LA-UR- 1485 Approved for public release; distribution is unlimited.

Title: ACTI – An MCNP Data Library for Prompt Gamma-Ray Spectroscopy

-	
н	_
н	_
н	_

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

ACTI – AN MCNP DATA LIBRARY FOR PROMPT GAMMA-RAY SPECTROSCOPY

Stephanie C. Frankle, Robert C. Reedy, and Phillip G. Young Los Alamos National Laboratory P.O. Box 1663 Los Alamos, NM, 87544, USA (505) 665-6461 <u>frankles@lanl.gov, rreedy@lanl.gov</u>, pgy@lanl.gov

SUMMARY

Prompt gamma-ray spectroscopy is used in a wide variety of applications for determining material compositions. High-quality photon-production data from thermal-neutron capture reactions are essential for these applications. Radiation transport codes, such as MCNP^{™,1} are often used to design detector systems, determine minimum detection thresholds, etc. These transport codes rely on evaluated nuclear databases such as ENDF (Evaluated Nuclear Data File)² to provide the fundamental data used in the transport calculations. Often the photon-production data from incident neutron reactions in the evaluations are of relatively poor quality.

We have compiled the best experimental data for thermal-neutron capture for the naturally occurring isotopes for elements from H through Zn as well as for ^{70,72,73,74,76}Ge, ¹⁴⁹Sm, ^{155,157}Gd, ¹⁸¹Ta and ^{182,183,184,186}W. This compilation has been used to update the ENDF evaluations for ¹H, ⁴He, ⁹Be, ¹⁴N, ¹⁶O, ¹⁹F, Na, Mg, ²⁷Al, ³²S, S, ^{35,37}CI, K, Ca, ⁴⁵Sc, TI, ⁵¹V, ^{50,52,53,54}Cr, ⁵⁵Mn, ^{54,56,57,58}Fe, ^{58,80,61,62,84}Ni, ^{63,65}Cu and ^{182,183,184,186}W. In addition, the inelastic cross sections and corresponding secondary-photon distributions were updated for ¹⁶O, ^{3,4,5} Complete new evaluations were submitted to ENDF for ^{35,37}Cl.⁶ This paper will discuss the evaluation effort and the production of the MCNP data library, ACTI, based on the new evaluations. Data from the ENDF evaluations for ^{28,30}Si were also included in the ACTI library for completeness. The silicon evaluations were updated in 1997 and include the latest experimental data for radiative capture.⁷

I. BACKGROUND

The motivation behind this work has been discussed extensively in previous documents.^{8,9,10} Prompt gamma-ray spectroscopy is used in a wide variety of applications for determining material compositions. This work was originally begun under the auspices of the Multispectral Neutron Logging project at Los Alamos National Laboratory^{11,12} and continued under the ACTI CRADA (Advanced Computational Technology Initiative Cooperative Research and Development Agreement).¹³ Our goal for all of these projects is to provide the best prompt gamma-ray data for the ENDF evaluations and to produce an MCNP data library, ACTI, for prompt gamma-ray applications.

II. COMPILATION OF PROMPT GAMMA-RAY ENERGIES AND INTENSITIES FROM RADIATIVE CAPTURE OF THERMAL NEUTRONS

Complete literature searches were performed for prompt gamma rays from thermal neutron capture through August 2000. We concentrated on the naturally occurring nuclides for elements having Z \leq 30, but included other important isotopes such as ^{70,72,73,74,76}Ge, ¹⁴⁹Sm, ^{155,157}Gd, ¹⁸¹Ta and ^{182,183,184,186}W. In almost all cases, the data adopted were from the paper that was the most complete. For a few isotopes, we adopted evaluations published in the Nuclear Data Sheets, especially when numerous data sources were needed to complete the data set for that isotope. In other cases, we used several literature sources to complete the evaluation for a given isotope when published data only covered a part of the gamma-ray energy range. For data sources that we considered secondary in quality or completeness, we usually did not adopt a gamma ray if it was not reported by others or did not fit into the known level scheme for the product nucleus. For several isotopes (e.g., ¹²C, ¹⁴N, ¹⁹F, ²³Na, and ⁴⁵Sc), there were several high-quality measurements, and the adopted values were almost always in good agreement with those in the other publications.

If known, we cataloged the levels of the product nucleus involved in the emission of a gamma ray. In a number of cases, usually with older measurements, we used the most recent evaluations of level energies of the product nucleus to determine the energies of the emitted gamma rays. Otherwise, the energies reported by the experiments were adopted.

