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ABSTRACT 
 

A new Monte Carlo technique has been developed for the direct sampling of flight paths in media 
with continuously varying cross-sections. This technique provides an alternative to the use of 
delta-tracking for problems where the material cross-sections vary over the particle flight paths. 
The technique is general, and may provide benefits to Monte Carlo calculations of charged 
particles, atmospheric transport, charge transport in semiconductors, radiative transfer for ICF and 
astrophysics, and transport through stochastic media. 
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1. INTRODUCTION 
 
There are many classes of Monte Carlo problems where the material cross-sections vary 
continuously within a geometric region. Examples include: radiation transport through the 
atmosphere [1], where density varies with position; radiation transport through clouds [2], where 
the cloud-particle distribution varies with position; time-dependent radiative transfer calculations 
for astrophysics and inertial confinement fusion (ICF) [3], where certain numerical schemes 
introduce an effective scattering cross-section which varies with flight time; charged particle 
transport using continuous slowing down models [4], where energy (hence cross-sections) 
change continuously with distance; charge transport in semiconductors [5], where the wave 
vector changes continuously during a free-flight; transport though stochastic media [6], where 
the cross-sections vary randomly with position.  
 
The principal difficulty in applying Monte Carlo methods to such problems is the random 
sampling of particle free-flight distance in media where the cross-sections vary during the 
particle flights, that is, solving the following equation for the flight distance s: 
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s x
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x x dx dxξ ′ ′= Σ ⋅ − Σ∫ ∫ , (1) 

where ξ  is a random number and x denotes position along the particle flight path, which may be 
curved. One common approach to solving this equation is substepping, that is, breaking the flight 
path into short segments within which the cross-section is assumed constant [4]. This can lead to 
expensive calculations, since many substeps may be required to retain accuracy when the cross-
section variation is large. Another common approach is to solve this equation indirectly using a 
rejection technique called delta-tracking [7,8,9]. This technique dates to the 1960s and is also 
called pseudo-scattering, hole-tracking, Woodcock tracking, or self-scattering. Delta-tracking 
uses a fictitious cross-section maxΣ , chosen or estimated to be the largest value expected during 
the particle flight. A trial flight distance is sampled using maxΣ , the particle is moved that 
distance, and then P= max( ) /sΣ Σ is determined. With probability P, the flight distance is accepted; 
with probability 1-P, it is rejected, and the entire procedure is repeated. Delta-tracking is a very 
powerful Monte Carlo technique, but can suffer from inefficiency if maxΣ  is much larger than the 
typical cross-section. 
 
As an alternative to substepping and delta-tracking, we have developed a direct method for 
sampling the free-flight distance for the case of varying cross-sections. This method involves 
random sampling followed by numerical solution via Newton iteration. The technique has been 
found to be efficient and is guaranteed to converge. We will provide a detailed description of the 
new technique, examples of its application to several difficult problems, and a comparison to 
both the delta-tracking and substepping approaches. 
 
 

2. THEORETICAL BACKGROUND 
 
Let  ( )xτ  be the optical depth traversed by a particle traveling a distance x through a medium 
with arbitrarily specified macroscopic cross-section ( )xΣ : 

 
0

( ) ( )
x

x x dxτ ′ ′= Σ∫  (2) 

We assume only that ( )xΣ  is finite and ( ) 0xΣ ≥ . Note that 

 ( )d x
dx
τ = Σ  (3) 

and 0 d dxτ≤ <∞ . To explicitly allow for the case of no collision in a finite distance of travel, 
we define NCP , the probability of no collisions, as 
 ( )

NCP e τ− ∞=  (4) 
Then the probability density function (pdf) for a collision occuring after a particle has traveled a 
distance x through the medium is given by 

