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PULSE-HEIGHT TALLY VARIANCE REDUCTION IN MCNP

by 

Thomas E. Booth

ABSTRACT 

This report describes the variance reduction methods implemented

for the pulse-height tally (f8) in MCNPTM version 5.  The method

currently has been coded for photon-only problems without

bremsstrahlung; the thick-target bremsstrahlung sampling is not

microscopically correct.  Note that coupled photon/electron pulse-

height tally variance reduction is planned for the future.

________________________

I. INTRODUCTION

Two different approaches for applying variance reduction with pulse height tallies (f8) in

MCNP were developed in the early 1990's.1  The “deconvolution approach” was selected for

implementation in MCNP.  Reference 1 describes only integer splitting, but the implementation in

MCNP also includes: 

1) noninteger splitting (IMP card) 

2) implicit capture and weight cutoff (CUT card) 

3) weight window (WWN card) 

4) forced collisions (FCL card) 

5)  exponential transform (EXT card) 

6) DXTRAN (DXT card) 

MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory.
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This report assumes the reader has understood pages 1-42 of Ref. 1, and this report modifies the

concepts therein so that they can be applied to items 1-6 above.

Instead of presenting the material in the most concise and general form, the report

proceeds in a tutorial manner starting with the easiest concepts.  The report first discusses the

biasing of a single physical tree with no variance reduction branching (e.g., source biasing and

exponential transform biasing).  Second, the report discusses variance reduction splits for which

the sum of the split branch weights is equal to the weight of the presplit particle (e.g., n:1 integer

splitting, forced collision, and implicit capture).  Third, the report discusses variance reduction

splits for which the sum of the split branch weights is not equal to the weight of the presplit

particle (e.g., noninteger splitting and DXTRAN).

Note that DXTRAN refers to the variance reduction method whereas dxtran and

nondxtran are adjectives used to label particles, spheres, and branches associated with the

DXTRAN method.

II. BIASING A SINGLE PHYSICAL TREE—I 

This section ignores variance reduction branching and considers the effects of biasing on a

single physical tree.  For example, if the “distance to collision” is sampled using the exponential

transform in MCNP, then the probability of sampling any particular physical tree has been altered

from the analog sampling and the tally score must be weighted by the ratio of the true probability

that the tree occurs to the biased probability that the tree occurs.  Consider the tree of Fig. 1.  Note

that there are three types of nodes, the source node, physical branch nodes, and physical

termination nodes.  In general there can be many surface crossings and many collisions between

nodes.  For instance, suppose that branch 2 under node 1 (abbreviated b12) had three distance-to-

collision samplings on the branch.  That is, between node 1 and node 2 there were three biased

distance to collision samplings.  Let  and  be the true pdf (probability density function) and

the biased pdf for the  distance to collision sampling.  (Note that in MCNP if the distance to

collision is greater than the distance to boundary, then the particle is put on the boundary without

collision.  That is, one possible outcome of the “distance to collision” sampling is that no collision

occurs.)  Because of the biasing, branch b12 occurs  times as often as it does

in an analog walk.  For this reason, branch b12 is assigned the “branch weight multiplier”

.  The entire physical tree has been made  

pi qi
ith

q1q2q3( ) p1p2p3( )⁄

w p1p2p3( ) q1q2q3( )⁄=
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(1)

times as likely to occur as in analog Monte Carlo. Thus, the collective weight of the tree is the

reciprocal of the probability change in Eq. 1.  That is, the collective weight of the tree is the

product of the branch weight multipliers 

(2)

Note that in the other (non f8) standard MCNP tallies, the tracks carry weights that

multiply the tally when the track tallies.  When a track's walk is made 5 times as likely to occur as

an analog walk, the track will carry a weight of 1/5 so that the expected track tally will be

preserved.  The difference here is that for the f8 tally it is the tree that tallies so that the weight is

assigned to the tree.  If the entire tree has been made 5 times as likely to occur as the analog tree,

then the tree will carry a weight of 1/5 so that the expected tree tally will be preserved.  The tree

has a “collective weight” associated with all physical branches of the tree.   

1
w01w11w12w21w22
---------------------------------------------

wc w01w11w12w21w22  .=

Fig. 1.    Typical Physical Tree.
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Note that both the track weights and the collective tree weight are being adjusted, in

different ways, by the same weight factors.  As the calculation proceeds, any track's weight is the

product of all the branch weight multipliers in a direct path back to the source.  For example, the

track weight upon entering node 2 in Fig. 1 is 

III. BIASING A SINGLE PHYSICAL TREE—II 

In the previous section, branch weights were presented as a way to account for samplings

from nonanalog pdfs.  In standard variance reduction the track weights are modified for a variety

of purposes, not just to account for samplings from nonanalog pdfs.  The situation is similar for

branch weight multipliers.  Some examples follow.  

Consider the physical tree under construction in Fig. 2.  The current track being followed

is b21, with b22 and b11 in the bank.  Suppose that a roulette game is played on b21.  That is, with

probability  the track survives the roulette and with probability  the track does not survive.

