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Increasing MCNP5 Calculation Speed by Compiler Optimization 

 

 

Abstract 
 

 The speed performance of MCNP5 is examined using four different compilers 

with their different optimization options on the Lambda Linux computing cluster.  Intel, 

Portland, Absoft, and Lahey compilers are compared on calculation times by computing 

eigenvalue and fixed-source problems with their default options as well as their 

optimizations that maintain solution accuracy.  By choosing certain optimization options, 

a reduction of run time of around 40% was seen in some of the MCNP5 builds for a 

single processor. 

 

Introduction 
 

  While work has been done in optimizing the MCNP code for speed, there has 

been less attention given to optimization of the code by compilers.  To determine whether 

different compilers create significantly different run time speeds, four compilers (Intel, 

Portland, Absoft, and Lahey (Appendix 2)) are used to build MCNP5 on the Lambda 

Linux system (Appendix 1).  These MCNP5 builds are then speed tested on an 

eigenvalue and fixed-source problem (Problem details in Appendix 4).  All of the timed 

problems are then normalized to the performance of the Intel default build for the timing 

problem in question for cross compiler comparisons.  Besides the default builds for each 

compiler, compiler specific optimizations are examined as well.  All of the timed 

problems listed in the discussion section below passed their test for accuracy. 

 

 Guaranteeing the accuracy of the solution can be difficult when optimizing codes.  

Optimizing written code with a compiler generally means that the order in which the code 

was written will be rearranged in hopes of better stream lining the memory access and 

computation.  A side effect of this process is that calculations that were coded to work 

one way may inadvertently be rearranged to produce very different effects, i.e., a wrong 

answer.  To insure the accuracy of the MCNP build, there are 42 test problems that are 

run at the end of an installation and are compared to the anticipated outputs and MCTAL 

files.  If the MCTAL files or the Outputs files differ significantly from the expected 

values, the MCNP5 build is deemed unusable. 

 

Discussion 
 

 The running times for the MCNP5 builds on the Lambda cluster are shown in 

Tables (1(a,b) – 4(a,b)).  Run times are recorded in seconds and Rtime and Itime are 

relative speed indicators.  Rtime is the relative speed of the compiler with its default 

options, while Itime is the relative speed with respect to the Intel compiler defaults.  Itime 

allows for cross compiler comparisons of calculation speed.  In the comparison, it should 

be noted that the computation time recorded can vary by a couple of seconds each 

instance the MCNP5 build in question is run.  Therefore, slight differences in calculation 

time may not indicate an actual speed increase.  The default compiler options (default 



build) are shown in gray, the optimal speed build for the compiler is shown in bold, and 

details of the options listed in the following tables may be examined in Appendix 3. 

 

 Intel’s Fortran compiler showed the most positive response to optimization.  The 

MCTAL files passed for all of its general O optimizations as well as some of the more 

advanced rearrangement schemes.  As shown in Table 1a, optimized MCNP5 builds were 

doing the same eigenvalue problem in about 58% of the time of the default build.  Table 

1b also shows that the fixed source problem has similar success in completing the 

problem around 51% of the original time.  

 

Table 1a: Intel Build Eigenvalue Test 

Intel option 
time 
(s) Rtime Itime 

O0 404.62 100.0% 100.0% 

O1 262.69 64.9% 64.9% 

O2 263.95 65.2% 65.2% 

O3  264.03 65.3% 65.3% 

O0 prof_gen prof_use ipo 402.71 99.5% 99.5% 

O1 prof_gen prof_use ipo 237.99 58.8% 58.8% 

O2 prof_gen prof_use  248.83 61.5% 61.5% 

O2 prof_gen prof_use ipo 234.55 58.0% 58.0% 

O2 prof_gen prof_use ipo tpp6 237.08 58.6% 58.6% 

O3 prof_gen prof_use ipo 240.45 59.4% 59.4% 

 

Table 1b: Intel Build Fixed Source Test 

Intel option 
time 
(s) Rtime Itime 

O0 136.87 100.0% 100.0% 

O1 89.75 65.6% 65.6% 

O2 89.7 65.5% 65.5% 

O3 89.76 65.6% 65.6% 

O0 prof_gen prof_use ipo 135.44 99.0% 99.0% 

O1 prof_gen prof_use ipo 74.95 54.8% 54.8% 

O2 prof (gen use)  72.23 52.8% 52.8% 

O2 prof_gen prof_use ipo 74.96 54.8% 54.8% 
O2 prof_gen prof_use ipo 
tpp6 69.21 50.6% 50.6% 

O3 prof_gen prof_use ipo 72.33 52.8% 52.8% 

 

 The Portland compiler had a few more difficulties in being optimized.  Since the 

O2 optimization failed for the compiler, much of the advanced code rearrangement could 

not be used since the O2 option is essential for it.  Even so, the default Portland MCNP5 

build performed 13% better than the default Intel build on the eigenvalue problem shown 

in Table 2a.  The most optimized run took only 77% of the time of the default Intel run 

and 92% of the time of the default Portland run. 