For the gamma-ray intensities, we usually adopted the reported experimental values. In a few cases, we have applied a multiplication factor to the reported intensities as the intensities reported in the literature had an arbitrary normalization or were normalized to the intensities for another isotope. Some of these experimental data sets had been normalized such that the sum of gamma rays from the capture state or into the ground state was 100%. Others were normalized such that the sum of the energy times intensity divided by S_{n_i} the neutron binding energy, was set equal to 100%. When there were many gamma rays measured down to very low intensities, such normalizations are probably good. However, there were cases, e.g., ⁵⁰Cr, where we felt that the intensities reported in the literature were improperly normalized. Other measurements from the literature were used to obtain these multiplication factors. Where intensities had not been reported for the decay of low-energy levels, known branching ratios of gamma rays emitted by such levels were used with the sum of gamma rays decaying into those levels to determine intensities for these missing gamma rays.

The sums of the intensities from the capture state and into the ground state were usually close to 100%. In a few cases, the sum into the ground state is low because there were no reported intensities for very low-energy levels decaying into the ground state, such as for the 14-keV level of ⁵⁷Fe. In other cases, some of the low-lying levels emit internal-conversion electrons instead of gamma rays. Such electrons were not cataloged and can account for some of the missing intensity.

Table 1 gives a summary of the isotopic data compilation. Definitions of the information contained in the table can be found after the table itself. The compilation was then used to update the corresponding ENDF evaluation for a given nuclide as necessary. Additionally, the isotopic data were combined to produce the elemental spectra and published in reference 10. For the elemental spectra for Z≤30, a total of 9758 gamma rays for 30 elements were adopted.

II. MODIFICATIONS TO THE ENDF EVALUATIONS

The ENDF evaluations continue to be developed under the direction of the Cross Section Evaluation Working Group (CSEWG) that is comprised of representatives from the U.S. Government and industrial laboratories. Since its inception in 1966, CSEWG has improved the evaluated database as new experimental and theoretical information became available, issuing new versions of the ENDF/B library. The present version is Release 8 of the ENDF/B-VI library of evaluations. ENDF/B-VI was originally released in 1990 (Release 0 and 1) and has since been updated 6 times. We used the most recent version of ENDF/B-VI evaluations as the basis for each of our revisions for ¹H, ⁴He, ⁹Be, ¹⁴N, ¹⁶O, ¹⁹F, Na, Mg, ²⁷AI, ³²S, S, K, Ca, ⁴⁵SC, Ti, ⁵¹V, ^{50,52,53,54}Cr, ⁵⁵Mn, ^{54,65,57,58}Fe, ^{33,66,61,62,84}Ni, ^{63,65}Cu and ^{182,183,184,186}W.

The revised ENDF evaluations were accepted by the Cross Section Evaluation Working Group and are available in Release 8 of ENDF/B-VI. For most of these evaluations, the prompt photon-production data for thermal neutron capture have been modified based on the compilation effort described in Section II. The energy of the gamma-ray from thermal capture by ¹H was adjusted from 2.2246 (the Q value) to 2.2233 MeV to take into account the recoil energy of the product nucleus. The atomic weight ratio, the ratio of the atomic weight of the target to the atomic weight of a neutron, was updated for the ⁴He evaluation. Inelastic crosssections and corresponding secondary-photon distributions were updated for the ¹⁶O evaluation. For ^{35,37}Cl, complete new ENDF evaluations were submitted and accepted that incorporated the new thermal capture data.

A. Representation of Photon-Production Data in the ENDF Evaluations

ENDF was originally organized to provide nuclear data for the fission-reactor program and the system has evolved to include nuclear crosssection data for all applications. Even with the expanded applications coverage, the primary emphasis is for incident neutron cross sections below 20 MeV with modest attention paid to the secondary gamma-ray distributions from radiative capture.

There are a number of mechanisms by which an evaluator can incorporate secondary energy distributions for gamma rays as a function of incident neutron energy. Gamma-ray spectra that have discrete energies and intensities are usually given in File 12 of an evaluation but can also be given in File 6. When an evaluator has elected to use a histogram representation of the gamma-ray spectra, generally binned in 50-250 keV wide energy bins, the data are most often given in File 15. A few evaluators (e.g. ⁹Be

given in File 15. A few evaluators (e.g. ⁹Be, ¹⁹F,...) choose to use a smaller bin width, approximately 2-10 keV, to try and mimic discrete photons in the File 15 distributions. The evaluator may or may not choose to use an energy-dependent yield as a function of incident neutron energy to properly conserve energy. Figure 1 illustrates the use of a binned photon-production spectrum for thermal-neutron-capture in Fe in the original ENDF evaluation. The gamma-ray spectrum is binned in 50 keV wide energy bins. As is often the case, the same spectrum was used for each isotope of Fe. Note that the ⁵⁶Fe doublet at 7.6312 and 7.6456 MeV is contained in a single energy bin from 7.60 to 7.65 MeV.