If the track survives, the branch weight multiplier is multiplied by .  If the track does not

survive, the branch weight multiplier is multiplied by 0.  This terminates the track because the

w01w12.

s 1 s–

1 s⁄

Fig. 2.    Physical Tree Under Construction.
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track is the product of all branch weight multipliers traced back to the source.  Note that this track

may already have tallied to non-f8 tallies and these tallies are not affected by the track's

termination.  Furthermore, branches b22 and b11 are not affected for non-f8 tallies.  

The situation is very different for the pulse height tally.  First, the pulse height tally cannot

be made until the physical tree is complete, so there have not been any tallies yet made for a

physical tree under construction.  Second, once b21 has been rouletted, the tree is no longer a

physically generated tree.  That is, nature does not play roulette; to be physically relevant the

pulse height tally energy bin selection must include the energy deposited by branch b21 (and all

branches emanating from branch b21).  Because the tree is no longer physically relevant for pulse

height tallies, the tree needs to have a tree weight of zero.  Because the tree weight is the product

of the branch weight multipliers (e.g., see Eq. 2), assigning a branch weight multiplier 

will make the tree weight .  Note that although assigning a branch weight multiplier

makes the tree weight zero, the track weights not associated with branch b21 are unaffected so

that the particle tracks still contribute to the non f8 tallies.  If only f8 tallies were desired, the

tracking could be stopped at this point.  (Currently the tracking is not stopped because I have

presumed that users will have a mixture of f8 and non f8 tallies.  If the future shows that there are

a significant number of f8 tallies without non f8 tallies, some extra logic could be inserted to stop

the tracking as soon as possible.)

If branch b21 survives (with probability ) the roulette game, then the new branch weight

multiplier becomes .  Because the tree weight is the product of the branch weight

multipliers, the tree weight has also been multiplied by ; that is, .  Note that the

expected tree weight for the tree is preserved.  That is, with probability  the tree weight is

 and with probability  the tree weight is .  The expected tree weight is thus: 

(3)

and thus the roulette game is fair.

 The roulette game above is a special case of a more general game in which the branch

weight multiplier is sampled between two possibilities.  Let the current branch weight multiplier

be  and let the two possible post-game branch weight multipliers be  and  with 

w21 0=

wc
new 0=

s

w12
new w12 s⁄=

1 s⁄ wc
new wc s⁄=

1 s–( )

0 wc× s 1 s⁄( )wc

wc
new〈 〉 1 s–( ) 0 wc×( ) s 1 s⁄( )wc( )+ wc= =

w a b
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(4)

Let the probabilities of picking  and  be

(5)

(6)

The expected branch weight multiplier is

(7)

Because the tree weight is proportional to the branch weight multiplier, the expected tree weight

will also be preserved.  With probabilities  and  the tree weight will be

(8)

(9)

The expected tree weight is

(10)

IV.  VARIANCE REDUCTION SPLITS I

Reference 1 showed that simple integer splitting could be correctly treated by randomly

sampling for one branch of each split.  The arguments in this section are very similar to those in

Ref. 1.  It is the author’s intention that this report mostly be self-contained, but far more details are

given in Ref. 1.  Thus, if the reader has difficulty with this section, it may be useful to read Ref. 1.

This section considers track splitting techniques that have the same total track weight

before and after the split.  For example, an  integer split of a track of weight  produces 

split tracks of weight  so the total weight both before and after the split is .  Other

a w b< <   .

a b

p1
b w–
b a–-------------=

p2
w a–
b a–-------------  .=

wnew〈 〉 p1a p2b+ b w–
b a–------------- a w a–

b a–------------- b+ w  .= = =

p1 p2

wc1 wc a w⁄( )=

wc2 wc b w⁄( )  .=

wc
new〈 〉 p1w1c p2w2c+

wc
w------ w

new〈 〉 wc  .= = =

n:1 w n

w n⁄ w
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examples in MCNP are the forced collision split into collided and uncollided track weights and

the implicit capture split into captured and surviving track weights.  (Sections VI and VII will

treat noninteger splitting and DXTRAN which do not preserve the total post-splitting track

weight.)

 Consider Fig. 3.  The key to deciphering what tally the tree of Fig. 3 should post is to note

that nature chooses exactly one branch under each variance reduction node.  In Fig. 3, there are

four possible choices of trees that physically could have occurred.  These four trees are shown in

Figs. 3.1-3.4.  Note that any of the variance reduction splits can be ‘‘undone’’ by reassigning the

total weight to one of the split branches.  For example, suppose branch b11 is the uncollided part

of a forced collision and branch b12 is the collided part.  If  is the track weight at node 1 and 

is the number of free paths to the cell boundary, then the branch weight multipliers assigned to the

uncollided and collided branches are

(11)

  (12)

where  is the probability that branch  under variance reduction node  is sampled in an analog

sampling.  Now, sample one of the branches according to , and assign the total weight  to

the sampled branch.  Note that this is just a complicated way of doing analog sampling; that is,

some time is wasted, but in the end weight  reaches the boundary with probability 

and weight  collides with probability .  Returning to a general tree, if all the

variance reduction branches are sampled according to , then it is just the same as never having

done the variance reduction splits.  The physical tree of Fig. 3.1 is obtained by sampling the

branches b11 and b51 with probabilities  and .  That is, Fig. 3.1 occurs with probability