 ( )1( ) ( ) (1 ) x
NC NC

df x P x P e
G dx

ττδ −= ⋅ = ∞ + − ⋅ ⋅ ⋅ , (5) 

where G is a normalization constant given by 
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dG e dx e P
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τ ττ∞
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d dxτ  is the interaction probability per unit distance traveled,  ( )xe τ−  is probability of traversing 
distance x without collision, and 0 x≤ ≤ ∞ . Eq. (5) explicitly allows for cases where ( )τ ∞  is 
finite, hence there is a possibility of traveling an infinite distance without colliding. Such cases 
occur when ( ) 0xΣ →  as x → ∞ . (A previous proof of the validity of delta-tracking in [10] 
assumed that ( )τ ∞ = ∞ , an assumption which was not necessary.) Random sampling of the 
Monte Carlo flight path requires solving the following equation for s, the flight path: 

 
0

( )
s

f x dxξ = ∫ ,  or    ( )F sξ =  (7) 

where ξ  is a uniform random variate in [0,1), f(x) is specified by Eqs. (2-6), and F(x) is given by 

 
( )

( )
0

1( ) ( ) ( , ) (1 )
1

x x

NC NC
eF x f x dx P H x P
e

τ

τ

−

− ∞

−′ ′= = ⋅ ∞ + − ⋅
−∫ , (8) 

with ( , )H x ∞  the Heaviside step function. Eq. (7) is frequently written as 
 1( )s F ξ−= . (9) 
For the common case required by most Monte Carlo codes, the cross-section is a constant 
independent of x and Eqs. (2-6) simplify to: 

 ( ) , , 0, 1, ( ) x
NC

dx x P G f x e
dx
ττ −Σ= Σ = Σ = = = Σ  (10) 

so that Eq. (7) may be readily solved as 
 ln(1 ) /s ξ= − − Σ  (11) 
Eq. (11) is commonly implemented as ln( ) /s ξ= − Σ , since ξ  and (1 )ξ−  have equivalent 
uniform distributions. For media where ( )xΣ  varies, Eq. (7) may be difficult or impossible to 
solve analytically. 
 
 

3. DIRECT SAMPLING TECHNIQUE FOR FREE-FLIGHT DISTANCE 
 
Examination of Eq. (5) shows that Eq. (7) is readily solved via a 2-stage sampling procedure: 
First, discrete sampling is used to select a collision with probability (1-PNC) or an infinite flight 
with probability PNC. That is, 
 
 If   NCPξ ≤ , 
  No collision: select   s = ∞  
 Otherwise, 

  Collision: sample s from   ( )1( ) xdg x e
G dx

ττ −= ⋅ ⋅  

For the case where a collision does occur, then the second step involves sampling s from the pdf 
given by: 

 ( )1( ) xdg x e
G dx

ττ −= ⋅ ⋅ , (12) 
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where 0 x≤ < ∞ . Using Eq. (12), we note that  

 
ˆ

0 0

1( )
s

g x dx e d
G

τ
τ τ−= ⋅∫ ∫ , (13) 

with τ̂  defined by  ˆ ( )sτ τ= .  Then, using Eqs. (7) and (13), we can sample τ̂  by solving 

 
ˆ

0

1 e d
G

τ
τξ τ−= ∫  (14) 

with ˆ0 ( )τ τ≤ < ∞ . This is equivalent to sampling τ̂  from a truncated exponential pdf, which has 
the solution 
 ˆ ln(1 )Gτ ξ= − − ⋅  (15) 
Substituting τ̂   for τ , and s for x in Eq. (2) gives: 

 
0

ˆ ( )
s

x dxτ = Σ∫  (16) 

When ( )xΣ  has a simple functional form, Eq. (16) can often be solved analytically for s. In many 
cases which arise in practice, the solution may involve a transcendental equation or other form 
not amenable to analytic solution. Eq. (16), however, can be readily solved numerically for s 
using Newton iteration:  
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Because 0g′ ≤  in Eq. (17), ( )g s  is monotone and there can be at most one root of Eq. (16). For 
cases where ( )xΣ  is always greater than 0, the Newton iteration in Eq. (17) is guaranteed to 
converge. However, if  ( )xΣ  is zero or very small over a portion of the flight path, g′  may be 0 
in Eq. (17), leading to numerical difficulties and nonconvergence. This potential problem is 
remedied easily by combining Eq. (17) with a bisection search method, such that Eq. (17) is used 
when g′  is nonzero and bisection is used if g′  is very small or zero. Using this approach, we 
have found that only 1-5 iterations in Eq. (17) are typically needed to converge s to within 10-6, 
even for extreme variations in ( )xΣ . 
 