B. Incorporation of Revised Photon-**Production Data in the ENDF Evaluations** In general, the number of discrete photons from thermal-neutron-induced radiative capture in File 12 was significantly increased. Continuum distributions were included in several cases either to reduce the number of discrete photons by combining discrete photon data or to provide data on unresolved or unmeasured photons (from theoretical calculations). In all cases except for ¹⁴N, the radiative capture photon angular distributions were assumed isotropic, and the File 14 information was updated to reflect the new number of discrete gamma rays. We preserved all information already present in the previous ENDF/B files, usually File 15, at incident neutron energies above our evaluations. We updated all Q values in File 3 for MT=102 (radiative capture) using the Audi-Wapstra 1995 mass tables.¹⁴ The Q value for the elemental evaluations was specified to be the cross section *and* atomic fraction weighted Q value at thermal incident-neutron energies.

MCNP currently allows a maximum of 1000 discrete photons per nuclide. Elemental evaluations, with contributions from multiple isotopes, can easily exceed this upper limit; for example, natural potassium would have a total of 1741 gamma rays. For these elemental evaluations, we therefore include as discrete gamma rays (in File 12) only those that have an intensity greater than 0.01 times the maximum gamma-ray intensity for that element. The remaining gamma rays are used to form a background continuum spectrum that is included in the File 15 information. We also used this procedure for individual isotopes that have greater than 600 discrete gamma rays.

To properly conserve energy and ensure more accurate heating numbers, the prompt gammaray spectrum was normalized to the total available energy (or Q value) unless a substantial fraction of the gamma-ray spectrum remained unmeasured. In general, normalization factors ranged from 0.9572 to 1.1259, with an average of 1.0107± 0.0204. The spectra remained unnormalized for ⁴³Ca, ⁶¹Ni, and ^{182,183,184,186}W, where only 76%, 56%, 55%, 54%, 25%, and 59% of the total spectrum, respectively, was measured. The spectra also remain unnormalized for ^{47,49}Ti because the strongest gamma ray for each isotope would have an unphysical yield if normalized.

The contribution of ⁴³Ca and ^{47,49}Ti to the elemental spectrum was small. For the ⁶¹Ni and ^{182,183,184,186}W isotopic evaluations, we used theoretical calculations to estimate the spectrum of unresolved (and unmeasured) gamma rays. Elemental spectra were constructed from the isotopic evaluated spectra for S, K, Ca, and Ti and were not further normalized. The cross sections and atomic fractions used to construct the elemental spectra were obtained from the Chart of the Nuclides 15th edition.¹⁵ Table 2 gives the representation of the photon production data in the previous ENDF evaluation for radiative capture and the details on the data used to revise the evaluations in this effort. The elemental evaluations for Mg, S, K, Ca, and Ti incorporated 55, 29, 76, 31, and 21 discrete gamma rays respectively. These discrete gamma-rays represented 90.4%, 94.6%, 72.5%, 91.9%, and 90.3% of the total available gamma ray energy.

Detailed information on the changes to each individual evaluation can be found in reference 9. Additionally, information on the gamma-ray energies and intensities for the modified evaluations can be found at: <u>http://www-</u> <u>xdiv.lanl.gov/PROJECTS/DATA/nuclear/photon/thermal.html</u>

III. CREATION OF THE ACTI LIBRARY

After extensive testing, version 99.50 of the NJOY processing code¹⁶ was used to produce the ACTI library. The ENDF/B-VI release 8 evaluations were processed at temperatures of 77K and 293.6K, and the tungsten isotopes were also processed at 3000K. These processed data can then be used with a new Doppler broadening code to be released with the next MCNP data library update through the Radiation Safety Information Computational Center

<u>http://epicws.epm.ornl.gov/rsic.html</u> The new Doppler broadening code will allow the MCNP user to broaden the data to the temperature of the specific problem they are simulating. As the tungsten evaluations contain unresolved-resonance data, data at the upper temperature limit of 3000K were provided for use with the Doppler broadening code.

The final ACTI data library consists of data for ${}^{1}H, {}^{4}He, {}^{9}Be, {}^{14}N, {}^{16}O, {}^{19}F, Na, Mg, {}^{27}AI, {}^{28,30}Si, {}^{32}S, S, {}^{35,37}CI, K, Ca, {}^{45}Sc, Ti, {}^{51}V, {}^{50,52,53,54}Cr, {}^{55}Mn, {}^{54,56,57,58}Fe, {}^{58,60,61,62,64}Ni, {}^{63,65}Cu and {}^{182,183,184,186}W$. The ACTI library is contained within 2 files, actia and actib, that are 190Mb and 181Mb in size. The room temperature data can be found in the actia file and the 77K and 3000K data can be found in the actib file. The ACTI library is compatible with MCNP version 4B for most of the nuclides. MCNP version 4C or later is needed to take advantage of the unresolved-resonance data for the tungsten isotopes. Table 3 contains information for the ACTI Library in a similar form as Appendix G in the MCNP manual. If the data were available in the ENDF evaluation, full charged-particle production information was included in the processing for use with MCNPX.¹⁷ The evaluation date can sometimes be quite misleading. For example, the evaluation portion below an incident neutron energy of 20 MeV for Ca and the W isotopes

dates from 1980 whereas the evaluation above 20 MeV dates from 1996-1997. The evaluation date given in the Appendix G information is the later date of 1996-1997. The File 1 information in each evaluation gives a summary of the history of that evaluation. This information will be located on the WWW at http://www-xdiv.lanl.gov/PROJECTS/DATA/nuclear/doc/acti.html