.  Similarly, Figs. 3.2 and 3.3 occur with probabilities  and .  If branch b12 is

sampled, then the split at node 5 never occurs, and Fig. 3.4 occurs with probability .  The sum

of the probabilities for Figs. 3.1-3.4 is              

 (13)

w1 λ

w11 λ–( )exp p11= =

w12 1 λ–( )exp– p12= =

pij j i

p1j w1

w1 λ–( )exp

w1 1 λ–( )exp–

pij

p11 p51

p11p51 p11p52 p11p53

p12

p11p51 p11p52 p11p53 p12+ + + p11 p51 p52 p53+ +( ) p12+ p11 p12+ 1  .= = =
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Fig. 3.    Tree with Variance Reduction Branches.

Fig. 3.1.  First Possible Physical Occurrence.
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Fig. 3.2.  Second Possible Physical Occurrence.

Fig. 3.3.  Third Possible Physical Occurrence.
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Let  be the energy deposited on branch bij between the two nodes of the branch.  If there were

no physical biasings in the problem, then all the branch weight multipliers would be one and, as in

Ref. 1, a ‘‘count’’ of unit weight is tallied in the bin determined by the sum of the deposited

energies.  That is, referring to Figs. 3.1-3.4, see Table I.

 

TABLE I
POSSIBLE PULSE HEIGHT ENERGIES DEPOSITED

energy deposited probability tally (tree weight)

1

1

1

1

Fig. 3.4.  Fourth Possible Physical Occurrence.

Eij

E01 E11 E51+ + p11p51

E01 E11 E52+ + p11p52

E01 E11 E53+ + p11p53

E01 E12 E21 E22+ + + p12
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Rather than sampling and tallying a unit hit to the appropriate energy bin, the expected

tally can be used.  That is, a tally is made for each of the trees of Figs. 3.1-3.4; see Table II. 

     

V. VARIANCE REDUCTION SPLITS AND BRANCH BIASING

In Sections II and III the branch weight multipliers were used on a single physical tree to

determine the tree’s tally.  In Section IV the branch weight multipliers (initially) were used as

probabilities to determine which tree occurred.  The two branch weight multiplier uses coexist in

the deconvolution patch.  That is, the branch weight multipliers contain both types of biasing

information.

 Reconsider Fig. 3.  Suppose that in addition to the variance reduction splits, there is a

physical branch weight multiplier as in Sections II and III.  In fact, let  be the splitting branch

weight multiplier (as in Section IV) and let  be the physical branch weight multiplier (as in

Sections II and III).  If the variance reduction splits are ‘‘undone’’ as in Section IV, the trees of

Figs. 3.1-3.4 still occur with the same probabilities as in Table I, but now they have physical

branch weight multipliers .  Applying the theory in Sections II and III to each of the four trees

gives Table III.

 Replacing the sampling in Table III with expected values in the same procedure as in

Section IV yields Table IV.

  

TABLE II
EXPECTED PULSE HEIGHT ENERGIES DEPOSITED

energy deposited probability tally (tree weight)

1

1

1

1

E01 E11 E51+ + p11p51

E01 E11 E52+ + p11p52

E01 E11 E53+ + p11p53

E01 E12 E21 E22+ + + p12

wij
s

wij
b

wij
b
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Because the split probabilities are the same as the split branch weight multipliers, i.e.,

(14)

Table IV can be rewritten as Table V. 

If one assigns a ‘‘split’’ branch weight multiplier of 1 to any branch that has not been split,

then one can define a total branch weight multiplier as the product of the physical branch weight

multiplier and the split branch weight multiplier.  That is,

TABLE III
POSSIBLE PULSE HEIGHT ENERGIES DEPOSITED WITH

PHYSICAL BRANCH WEIGHT MULTIPLIERS

energy deposited probability tally (tree weight)

TABLE IV
EXPECTED PULSE HEIGHT ENERGIES DEPOSITED WITH

PHYSICAL BRANCH WEIGHT MULTIPLIERS

energy deposited probability tally (tree weight)

1

1

1

1

E01 E11 E51+ + p11p51 w01
b w11

b w51
b

E01 E11 E52+ + p11p52 w01
b w11

b w52
b

E01 E11 E53+ + p11p53 w01
b w11

b w53
b

E01 E12 E21 E22+ + + p12 w01
b w12

b w21
b w22

b

E01 E11 E51+ + p11p51w01
b w11

b w51
b

E01 E11 E52+ + p11p52w01
b w11

b w52
b

E01 E11 E53+ + p11p53w01
b w11

b w53
b

E01 E12 E21 E22+ + + p12w01
b w12

b w21
b w22

b

wij
s pij  .=



13

(15)

 In Fig. 3,

(16)

because these branches are not below a variance reduction split node.  Using Eqs. 15 and 16,

Table V becomes Table VI.