 

 

 

 



Table 2a: Portland Build Eigenvalue Test 

Portland option 
time 
(s) Rtime Itime 

O0 349.97 103.5% 86.5% 

O1 309.7 91.6% 76.5% 

O0 Mrecursive 353.88 104.6% 87.5% 

O1 Mprof 415.93 123.0% 102.8% 

O1 Mrecursive 318.26 94.1% 78.7% 

O1 tp px 338.27 100.0% 83.6% 

 

 Fixed source runs by the Portland build also demonstrate a good speed increase 

over the default Intel build as well as with respect to its own default build.  The fixed 

source problem run time was only 59% of a default Intel build and was 85% of the 

default Portland build.  This shows the fixed source problem was more responsive to 

optimization.  As a side note, the Portland runs appeared to be one of the slowest in the 

timed tests of the 42 test problems.  This is most likely due to the way that the Portland 

build loads and unloads information and therefore while Portland is good for long runs, it 

should not be used in fast running problems that must be completed over and over. 

 

Table 2b: Portland Build Fixed Source Test 

Portland option 
time 
(s) Rtime Itime 

O0 99.08 105.2% 72.4% 

O1 80.46 85.4% 58.8% 

O0 Mrecursive 103.85 110.3% 75.9% 

O1 Mprof 164.53 174.7% 120.2% 

O1 Mrecursive 84.75 90.0% 61.9% 

O1 tp px 94.19 100.0% 68.8% 

 

 Absoft’s compiler had similar troubles to Portland’s compiler.  Most of the 

advanced optimizations did not pass the MCTAL tests since its O2 optimization, which is 

required for most optimizations, failed.  Overall, Absoft’s compiler performed poorly in 

optimizing MCNP.  Unfortunately, the default build for Absoft seemed to be the fastest 

that the code could be run for both fixed source and eigenvalue problems while 

maintaining accuracy.  The default Absoft runs were comparable to the default Intel runs. 

 

Table 3a: Absoft Build Eigenvalue Test 

Absoft option 
time 
(s) Rtime Itime 

O0 548.35 136.7% 135.5% 

O1 407.16 101.5% 100.6% 

O1 cpu:p6 401.06 100.0% 99.1% 

O1 fpic 481.02 119.9% 118.9% 

O1 B24 398.2 99.3% 98.4% 

O1 P 444.18 110.8% 109.8% 

 

 

 

 



Table 3b: Absoft Build Fixed Source Test 
 
Absoft option 

time 
(s) Rtime Itime 

O0 196.72 140.3% 143.7% 

O1 140.36 100.1% 102.5% 

O1 cpu:p6 140.24 100.0% 102.5% 

O1 fpic 173.46 123.7% 126.7% 

O1 B24 142.01 101.3% 103.8% 

O1 P 180.64 128.8% 132.0% 

 

 Lahey’s compiler was most difficult to ensure accuracy.  The default runs of the 

Lahey compiler generate a number of differences in the MCTAL files.  On top of that, the 

eigenvalue run produces a different eigenvalue, 0.99825, than all of the other compilers 

with their options which yielded the same value, 0.99662.  Accepting that the default 

Lahey MCTAL files were so different to begin with, I continued with optimizations that 

yielded the differences in the same ball park. 

 

 The Lahey compiler runs for the eigenvalue problems were similar to the default 

Intel runs.  The fastest optimization yielded a run time that was 93% of the default Intel 

run time.  However, the fixed source problems were considerably slower.  Even the most 

optimized Lahey run took longer than the default Intel run.  The default Lahey run for the 

fixed source problem ran 50% longer than the Intel one.     