A. Testing of the NJOY Processed Files

The Data Team in X-Division at Los Alamos National Laboratory has a suite of 8 ENDF evaluations used to test each version of NJOY. Once a new version of NJOY has been shown to process these evaluations correctly, the processing associated with a specific MCNP data library begins.¹⁸ In addition to the internal consistency checks that NJOY performs, ¹⁹ the Data Team has a suite of checking codes that are used to verify each processed file.^{20,21,22,23,24} Once this testing process is completed, then each file is run through a standard MCNP run to identify any additional problems.

Modifications were made to the Release 8 ENDF evaluation for ⁴⁵Sc. It was found in the internal NJOY consistency checks that an incorrect reference frame was specified the secondary neutron distributions for MT=16, 22, 28, and 91. The evaluation was updated to use the proper reference frame for these 4 reactions in the ⁴⁵Sc evaluation prior to processing. Additionally, ⁴⁵Sc had another evaluation error for the inelastic photons give in File 13, MT=3. The value for the cross section at the reaction threshold was given improperly such that the processed data file had a non-zero cross section below the threshold.

On some computing platforms, MCNP compiled in 32-bit mode will fail if it encounters cross sections or distribution values $<10^{-37}$. The exponent for cross-section values $<10^{-37}$ were changed to 10^{-35} . Such low number corrections were made for 16 O.

B. Gamma-Ray Energies and Intensities in the ACTI Data Library

Information on the discrete photon production in the MCNP neutron data libraries for gamma-ray spectroscopy applications has been available in both HTML and PDF formats on the WWW at:

http://laurel.lanl.gov/PROJECTS/DATA/nuclear/photon/photon.html

A file containing the information on the DISCrete Energy GAMma-rays (DISCEGAM) is available for each MCNP library as appropriate.²⁵ There are three tables in each DISCEGAM file. The first, and largest, table is an isotope-by-isotope listing of discrete neutron-induced gamma rays. The second table is a compilation of all of the lines from all of the isotopes in the library, listed in ascending order of gamma-ray energy. The last table is simply a list of total neutron cross sections and total photon-production cross sections. The data in each table are given at three incident neutron energies: 2.53E-8 MeV (labeled "thermal"), 1 MeV, and 14 MeV. We anticipate adding the DISCEGAM information for the ACTI Library in the near future at the above web site. An example of the DISCEGAM file for the ACTI library is given in Table 4 for the ¹H and ⁹Be isotopes.

ACKNOWLEDGMENTS

Modifications to some of the ENDF evaluations were based on work performed by Amzie A. Adams. This work was supported by and done under the auspices of the U.S. Department of Energy through a variety of programs.

REFERENCES

¹ J. F. Briesmeister, ed., "MCNP – A General Monte Carlo N-Particle Transport Code, Version 4C" Los Alamos National Laboratory Report LA-13709-M (2000).

² V. McLane, C. L. Dunford, and F. Rose, ed., "ENDF-102: Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6," Brookhaven National Laboratory report, BNL-NCS-44945 (1997).

³ M. B. Chadwick and P. G. Young, "Calculation and Evaluation of Cross Sections and Kerma Factors for Neutrons up to 100 MeV on ¹⁶O and ¹⁴N," Nucl. Sci. Eng. **123**, 1-16 (1996).

 ⁴ P. G. Young, G. M. Hale, and M. B. Chadwick, "Evaluation of Neutron-Induced Cross Sections for ¹⁶O from 10⁻⁵ eV to 30 MeV," to be published.
⁵ R. O. Nelson, M. B. Chadwick, A. Michaudon,

and P. G. Young, "High-Resolution Measurements and Calculations of Photon-Production Cross Sections from ¹⁶O(n,x γ) Reactions for Neutron Energies Between 4 and 200 MeV," Nucl. Sci. Eng. **138**, 105-144 (2001). ⁶ P. G. Young, "Evaluation of Neutron Induced Cross Sections for ³⁵Cl and ³⁷Cl over the Energy Range 10⁻⁵ eV to 20 MeV," to be published (2002).