     

TABLE V
MODIFICATION OF TABLE IV

energy deposited probability tally (tree weight)

1

1

1

1

TABLE VI
PULSE HEIGHT TALLIES FOR FIGURE 3

energy deposited probability tally (tree weight)

1

1

1

1

wij wij
s wij

b   .=

w01
s w21

s w22
s 1= = =

E01 E11 E51+ + w11
s w51

s w01
b w11

b w51
b

E01 E11 E52+ + w11
s w52

s w01
b w11

b w52
b

E01 E11 E53+ + w11
s w53

s w01
b w11

b w53
b

E01 E12 E21 E22+ + + w12
s w01

b w12
b w21

b w22
b

E01 E11 E51+ + w01w11w51

E01 E11 E52+ + w01w11w52

E01 E11 E53+ + w01w11w53

E01 E12 E21 E22+ + + w01w12w21w22
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 Table VI is the basis for the deconvolution approach in MCNP.  The variance reduction

nodes separate the random walk into physical trees.  An individual tree tally is the product of its

(total) branch weight multipliers and the tally is posted in the energy bin containing the sum of all

energies deposited by the tree.

Note that there are many possible ways to view the deconvolution process.  For instance,

instead of sampling the variance reduction trees of Figs. 3.1-3.4 according to the actual split

probabilities , one could have used arbitrary probabilities  and adjusted the tree weight by

the ratio  to account for this.  When the expected value of each of the four choices in Table

VII is used, Table IV results as before with the unbiased  sampling.

Note that the coding in MCNP does not save the , the  nor the .  Only the

product  is saved as per Eq. 15.  Thus, at the time the tree is being deconvoluted, one

actually cannot sample the variance reduction splits with the .  This sampling is irrelevant

because MCNP uses the expected value.  It is worth pointing out because there will be many cases

for which the sum of the branch weight multipliers under a variance reduction node will not be

unity.  If the reader has not understood the argument in this paragraph, the next paragraph is

essentially a redundant argument with different wording.

  

TABLE VII
VARIANT OF TABLE III

energy deposited probability tally (tree weight)

pij qij
pij qij⁄

pij
pij wij

s wij
b

wij wij
s wij

b=

pij

E01 E11 E51+ + q11q51 w01
b w11

b w51
b p11p51( ) q11q51( )⁄

E01 E11 E52+ + q11q52 w01
b w11

b w52
b p11p52( ) q11q52( )⁄

E01 E11 E53+ + q11q53 w01
b w11

b w53
b p11p53( ) q11q53( )⁄

E01 E12 E21 E22+ + + q12 w01
b w12

b w21
b w22

b p12 q12⁄( )
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Because the  are unknown, reconsider the previous sampling of the arbitrary density

.  The details are given in Table VII.  Note from Eqs. 14 and 15 that

(17)

Using Eqs. 15–17 in Table VII yields Table VIII.  Taking the expected value of Table VIII results

in Table VI.

VI. NONINTEGER SPLITTING

Noninteger splitting may be thought of as the weight modification game of Eqs. 5–10

followed by integer splitting.  The first step is to adjust the branch weight multiplier before the

split.  Consider a noninteger  split with .  Let the  and  of Eq. 4 be

(18)

(19)

 

TABLE VIII
DERIVED FROM TABLE VII

energy deposited probability tally (tree weight)

pij
qij

wij
b pij wij  .=

v:1 n v n 1+< < a b

a wnv---=

b wn 1+
v------------  .=

E01 E11 E51+ + q11q51 w01w11w51/ q11q51( )

E01 E11 E52+ + q11q52 w01w11w52/ q11q52( )

E01 E11 E53+ + q11q53 w01w11w53/ q11q53( )

E01 E12 E21 E22+ + + q12 w01w12w21w22/q12
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Then the probabilities of Eqs. 7 and 8 are

(20)

(21)

The second step is to do the splitting conditional on the outcome of the branch weight multiplier

sampling.  If the physical branch weight multiplier sampled in the game above is  then split

 and assign each of the branches a split branch weight multiplier of .  If the physical

branch weight multiplier sampled in the game above is  then split  and assign

each of the branches a split branch weight multiplier of .

The third step is a matter of convenience to make the branch weight modification similar

to the usual track weight modification for noninteger splitting.  Figure 4 shows the branch weight

multiplications as discussed above.  That is, there is a branch weight multiplication for the weight

game played above the node and there are branch weight multiplications below the node for the

splitting game.  Because the tree weight is the only weight multiplying the f8 tally, the branch

weight factor above the node can be eliminated (set to 1.0) and incorporated into all the branches

below the node as in Fig. 5.  That is, in Fig. 5 the products of weight branch multipliers are the

same as in Fig. 4.  The interpretation of Fig. 5 is used in MCNP because the noninteger splitting

track weight multiplication is done is a single multiplication.  This makes the f8 splitting branch

weight multiplication the same as the splitting track weight multiplication.   