 

Table 4a: Lahey Build Eigenvalue Test 

Lahey option 
time 
(s) Rtime Itime 

o0 454.95 100.0% 112.4% 

o1 377.67 83.0% 93.3% 

o0 tpp 456.24 100.3% 112.8% 

o0 prefetch 374.88 82.4% 92.6% 

o0 unroll 4 453.5 99.7% 112.1% 

o0 li 454.96 100.0% 112.4% 

o0 x arg 451.81 99.3% 111.7% 

o0 tp 456.29 100.3% 112.8% 

o1 prefetch 379.76 83.5% 93.9% 

o1 tp 371.72 81.7% 91.9% 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4b: Lahey Build Fixed Source Test 

Lahey option 
time 
(s) Rtime Itime 

o0 202.65 100.00% 148.10% 

o1 170.17 84.00% 124.30% 

o0 tpp 199.09 98.20% 145.50% 

o0 prefetch 173.87 85.80% 127.00% 

o0 unroll 4 203.03 100.20% 148.30% 

o0 li 203.51 100.40% 148.70% 

o0 x arg 204.47 100.90% 149.40% 

o0 tp  202.84 100.10% 148.20% 

o1 prefetch 172.9 85.30% 126.30% 

o1 tp 170.05 83.90% 124.20% 

 

 

Conclusion 
 

 An optimized Intel compiler build solved both fixed source and eigenvalue 

problems with run times less than 60% of the default builds.  Luckily, for this increased 

speed in calculation, there appears to be no noticeable change in accuracy of the solution 

according to the MCTAL files.  Portland’s compiler also made fast MCNP5 builds.  The 

optimized Portland runs ran in less than 80% time of the default Intel eigenvalue runs and 

less than 60% of the fixed source run time.  It may be possible to increase the speed of 

the Portland compiler by advanced optimization options if the Portland O2 option would 

pass the MCTAL file test. 

 

 Absoft’s compiler did not perform as well as Intel’s or Portland’s.  Even its 

optimized runs were comparable to the default Intel ones.  Like Portland, Absoft failed its 

O2 optimizations and therefore cut off many of the code rearrangement options.  

Similarly, Lahey also failed the O2 optimization.  However, besides giving large 

MCTAL differences even in its default run, its optimized run times still were comparable 

to Intel’s default for an eigenvalue problem and near 50% longer in calculating a fixed 

source problem. 

 

 In conclusion, Intel’s compiler optimized MCNP5 build performed the best out of 

all the compiler builds.  These results, however, are limited in lifetime.  With 

improvements in compilers as well as the operating systems and hard ware of the system 

in which they are being run, these results will become obsolete.  It should also be noted 

that these results pertain only to the MCNP5 source code and may vary significantly with 

different types of codes. 

 

 

 

 

 

 



Appendix 
 

1.  Computer type Lambda 

 

Each backend node is a Compaq DL360 with two Intel Pentium-3, 1 GHz processors. 

Each backend node has 2 disk drives - a 9 GB system disk and an 18 GB scratch disk. 

The Lambda System is running RedHat Linux 2.4.10. 

 

2. Compiler versions 

 

 2.a  Intel -- intel-fortran_8.1.023 

 

 2.b  Portland -- pgi_5.2-4 

 

 2.c  Absoft -- absoft_9.0 

 

 2.d  Lahey -- lahey_6.2c 

 

3.  Compiler Options 

 

3.a  Intel 

 

-O0       Disables all -O<n> optimizations.  On IA-32 and  Intel(R)  EM64T 

              systems, this option sets the -fp option. 

 

-O1        On  IA-32  and Intel(R) EM64T systems, enables optimizations for 

              speed. Also disables intrinsic recognition and the  -fp  option. 

              This option is the same as the -O2 option. 

  

              On  Itanium-based  systems, the -O1 option enables optimizations 

              for server applications (straight-line and branch-like code with 

              a  flat  profile).  Enables optimizations for speed, while being 

              aware of code size. For example, this option  disables  software 

              pipelining and loop unrolling. 

 

-O2  or  -O 

              This option is the default for optimizations.  However, if -g is 

              specified, the default is -O0. 

  

              On IA-32 and Intel(R) EM64T systems, this option is the same  as 

              the -O1 option. 

  

              On  Itanium-based  systems, the -O2 option enables optimizations 

              for speed, including global code scheduling,  software  pipelin- 

              ing, predication, and speculation. It also enables: 

  



              o Inlining of intrinsics 

  

              o The  following  capabilities  for  performance  gain: constant 

                propagation, copy propagation, dead-code  elimination,  global 

                register allocation, global instruction scheduling and control 

                speculation, loop unrolling, optimized code selection, partial 

                redundancy  elimination, strength reduction/induction variable 

                simplification, variable renaming,  exception  handling  opti- 

                mizations,  tail recursions, peephole optimizations, structure 

                assignment lowering and optimizations, and dead store elimina- 

                tion. 