⁷ S. Raman et al., *Phys. Rev. C* 46, 972 (1992).
⁸ S. C. Frankle, R. C. Reedy, P. G. Young, and W. P. Madigan, "Improvements to the Photon-Production Data for Radiative Capture in ENDF," *Appl. Radiat. Isot.* 53, 929 (2000).

 ⁹ S. C. Frankle, R. C. Reedy, and P. G. Young, "Photon-Production Data for Thermal NeutronCapture in the ENDF/B-VI Evaluations," Los Alamos National Laboratory Report, LA-13812 (2000).
¹⁰ R.C. Reedy and S. C. Frankle, "Prompt

¹⁰ R.C. Reedy and S. C. Frankle, "Prompt Gamma Rays from the Capture of Thermal Neutrons by Elements from Hydrogen through Zinc," *Atomic Data and Nuclear Data Tables* (doi:10.1006/adnd.2001.0870) published electronically Nov. 1, 2001 [http://www.idealibrary.com/links/doi/10.1006/ad

nd.2001.0870/pdf]. ¹¹ J. G. Conaway and S. C. Frankle, "Summary Report for Fiscal Year 1993, TTP # AL131004: Multi-Spectral Nuclear Logging,"

Los Alamos National Laboratory release, LA-UR-93-4538 (1993). ¹² J. G. Conaway et al., "Detection of

Contaminants Along Boreholes with Prompt Gamma Spectroscopy," invited presentation to Annual Meeting of the American Nuclear Society, LA-UR-95-107 (1995).

 ¹³ Joint Work Statement No. LA95J10236-A001, CRADA No. LA95C10236-A001, Computer Simulation in Support of Nuclear Well-Logging (1995).
¹⁴ G. Audi and A. H. Wanster, "The 1005 in

¹⁴ G. Audi and A. H. Wapstra, "The 1995 Update to the Atomic Mass Evaluation," *Nucl. Phys.* **A595**, 409-480 (1995).
¹⁵ Nuclidos and Instances Charles International Content of the Atomic Mass Physical Sciences Charles Charle

¹⁵ Nuclides and Isotopes: Chart of the Nuclides, Fifteenth edition, edited by Josef R. Parrington, Harold D. Knox, Susan L. Breneman, Edward M. Baum, and Frank Feiner, GE Nuclear Energy (1996).

(1996). ¹⁶ R. E. MacFarlane and D. W. Muir, "The NJOY Nuclear Data Processing System, Version 91," Los Alamos National Laboratory report, LA-12740-M (1994).

¹⁷ MCNPX 2.1.5 User's Guide Los Alamos National Laboratory release, LA-UR-99-6058 (November 15, 1999).

 J. M. Campbell, S. C. Frankle, and R. C. Little, "ENDF66: A Continuous-Energy Neutron Data Library for MCNP," Proceedings of the 12th Biennial Radiation Protection and Shielding Topical Meeting, Santa Fe, NM (April 15-19, 2002).
S. C. Frankle and J. M. Campbell, "Verification

¹⁹ S. C. Frankle and J. M. Campbell, "Verification of the checking of MCNP ACE files performed by the *consis* routine of NJOY," Los Alamos National Laboratory internal memorandum, X-5:SCF-99-12 (November 15, 1999).

²⁰ S. C. Frankle, "Experience with ENDF60 and QA of a Continuous-energy Library," Los Alamos National Laboratory internal memorandum, XTM:SCF-96-363 (Sept. 23, 1996). ²¹ S. C. Frankle, "Total Charged Particle Production – GASPR," Los Alamos National Laboratory internal memorandum, XTM:SCF-96-199 (May 22, 1996).

 ²² N. Keen, "WHALE – An update version of MARK/MRKACR," Los Alamos National Laboratory internal memorandum, XTM:95-253 (Oct. 17, 1995).
²³ S. Frankle and J. Campbell, "CHECKXS – A

²³ S. Frankle and J. Campbell, "CHECKXS – A Program for Checking Total Cross Sections," Los Alamos National Laboratory internal

memorandum, XCI:99-58 (June 24, 1999). ²⁴ S. C. Frankle, "Discussion of SAMMY and NJOY Calculated Cross Sections for 138Ba and 57Fe," Los Alamos National Laboratory internal memorandum, XTM:SCF-96-04 (Jan. 8, 1996). ²⁵ J. C. Comly, "Discrete Energy Gamma-Rays from MCNP Data Libraries," Los Alamos National Laboratory research note, XCI-RN(U)97-034 and LA-UR-98-535 (Oct. 6, 1997).