 

4. NUMERICAL RESULTS 
 

4.1 Verification of Direct Numerical Sampling 
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To verify that the analysis and proposed sampling method in Section 3 are correct, we have 
applied the method to the Monte Carlo transport of particles through a 1-D slab of thickness 2 
units. We consider only transmission through the slab, ignoring scattering. Table I shows 7 
different forms of spatial variation in the cross-section which were used for the test problem. 
Figures 1 through 7 show the cross-section variation over the thickness of the slab (labeled 
“sig”), the pdf at position x=0 given by Eq. (12) for the cross-section variation in each test case 
(labeled “pdf”), and the results of using the direct numerical sampling procedure from Section 3 
to perform 1,000,000 samples of the free-flight distance for each case (labeled “sampled”). The 
sampled results were binned in 100 bins of width 0.02. In Figures 1-7, it can be seen that the 
distributions of sampled results for the free-flight distance agree completely with the exact pdf’s 
in all cases, verifying that the sampling method in Section 3 is correct. 
 
 
 

Table I. Cross-section Variation for Test Cases 
 
Case Cross-section Variation Numerical Representation, for range 0 2x≤ ≤
1 Constant ( ) 1xΣ =  
2 Linearly Decreasing ( ) 2x xΣ = −  
3 Linearly Increasing ( )x xΣ =  
4 Exponentially Decreasing ( ) exp( 3 )x xΣ = −  
5 Exponentially Increasing ( ) 0.1 exp(2 )x xΣ = ⋅  
6 Sharp Gaussian ( )2

1

0.05

2

2
( ) exp xx

π

− 
Σ = − 

 
 

7 Broad Gaussian ( )2
1

1.0

2

2
( ) exp xx

π

− 
Σ = − 

 
 

 
 

4.2 Comparison of Direct Numerical, Delta-tracking, and Substepping Methods 
 
We have also compared the effectiveness of the direct numerical sampling procedure to the delta-
tracking and substepping methods for the same 7 cases of cross-section variation given in Table 
I. In these tests, multiple collisions were followed and the resulting transmission through the slab 
was computed for each test case, using direct numerical sampling, delta-tracking, and 
substepping. For delta-tracking, the actual value of the maximum cross-section over the interval 
was used, rather than an arbitrary guess. For the substepping method, equal-thickness 
subdivisions of the slab were used, with the number of subdivisions determined by trial and error 
to be the minimum required to match the accuracy of the other two methods. That is, if the 
transmission through the slab did not match that from delta-tracking or the direct method (within 
statistics), the number of subdivisions of the slab was increased by 5 and the calculations 
repeated. 1,000,000 histories were followed for each method in each of the test cases. The results 
of these comparisons are given in Table II. 
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In Table II it can be seen that the accuracy of all 3 methods is comparable, given that sufficient 
substeps are used for the substepping method. The number of collisions and the transmission at 
the right slab boundary are the same within statistics for all 3 methods. (The statistics are not 
shown in the table, but the standard deviations for number of collisions are simply the square 
root of the results, and the standard deviations of the transmission are the square root of the 
results divided by 1,000, since all calculations were run in strict analog fashion. )  
 
 
 

Table II. Comparison of Direct Numerical, Delta-Tracking, and Substepping Methods 
 

 
Method 

 
Collisions 

 
Transmission 

Function 
Evaluations per 

Collision 
1. Constant Cross-section 

Substep 865001 0.1350 2.16 
Delta-tracking 865362 0.1354 1.00 
Direct 864513 0.1355 1.00 