VII.  DXTRAN

DXTRAN can be treated as a special kind of variance reduction split in which the sum of

the weights of the split particles does not equal the pre-DXTRAN weight.  In some aspects, this is

similar to the noninteger splitting of the previous section; there are some additional aspects,

however.

p1

wn 1+
v------------ w–

wn 1+
v------------ wnv---–

------------------------------ n 1 v–+= =

p2

w wnv---–

wn 1+
v------------ wnv---–

------------------------------ v n  .–= =

n v⁄

n:1 1 n⁄

n 1+( ) v⁄ n 1:1+

1 n 1+( )⁄
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 Rather than explain DXTRAN in one section, it will be useful to treat the cases in order of

increasing complexity. (The DXTRAN explanations in Refs. 2 and 3 may be useful to review if

the explanation herein needs further background for the reader.)

VII.A. DXTRAN with a Single Particle Exiting

Let  be the set of all scattering directions pointed at the dxtran sphere.  Start by thinking

of DXTRAN as a variance reduction split into the fraction of weight that reaches the dxtran

sphere without collision,

Fig. 4.    Possible v:1:  Noninteger Splitting Branch Weight Modification.
n v n 1+< <

Fig. 5.    Equivalent v:1 Noninteger Splitting Branch Weight Modification.
n v n 1+< <

Ωs
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(22)

and the fraction of weight that does not (i.e., the particle either collides or escapes the system

before reaching the dxtran sphere)

(23)

Figure 6 shows a picture of the DXTRAN variance reduction split at this stage.

For now, concentrate on the dxtran branch. The branch weight fraction reaching the sphere

is  and the conditional probability (given the particle reaches the sphere) of reaching the sphere

at  is

(24)

The integral in Eq. 24 (i.e., ) is expensive to evaluate and so MCNP samples from a biased pdf,

.  The dxtran branch weight multiplier is adjusted for this biased sampling as per Section II

by multiplying by

(25)

That is, the branch weight is no longer  but instead is

(26)

With this adjustment for biased pdf sampling, Fig. 6 changes to Fig. 6.1.  (Note that the ratio

 is calculated in MCNP subroutine CALCPS.) This completes discussion of the

dxtran branch.     

Now consider the nondxtran branch.  Let  be the next event the track undergoes.  That is,

 is either the next collision, the next escape, or the next cross of the dxtran sphere.  The

D e λ Ω( )– p Ω( ) Ωd
Ωs

∫=

C 1 D–=   .

D

Ω

p Ω sphere( ) e λ Ω( )– p Ω( )

e λ Ω( )– p Ω( ) Ωd
Ωs
∫
---------------------------------------------- e λ Ω( )– p Ω( )

D----------------------------  .= =

D

b Ω( )

p Ω sphere( )
b Ω( )

---------------------------------  .

D

B
p Ω sphere( )

b Ω( )
---------------------------------D e λ Ω( )–  p Ω( )

b Ω( )
------------= =   .

p Ω( ) b Ω( )⁄

P

P
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nondxtran track should be sampled from the conditional probability (conditional on not reaching

the dxtran sphere as the next event)

(27)

Note that the weight fraction  involves evaluating , i.e., the integral in Eq. 22.  As with the

dxtran track, this evaluation is avoided by sampling from a biased pdf.  Instead of the correct pdf

of Eq. 27, sample from

(28)

and multiply the branch weight by

Fig. 6.    First Stage:  DXTRAN Split with Branch Weight Multipliers.

Fig. 6.1.  Second Stage: DXTRAN Split with Branch Weight Multipliers.

p P not sphere( ) p P( )
C-----------= P sphere∉

0= P sphere∈
  .

C D

p P( )
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(29)

Multiplying the current branch weight multiplier  by the above factor, the new branch weight

multiplier is

(30)

With this multiplication Fig. 6.1 becomes Fig. 6.2.a if the dxtran sphere is not crossed as the next

event and Fig. 6.2.b if the dxtran sphere is crossed as the next event.  Generically, using the

random variable R in Eq. 30, Figs. 6.2.a and 6.2.b may be collapsed into Fig. 6.2.c.

VII.B. DXTRAN with Double Fluorescence

For DXTRAN and the double fluorescent event there are four possibilities:

1) neither photon crosses the dxtran sphere as its next event

2) the first fluorescent photon crosses and the second does not

3) the second fluorescent photon crosses and the first does not

4) both the first and the second fluorescent photon cross

      

p P not sphere( )
p P( )

------------------------------------------ 1
C----= P sphere∉

0= P sphere∈
  

C

R 1= P sphere∉
R 0= P sphere∈

  

Fig. 6.2.a.  Third Stage:  DXTRAN Split without Sphere Crossing.
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Figure 7 shows the diagram analogous to Fig. 6 for the single particle exiting.  Note in Fig. 7 that

, and  are the probabilities in items 1 to 4 above.  At this point  just as

 in Fig. 6. 

 Now note that the double fluorescence photons are sampled independently so that their

joint pdf is the product of the individual pdf’s:

(31)

Before evaluating , a few definitions are required.

If the first photon’s scattering is tagged with a 1 and the second particle with a 2, then the

development can proceed in a similar fashion to Section VII.A.

Fig. 6.2.b.   Third Stage:  DXTRAN Split with Sphere Crossing.