		Sn	$\Sigma E_{\gamma}I_{\gamma}$	∑l _γ (cs)	∑l _γ (gs)	l _v (max)	l _y (min)
Isotope	N _y	(keV)	Sn	(%)	(%)	(%)	(%)
¹ H	1	2224.6	100	100	100	100	100
² H	1	6257.3	100	100	100	100	100
⁶ Li	3	7250.0	100	100	100	62	38
⁷ Li	3	2032.8	100	100	100	89.4	10.6
⁹ Be	11	6812.3	100	100	100	65,5	0.05
¹⁰ B	8	11454.1	101	100	103	65.7	4.7
¹² C	6	4946.3	100	100	100	67.5	0.16
¹³ C	7	8176.4	100	100	100	84	2.5
¹⁴ N	58	10833.3	100	101	99	29.9	0.007
¹⁶ O	4	4143.3	100	100	100	100	18
¹⁷ O	10	8044.4	78	49	100	100	9.3
¹⁹ F	168	6601.4	100	100	100	37.9	0.021
²⁰ Ne	28	6761.1	94	99	96	73.8	0.114
²¹ Ne	9	10364.0	109	86	100	100	15.6
²² Ne	23	5200.6	101	81	104	75	1
²³ Na	292	6959.4	103	101	99	91.9	0.002
²⁴ Mg	33	7330.7	101	100	99	75.8	0.037
²⁵ Mg	212	11093.1	99	99	100	93	0.02
²⁶ Mg	35	6443.4	100	101	99	65.5	0.051
²⁷ AI	280	7725.0	100	102	101	29.7	0.01
²⁸ Si	46	8473.5	100	100	100	70.2	0.012
²⁹ Si	107	10609.2	98	98	100	45.6	0.034
³⁰ Si	33	6587.4	101	101	100	88.2	0.028
³¹ P	214	7935.6	102	97	99	46	0.02
³² S	103	8641.6	100	99	98	66.6	0.004
³³ S	271	11416.9	89	83	100	70	0.003
³⁴ S	59	6985.8	96	96	100	55.4	0.016
³⁶ S	15	4303.6	101	101	96	93.5	0.522
³⁵ Cl	403	8579.7	99	99	100	27.2	0.002
³⁷ Cl	79	6107.8	100	91	100	29	0.101
³⁶ Ar	28	8788.9	91	93	93	47.5	0.2
⁴⁰ Ar	35	6098.7	100	100	106	76.1	0.03

Table 1. Summary Information for the Compilation of Prompt Gamma Rays from Thermal Neutron Capture for $Z \le 30$

.

Table 1 continued

i

•

		S _n	$\Sigma E_{y}I_{y}$	∑l _γ (cs)	∑l _γ (gs)	l _y (max)	l _y (min)
Isotope	Nγ	(keV)	Sn	(%)	(%)	(%)	(%)
³⁹ K	432	7799.5	101	89	100	86.2	0.009
⁴⁰ K	586	10095.2	100	88	105	40.5	0.001
⁴¹ K	723	7533.8	1 <u>00</u>	93	105	32.9	0.005
⁴⁰ Ca	42	8362.7	100	101	100	88,5	0.1
⁴² Ca	63	7933.0	99	99	99	58	0.2
⁴³ Ca	279	11132.0	76	49	101	97	0.03
⁴⁴ Ca	51	7414.8	101	100	98	77	0.1
⁴⁶ Ca	10	7276.1	98	100	98	98	0.8
⁴⁸ Ca	3	514 <u>6.6</u>	100	100	100	75.5	24.5
⁴⁵ Sc	480	8760.6	104	99	86	28.3	0.01
⁴⁶ Ti	30	8877.7	91	85	110	60	0.6
⁴⁷ Ti	219	11626.6	87	74	100	95.5	0.032
⁴⁸ Ti	97	814 <u>2.</u> 4	99	99	101	85.5	0.018
⁴⁹ Ti	124	10939.1	93	83	100	99	0.077
⁵⁰ Ti	16	6372.3	95	100	82	41.7	0.8
⁵⁰ V	368	11051.3	91	75	114	80	0.01
⁵¹ V	306	7311.2	98	96	41	28.1	0.01
⁵⁰ Cr	71	9261.6	85	84	81	68	0.042
⁵² Cr	11	7939.2	94	93	97	58.4	0.4
⁵³ Cr	89	9719.0	97	96	100	78.6	0.02
⁵⁴ Cr	85	6246.3	98	90	101	55.5	0.03
⁵⁵ Mn	321	7270.5	103	98	_67	36	0.01
⁵⁴ Fe	42	9297.9	103	97	89	66	0.103
⁵⁶ Fe	252	7646.0	100	96	36	29	0.01
⁵⁷ Fe	99	10044.5	97	95	107	66	0.03
⁵⁸ Fe	139	6580.9	100	92	99	59	0.04
⁵⁹ Co	349	7491.9	90	90	91	48	0.02
⁵⁸ Ni	243	8999.4	98	98	96		0.002
⁶⁰ Ni	142	7820.0	98	99	67	53.3	0.004
⁶¹ Ni	77	10597.2	56	43	101	76	0.04
⁶² Ni	92	6837.9	100	100	94	84.5	0.006
⁶⁴ Ni	33	6098.0	100	100	36	67	0.06
⁶³ Cu	323	7916.0	100	99	96	33.1	0.011
⁶⁵ Cu	424	7065.9	100	93	105	41	0.022

