix detector blur.

Figure 26 – Second view of the pen_pix detector blur.

Figure 28 – 3-D EXCEL plot of the "pen_pix" detector blur.

Figure 29- 3-D EXCEL plot of the "pen pix" detector blur.

¹ Saint-Gobain Corp., "Bicron CsI Detctor Manual", plot obtained from Hans Snyder. ² Duane Flamig, Personal communication, November 2007.

³ Avneet Sood, Personal communication, November 2007