Fig. 6.2.c.   Random Branch Weight R from Eq. 30.

r s t, , u r s t u+ + + 1=

C D+ 1=

p12 P1 P1,( ) p1 P1( )p2 P2( )  .=

r s t and , , , u
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(32)

(33)

(34)

(35)

Using Eqs. 31–33 the branch weight multipliers are

(36)

(37)

(38)

(39)

Fig. 7.    DXTRAN with Four Possibilities for Double Fluorescence.

Di e
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λi Ω( )–
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e
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pi Ω( )
Di

------------------------------= =
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Because the tree weight is the product of all branch weight multipliers on the same

variance reduction branch, Fig. 7.1 will have the same tree weights as Fig. 7.2.

Apply the games played on the  and  branches in Section VII.A to the 

branches and the  branches in Fig. 7.2.  In analogy with Eq. 30, define

(40)

These games applied to Fig. 7.2 result in Fig. 7.3.  Note that in Fig. 7.2 the ‘‘n” at the

lowermost branches indicated that the track could not be sampled crossing the dxtran sphere.  In

Fig. 7.3 the notation “non” is used instead because the new sampling allows the nondxtran track

to cross the dxtran sphere, provided the branch weight is zero when this happens.  Furthermore,

note that the  are random values depending in the first case on whether the dxtran sphere

is crossed and in the second case on the  sampled from the arbitrary density  in Eq. 35.  If

the four branches under the V node of Fig. 7.3 are sampled independently, then the outcomes of

sampling the same pdf may be different: that is, the prime and unprimed values.

Noting that exactly one of the the variance reduction branches occurs for a physical tree, it

is irrelevant whether a primed value or an unprimed value is used because both have exactly the

same distribution.  The tree of Fig. 7.3 is then replaced by the tree of Fig. 7.4. The branch

numbers below the diagram in Fig. 7.4 refer to branches having the same photon (i.e., 1 or 2) and

the same character (i.e., dxtran or nondxtran).  (The branches start at the P nodes.) For example,

branch 3 is the dxtran particle from the first fluorescent photon. All photons with the same branch

number can be correlated to have identical (subsequent to the node V in Fig. 7.4) random walks.

(In MCNP parlance, the branches can be made to ‘‘track.’’) Another way of understanding this

concept is to note that if

1)

2)

         

D C D1 and D2

C1 and C2

Ri 1= Pi sphere∉

Ri 0= Pi sphere∈
  

Ri and Bi
Ω bi Ω( )

Fi E( ) the distribution of energy deposited by branch i, and=

Fij E( ) the distribution of total energy deposited by branches i and j together=
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Fig. 7.1.  Using the Independence of the Double Fluorescent Photons.

Fig. 7.2.  Alternative Branch Weighting for Double Fluorescent Photons.
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Fig. 7.3.  Avoiding the Evaluation of the Integral in Eq. 31 by Appropriate Sampling.

Fig. 7.4.  Correlating the Walks on Different Variance Reduction Branches.
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then (using the Dirac  function to require )

  (41)

Note that  for any pair under a P node in Fig. 7.3 is exactly the same as for the

corresponding pair in Fig. 7.4.  Thus, Fig. 7.4 will have the same mean f8 tallies (though the

higher moments will be different) as Fig. 7.3.

The final trick for DXTRAN with double fluorescence is to note that the tree of Fig. 7.5 is

equivalent to the tree of Fig. 7.4 in the deconvolution process.  (See Fig. 7.6 for the four physical

trees deconvoluted from Fig. 7.5.)  That is, if  is the energy deposited on the  branch, then

Table IX shows the possible pulse height energies deposited under the top nodes in Figs. 7.4 and

7.5. 

Two final notes are worthwhile.

1) The production of the dxtran particles from double fluorescence photons does not

track MCNP4C3 because MCNP4C3’s DXTRAN treatment was not microscopically

correct.  The possibility that both double fluorescence photons reached the dxtran

sphere was precluded in MCNP4C3.  For this reason, problems with double

fluorescence and DXTRAN will not track MCNP4C3.

2) The development herein requires that the double fluorescence photons are sampled

independently, as is currently the case in MCNP.  If new physical data and/or models

introduce a correlation between the double fluorescence photons, the double

fluorescence deconvolution treatment will need to be revised.

VII.C. DXTRAN with Pair Production

Unlike the uncorrelated double fluorescence photons in Section VII.B, the annihilation

photons resulting from an electron-positron pair production event are correlated because they

always have exactly opposite directions .  Because DXTRAN is applied only outside

the dxtran sphere, it is impossible for both annihilation photons to arrive at the dxtran sphere

without collision. The analysis for the annihilations photons thus parallels closely the

development in Section VII.A for the single particle exiting a collision.

    

δ Ei Ej+ E=

Fij E( )   Fi Ei( )Fj Ej( )δ E Ei Ej––( ) Eid  Ejd∫∫=   .

Fij E( )

Ei ith

Ω and Ω–
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Fig. 7.5.  Equivalent Branch Scheme for Double Fluorescent Photons.