Table 1 continued

		Sn	$\Sigma E_{y}I_{y}$	∑l _γ (cs)	∑l _γ (gs)	l _y (max)	l _γ (min)
Isotope	N _y	(keV)	S _n	(%)	(%)	(%)	(%)
⁶⁴ Zn	57	7979.6	95	96	35	47.8	0.3
⁶⁶ Zn	20	7052.2	91	86	86	54.2	0.9
⁶⁷ Zn	446	10198.2	75	41	97	75	0.005
⁶⁸ Zn	29	6482.2	57	56	72	23.5	0.5

Symbol (mass and element symbol) of neutron-capturing isotope. Isotope

Number of prompt gamma rays adopted for that isotope.

Neutron separation energy (in keV).

.

 $\begin{array}{l} N_{\gamma} \\ S_{n} \\ \Sigma E_{\gamma} I_{\gamma} / S_{n} \end{array}$ Sum of the product of the adopted gamma-ray energy E_{v} (in keV) times its intensity I_{v} (in %) divided by S_n (in keV). Sum of the adopted intensities (in %) for known decays from the capturing state (cs).

 $\Sigma I_{\gamma}(cs)$

Sum of the adopted intensities (in %) for known decays into the ground state. ∑l_v(gs)

Highest adopted gamma-ray intensity (in %). l_v(max)

Lowest adopted gamma-ray intensity (in %). l (min)

Evaluation		Number of	Q-Value	Measured Total	Normalization
		Gamma Rays	(MeV)	Energy	Factor
				(MeV)	
1 <u>H</u>		1	2.2246	2.2233	_
⁹ Be		11	6.81238	6.8253	0.9981
¹⁴ N		58	10.83339	10.8236	1.0009
¹⁹ F		168	6.60137	6.6053	0.9994
²³ Na		292	6.95949	7.2007	0.9665
Mg-nat		55	8.41054	(90.4%)	
	²⁴ Mg	33	7.33073	7.3879	0.9923
	²⁵ Mg	212	11.09316	10.9719	1.0111
	²⁶ Mg	35	6.44340	6.4149	1.0044
²⁷ AI		280	7.72511	7.7515	0.9966
³² S		103	8.64165	8.6152	1.0031
S - nat		29	8.60238	(94.6%)	_
	³² S	103	8.64165	8.6152	1.0031
	³³ S	271	11.41703	10.1399	1.1259
	³⁴ S	59	6.98590	6.7184	1.0398
	³⁶ S	15	4.30462	4.3425	0.9911
³⁵ Cl		403	8.57968	8.5438	1.0070
³⁷ Cl		79	6.10783	6.0779	1.0049
K - nat		76	7.79080	(72.5%)	
	³⁹ K	432	7.79956	7.8629	0.9919
	⁴⁰ K	586	10.09526	10.0935	1.0002
	⁴¹ K	723	7.53383	7.5061	1.0037
Ca - nat		31	8.35632	(91.9%)	<u></u>
	⁴⁰ Ca	42	8.36277	8.3417	1.0025
	⁴² Ca	63	7.93306	7.8775	1.0071
	⁴³ Ca	279	11.13206	8.4454	
	⁴⁴ Ca	51	7.41483	7.4594	0.9940
	⁴⁶ Ca	10	7.27617	7.1459	1.0182
	⁴⁸ Ca	3	5.14667	5.1466	1.00002
⁴⁵ Sc		480	8.76069	9.1524	0.9572

Table 2. Isotopic Gamma-ray Data in the Revised ENDF Evaluations

.

Table 2 Continued

۰.