 

-O3    Enables  -O2  optimizations  plus more aggressive optimizations, 

              such as prefetching, scalar replacement,  and  loop  transforma- 

              tions.  Enables  optimizations  for  maximum speed, but does not 

              guarantee higher  performance  unless  loop  and  memory  access 

              transformations take place. 

  

              On IA-32 and Intel(R) EM64T systems, when the -O3 option is used 

              with the -ax and -x options, it causes the compiler  to  perform 

              more aggressive data dependency analysis than for -O2, which may 

              result in longer compilation times. 

  

              On Itanium-based systems, the -O3 option  enables  optimizations 

              for technical computing applications (loop-intensive code): loop 

              optimizations and data prefetch. 

 

-tpp6  (i32 only) 

              Optimizes for the Intel(R) Pentium(R) Pro,  Intel(R)  Pentium(R) 

              II and Intel(R) Pentium(R) III processors. 

 

-prof_gen 

              Instruments a program for profiling. 

  

-prof_use 

              Enables use of profiling information during optimization. 

 

-ipo[n] 

              Enables  multifile  interprocedural  (IP) optimizations (between 

              files). When you specify  this  option,  the  compiler  performs 

              inline function expansion for calls to functions defined in sep- 

              arate files. 

 

3.b  Portland 

 

-O[level] 



              Set the optimization level.  If -O is not specified, then the 

              default level is 1 if -g is not specified, and 0 if -g is 

              specified.  If a number is not supplied with -O then the 

              optimization level is set to 2.  The optimization levels and 

              their meanings are as follows: 

  

              0        A basic block is generated for each C statement. No 

                        scheduling is done between statements. No global 

                        optimizations are performed. 

  

              1        Scheduling within extended basic blocks is performed. 

                        Some register allocation is performed. No global 

                        optimizations are performed. 

 

-Mrecursive -Mnorecursive (default) 

              Allocate (don't allocate) local variables on the stack, thus 

              allowing recursion. SAVEd, data-initialized, or namelist members 

              are always allocated statically, regardless of the setting of 

              this switch. 

 

-Mprof[=option[,option,...]] 

              Set profile options. Normally, the -ql, -qp, or -pg switches are 

              used for this; however, on some systems, it is desirable to 

              override the default method of profiling. See the PGI User's 

              Guide, or the system profiler manual, for further information. 

 

-tp px   

              blended code generation that will work on any x86-compatible processor 

 

3.c  Absoft 

 

-O0       no optimizations 

 

-O1       Turn on basic optimizations to make executable programs run 

              faster.  The basic optimizations are: common subexpression elim- 

              ination, constant propagation, and branch straightening. 

 

-cpu:type 

              Use the -cpu:type option to generate instructions specific to a 

              particular processor. The recognized type arguments are: 

  

              486      non-Pentium class Intel processor 

               p5      first generation Pentium 

               p6      Pentium Pro, II, and III 

               p7      Pentium 4 

               athlon  AMD Athlon and Duron 



               host     automatically  establishes  processor  based  on   the 

               machine  that the program is compiled on. If the CPU type cannot 

               be established, p5 is assumed.B24 

 

-P           Cause the compiler to instrument the  code  for  profiling  with 

               gprof(1).Fpic 

 

-B86       Forces the compiler to remove indexed address expressions from within loops.  

For the X86, this often has the desirable effect of reducing instruction stalls for 

floating point access.  However, because the index must still be calculated, 

additional integer operations must be performed.  If the application needs to be 

as fast as possible, try running once with this option and once without.  

 

3.d  Lahey 

 

--o0 | -O0              

   no optimizations 

 

--o1 | -O               

   classical, memory, and interprocedural optimizations 

 

--tp                    

   generate Pentium code 

 

--tpp                   

   generate Pentium Pro code 

 

--[n]prefetch           

   Athlon and Pentium III optimizations 

 

--[n]unroll <value>     

   perform/control loop unrolling 

 

--[n]li                 

   Lahey intrinsic procedures 

 

-x arg                 

   inline code 

 

4.  Problem Details 

 

4.a  Eigenvalue Problem 

 

The eigenvalue problem run was BAWXI2i which came from the MCNP criticality 

validation suite.  The only change was the kcode card which became 

“kcode 5000 1.0 10 50” 



 

 4.b  Fixed Source Problem 

 

The fixed source problem came from problem 12 of the 42 test problems found in 

testinp.tar.  The only change was the nps card which became 

“nps 105000” 
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