2. Linearly Decreasing 
Substep 865189 0.1348 29.90 
Delta-tracking 865362 0.1346 1.48 
Direct 865145 0.1349 2.95 

3. Linearly Increasing 
Substep 864742 0.1353 29.92 
Delta-tracking 864754 0.1352 2.77 
Direct 864998 0.1350 4.38 

4. Exponentially Decreasing 
Substep 282293 0.7177 107.08 
Delta-tracking 283236 0.7168 5.37 
Direct 282881 0.7171 3.78 

5. Exponentially Increasing 
Substep 931436 0.0686 33.20 
Delta-tracking 931279 0.0687 7.55 
Direct 931884 0.0681 4.94 

6. Sharp Gaussian 
Substep 864591 0.1354 41.17 
Delta-tracking 864494 0.1355 20.53 
Direct 864518 0.1355 4.06 

7. Broad Gaussian 
Substep 745446 0.2546 27.84 
Delta-tracking 745301 0.2547 1.18 
Direct 744956 0.2550 3.26 
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The column in Table II labeled “Function Evaluations per Collision”  represents the average 
number of flights per collision for the substepping method, the average number of pseudo-
collisions (delta + real) for each real collision for the delta-tracking method, and the average 
number of Newton iterations per collision for the direct numerical method. These are useful 
numbers to compare in assessing the effectiveness of each method: Each of these actions 
(substep, pseudo-collision, Newton iteration) involves one evaluation of the cross-section 
function and a few arithmetic or logical operations. It is not feasible to simply measure the CPU 
time required for these actions, since CPU time is highly variable depending on the problem 
geometry, complexity of the cross-section variation and evaluation routines, etc. It is more 
meaningful to assess the three methods algorithmically for the 7 test cases. The last column in 
Table II provides a good measure of the effectiveness of the three methods for sampling the free-
flight distance, irrespective of other details of the Monte Carlo code. 
 
In examining Table II it can be seen that both delta-tracking and the direct method are 
significantly more effective than substepping if the cross-sections vary within a region. 
Substepping typically requires 20 or more substeps (for these test cases), making it far more 
costly than the other two methods. Delta-tracking and the direct method are roughly comparable, 
with delta-tracking being faster when there is little variation in the cross-section and the direct 
method being faster when there is more variation in the cross-section. In general, the direct 
method should be viewed as an alternative to delta-tracking if there are large variations in cross-
section. However, it should be noted that the direct method is competitive with delta-tracking 
even for those cases where the cross-section does not vary much. In Case 7, for example, delta-
tracking is 3 times more effective than the direct method, while in Case 6 the direct method is 
about 5 times more effective. For cases where the maximum cross-section is not known and must 
be estimated, such as in electron transport with energy-varying cross sections, the direct method 
may offer substantial advantages compared to delta tracking or substepping.  
 
 

5. CONCLUSIONS 
 
Traditional Monte Carlo approaches to problems where the cross-section varies spatially or 
temporally along the particle flight path have involved either substepping or delta-tracking. We 
have provided an alternate method for such problems, direct numerical solution, which can be 
more effective than either method for certain classes of cross-section variation. Numerical testing 
has verified the correctness of the method. Numerical comparisons between the direct, 
substepping, and delta-tracking  methods have been made for 7 different functional forms of 
cross-section variation. Both the direct and delta-tracking methods were shown to be more 
effective than substepping in all cases. For sharply peaked or strongly varying cross-sections, the 
direct method is preferable to delta-tracking. 
 
Finally, it should be noted that the type of tallies desired for the Monte Carlo calculation may be 
a decisive factor in any decision between delta-tracking and the direct method. Delta-tracking 
does not involve the calculation of distances nor the integral of the cross-section along the flight 
path, which is required information if pathlength tallies are desired. Indeed, delta-tracking is 
often used precisely in those problems where such path-integral information is hard to obtain. 
This information, however, is inherent in the direct method and is determined numerically, so 
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that difficult functional forms for the variation in cross-section are handled as easily as simple 
ones. Thus pathlength tallies are essentially free when the direct method is used. Since 
pathlength tallies frequently have lower variance than collision or pseudo-collision tallies, the 
effective cost in terms of the figure-of-merit (i.e., FOM=1/(variance x CPU time)) [4] of using 
the direct method may in practice be lower than the comparisons in this paper would indicate. 
Future work on the direct numerical method should examine this issue. 
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Figure 1. Constant Cross-section
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Figure 2. Linear Decrease
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Figure 3. Linear Increase
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Figure 4. Exponential Decrease
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Figure 5. Exponential Increase
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Figure 6. Sharp Gaussian
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Figure 7. Broad Gaussian
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