Fig. 7.6.  The Four Trees from the Deconvolution of Fig. 7.5.
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Let  be the density of annihilation photons emitted at .  Note that because there are

two annihilation photons

(42)

The probability that one of the annihilation photons reaches the dxtran sphere without collision is

(43)

The probability that neither photon reaches the dxtran sphere without collision is

(44)

Figure 8 shows a picture of the dxtran variance reduction split at this stage.  

For now, concentrate on the dxtran branch.  The probability of reaching the sphere is 

and the the conditional probability (given the particle reaches the sphere) of reaching the sphere at

 is

(45)

TABLE IX
POSSIBLE PULSE HEIGHT ENERGIES DEPOSITED

FOR FIGS. 7.4 AND 7.5

energy deposited probability (tree weight)

1

1

1

1

E1 E2+ R1R2

E1 E4+ R1B2

E3 E2+ B1R2

E3 E4+ B1B2

p Ω( ) Ω

p Ω( ) Ωd∫ 2=   .

D  e λ Ω( )– p Ω( ) Ω  .d
Ωs
∫=

C 1 D  .–=

D

Ω

p Ω sphere( ) e λ Ω( )– p Ω( )

e λ Ω( )– p Ω( ) Ωd
Ωs
∫
---------------------------------------------- e λ Ω( )– p Ω( )

D----------------------------= =   .
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The integral in Eq. 43 (i.e., ) is expensive to evaluate and so MCNP samples from a biased pdf,

.  The dxtran branch weight multiplier is adjusted for this biased sampling as per Section II

by multiplying by

(46)

That is, the branch weight is no longer  but instead is

(47)

With this adjustment for biased pdf sampling, Fig. 8 changes to Fig. 8.1.  This completes

discussion of the dxtran branch. 

Now consider the nondxtran branch.  Let  be the next event track  undergoes. That is

 is either the next collision, the next escape, or the next cross of the dxtran sphere.  The

nondxtran annihilation pair should be sampled from the conditional probability (conditional on

neither of the pair reaching the dxtran sphere as the next event)

(48)

Fig. 8.    First Stage:  DXTRAN Split with Branch Weight Multipliers.

D
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Note that the weight fraction  involves evaluating , i.e., the integral in Eq. 43.  As

with the dxtran pair, this evaluation is avoided by sampling from a biased pdf.  Instead of the

correct pdf of Eq. 48, sample from

(49)

and multiply the branch weight by

(50)

Multiplying the current branch weight multiplier  by the above factor, the new branch weight

multiplier is

(51)

With this multiplication, Fig. 8.1 becomes Fig. 8.2.a if the dxtran sphere is not crossed as the next

event and Fig. 8.2.b if the dxtran sphere is crossed as the next event. Generically, using the

Fig. 8.1.  Second Stage:  DXTRAN Split with Branch Weight Multipliers.

C D

p P1 P2,( )

p P1 P2 neither sphere,( )

p P1 P2,( )
----------------------------------------------------------------- 1

C----= Pi sphere for i∉  1 and 2=

0= Pi sphere for i∈ 1 and 2=

  

C

R 1= Pi sphere for i∉ 1 and 2=

R 0= Pi sphere for i∈ 1 and 2=
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random variable R in Eq. 51, Figs. 8.2.a  and 8.2.b may be collasped into Fig. 8.2.c.  Because the

tree weight is the product of all its branch weights, the tree of Fig. 8.2.d with 

(52)

  

  

     

Ri 1= Pi sphere∉

Ri 0= Pi sphere∈
  

Fig. 8.2.a.  Third Stage:  DXTRAN Split Without Sphere Crossing.

Fig. 8.2.b.   Third Stage:  DXTRAN Split with Sphere Crossing.
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will be equivalent to the tree of Fig. 8.2.c because 

  (53)

The scheme of Eq. 53 is preferred because the track weight multipliers are identical to the branch

weight multipliers, allowing the f8 variance reduction to coexist more gracefully with the non f8

variance reduction.  

Fig. 8.2.c.   Random Branch Weight R from Eq. 51.

Fig. 8.2.d.   Alternative Random Branch Weighting Used in MCNP.

R R1R2=   .



33

The attempt at a graceful coexistence of the f8 coding and the non f8 coding brings up a

sneakier legerdemain.  Note that the f8 DXTRAN creates a pair of photons and the extra weight

created by DXTRAN must somehow, on average, be destroyed by DXTRAN.  The creation and

destruction of track weight is illustrated in Fig. 9.  The top diagram indicates how weight is

created by the f8 DXTRAN and the bottom diagram indicates how weight ought to be destroyed

by the f8 DXTRAN.  The trouble is that the left photon in the bottom diagram may have had a

very complicated random walk by the time that the right photon is killed by the dxtran sphere.

For instance, there might be 100 particles in the bank that were related to the left branch of the

bottom diagram.  These particles would need to be killed, and any non f8 tallies that were made

would have to be undone, else the left branch would have accounted for (and tallied) twice. 

One possible solution is to check if one of the particles in the bottom diagram is moving

toward the dxtran sphere.   If so, the ‘‘toward" particle could be tracked first and the ‘‘away’’

particle killed if the toward particle reached the dxtran sphere without collision. In this manner the

‘‘away’’ particle could be killed before it had a chance to post any tallies.  In addition to requiring

all future code tracking to be ‘‘ordered’’ in this manner, there is another complication.  Suppose

Fig. 9.    Pair Sampling.
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the ‘‘toward’’ particle is split along the path to the dxtran sphere so that now there are 100

particles heading toward the sphere; some of them make it to the sphere and some of them do not.

This can be handled, but it starts to become a nightmare as one imagines all the variance reduction

that is applied to the ‘‘toward’’ branch having to be accounted for on the ‘‘away’’ branch.

There are other possible solutions to the problem exemplified in Fig. 9, but most of the

other solutions seem to be nightmares similar to the possible solution in the preceding paragraph.

The other possible solutions that were investigated will not be described here, except for the

solution chosen for MCNP.

The solution in MCNP was to finesse the problem by creating the ‘‘away’’ dxtran photon

only for the f8 tallies and not for the other tallies.  That is, the ‘‘away’’ branch in the top diagram

is assigned a zero track weight for non f8 tallies, so that the ‘‘away’’ branch in the top diagram is

not tallied for non f8 tallies.  Because the top ‘‘away’’ photon is not created for non f8 tallies, the

bottom ‘‘away’’ photon need not be killed for non f8 tallies when the bottom ‘‘toward’’ photon

crosses the dxtran sphere.  The f8 branch weight on the ‘‘away’’ dxtran photon is not set to zero

and therefore exists for the f8 tally.  Note that the f8 tally mechanics sets the tree weight to zero if

one of the nondxtran annnihilation photons reaches the dxtran sphere.  In some sense, DXTRAN

simultaneously is creating and destroying one annihilation photon for the non f8 tallies while

DXTRAN is creating and destroying an annihilation pair for the f8 tallies.  This solution has one

unfortunate drawback in that the f8 branch weighting scheme is now not always the same as the

track weighting scheme.

One cautionary note is worthwhile here. MCNP currently assumes that the annihilation

pair photons have exactly opposite directions.  This means that both annihilation pair photons

cannot be pointed toward the dxtran sphere.  It is the author’s understanding that when the

photons are produced in the presence of a nucleus, some of the momentum may be transferred to

the nucleus so that the annihilation pair photons need not have exactly opposite directions.  If the

physics treatment in MCNP is updated so that the annihilation pair photons need not have exactly

opposite directions, then the DXTRAN treatment for the annihilation pair photons will need to be

modified.
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VIII. THE DECONVOLUTION MECHANICS IN MCNP

Reference 1, Section II, has a detailed deconvolution of a somewhat complicated tree.

The only thing different in the present work is that the variance reduction branches arise from

processes other than the simple  splits treated in Ref. 1.  The mechanics are still the same

except that the branch weights are multiplied together instead of the branch probabilities in Ref. 1.

Nonetheless, a little redundancy will not hurt, so this section will show how MCNP deconvolutes

the tree shown in Fig. 3 herein.

Consider the tree of Fig. 3.  Let  be the energy deposited on branch  under node . 

only includes the energy deposited until the next node on branch . That is,  is the energy

deposited between nodes.  The deconvolution is started at the highest numbered node (e.g., 8

here) and proceeds backwards (e.g., 8,7,6, ... , 1,0 here) until node 0 is reached.  Because nodes 8,

7, and 6 are termination nodes, no energy deposit is associated with them.  The possible energy

deposited choices under node 5 are shown in Table X.  Nodes 3 and 4 are termination nodes, so no

energy is deposited.  The possible energy deposited choices under node 2 are shown in Table XI.

The possible energies deposited under node 1 are shown in Table XII.  The possible energies

deposited under node 0 are shown in Table XIII. The entries in Table XIII are, in order, associated

with the physical trees of Figs. 3.1-3.4.

TABLE X
POSSIBLE PULSE HEIGHT ENERGIES DEPOSITED

FOR UNDER NODE 5

energy deposited (tree weight)

n:1

Eij j i Eij
j Eij

E51 w51

E52 w52

E53 w53
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TABLE XI
POSSIBLE PULSE HEIGHT ENERGIES DEPOSITED

FOR UNDER NODE 2

energy deposited (tree weight)

TABLE XII
POSSIBLE PULSE HEIGHT ENERGIES DEPOSITED

FOR UNDER NODE 1

energy deposited (tree weight)

TABLE XIII
POSSIBLE PULSE HEIGHT ENERGIES DEPOSITED

FOR UNDER NODE 0

energy deposited (tree weight)

E21 E22+ w21w22

E51 E11+ w51w11

E52 E11+ w52w11

E53 E11+ w53w11

E21 E22 E12+ + w21w22w12

E51 E11 E01+ + w51w11w01

E52 E11 E01+ + w52w11w01

E53 E11 E01+ + w53w11w01

E21 E22 E12 E01+ + + w21w22w12w01
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IX. SUMMARY

This report describes the pulse height tally variance reduction in MCNP version 5 for

photon problems.  The author has tried to give enough detail so that any future variance reduction

techniques required for pulse height tallies can be easily understood and implemented in the

deconvolution framework.
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