Evaluation		Number of	Q-Value	Measured Total	Normalization
		Gamma Rays	(MeV)	Energy	Factor
				(MeV)	
Ti - nat		21	8.27195	(90.3%)	
	⁴⁶ Ti	30	8.87778	8.0399	1.1042
	⁴⁷ Ti	219	11.62669	10.0915	
	⁴⁸ Ti	97	8.14243	8.0746	1.0084
	⁴⁹ Ti	124	10.93922	10.1812	
	⁵⁰ Ti	16	6.37238	6.0608	1.0514
⁵¹ V		306	7.31130	7.1328	1.0250
⁵⁰ Cr		71	9.26170	9.2358	1.0028
⁵² Cr		11	7.93923	7.4672	1.0632
⁵³ Cr		89	9.71909	9.3985	1.0341
⁵⁴ Cr		85	6.24635	6.1226	1.0202
⁵⁵ Mn		321	7.27055	7.4598	0.9746
⁵⁴ Fe		42	9.29800	9.5865	0.9699
⁵⁶ Fe		252	7.64609	7.4515	1.0016
⁵⁷ Fe		99	10.04454	10.0316	1.0262
⁵⁸ Fe		139	6.58096	6.5783	1.0013
⁵⁸ Ni		243	8.99951	8.8421	1.0189
⁶⁰ Ni		142	7.82005	7.6757	1.0194
⁶¹ Ni		77	10.59733	5.9117	
⁶² Ni		92	6.83791	6.8612	0.9966
⁶⁴ Ni		33	6.09806	6.1176	0.9967
⁶³ Cu		322	7.91602	7.9165	0.9998
⁶⁵ Cu		424	7.06599	7.0649	1.0003
¹⁸² W		446	6.19074	3.4141	
¹⁸³ W		269	7.41180	3.9962	a = + =
¹⁸⁴ W		87	5.75378	1.4661	
¹⁸⁶ W		533	5.46675	3.2479	

ZAID	AWR	Library Name	Source	Org. Eval. Date.	Temp. (K)	Length (words)	Number Energies	Emax (MeV)	GPD	Nu- bar	СР	DN	UR
1001.62c	0.9992	actia	ENDF/B-VI.8	1999	293.6	10128	688	150	yes	no	yes	no	no
2004.62c	3.9682	actia	ENDF/B-VI.8	1973	293.6	5524	588	20	no	no	no	no	no
4009.62c	8.9348	actia	ENDF/B-VI.8	1986	293.6	115407	514	20	yes	no	yes	no	no
7014.62c	13.8828	actia	ENDF/B-VI.8	1997	293.6	145340	1824	150	yes	no	yes	no	no
8016.62c	15.8575	actia	ENDF/B-VI.8	1996	293.6	407432	2759	150	yes	no	yes	no	no
9019.62c	18.8350	actia	ENDF/B-VI.8	1990	293.6	127005	1888	20	yes	no	yes	no	no
11023.62c	22.7920	actia	ENDF/B-VI.8	1977	293.6	69562	3239	20	yes	no	no	no	no
12000.62c	24.0963	actia	ENDF/B-VI.8	1978	293.6	68746	3172	20	yes	no	no	no	no
13027.62c	26.7497	actia	ENDF/B-VI.8	1997	293.6	220418	3081	150	yes	no	yes	no	no
14028.62c	27.7370	actia	ENDF/B-VI.6	1997	293.6	263728	7364	150	yes	no	yes	no	no
14029.62c	28.7280	actia	ENDF/B-VI.8	1997	293.6	252591	4869	150	yes	no	yes	no	no
14030.62c	29.7160	actia	ENDF/B-VI.6	1997	293.6	195852	5781	150	yes	no	yes	no	no
16000.62c	31.7888	actia	ENDF/B-VI.8	1979	293.6	160505	10272	20	yes	no	no	no	no
16032.62c	31.6970	actia	ENDF/B-VI.8	1977	293.6	16050	993	20	yes	no	no	no	no
17035.62c	34.6684	actia	ENDF/B-VI.8	2001ª	293.6	311841	6987	20	yes	no	yes	no	no
17037.62c	36.6483	actia	ENDF/B-VI.8	2001ª	293.6	137404	3425	20	yes	no	yes	no	no
19000.62c	38.7660	actia	ENDF/B-VI.8	1967	293.6	52304	2734	20	yes	no	no	no	no
20000.62c	39.7360	actia	ENDF/B-VI.8	1997 [⊳]	293.6	187296	4344	150	yes	no	yes	no	no
21045.62c	44.5679	actia	ENDF/B-VI.8:X	1992	293.6	267570	22382	20	yes	no	no	no	no
22000.62c	47.4676	actia	ENDF/B-VI.8	1977	293.6	125641	10859	20	yes	no	no	no	no
23000.62c	50.5040	actia	ENDF/B-VI.8	1988	293.6	198692	10393	20	yes	no	no	no	no
24050.62c	49.5170	actia	ENDF/B-VI.8	1997	293.6	390799	28138	150	yes	no	yes	no	no
24052.62c	51.4940	actia	ENDF/B-VI.8	1997	293.6	342461	20849	150	yes	no	yes	no	no
24053.62c	52.4860	actia	ENDF/B-VI.8	1997	293.6	287642	13657	150	yes	no	yes	no	no
24054.62c	53.4760	actia	ENDF/B-VI.8	1997	293.6	260423	13593	150	yes	no	yes	no	no
25055.62c	54.4661	actia	ENDF/B-VI.8	1988	293.6	272554	11114	20	yes	no	yes	no	no
26054.62c	53.4760	actia	ENDF/B-VI.8	1996	293.6	311639	19262	150	yes	no	yes	no	no
26056.62c	55.4540	actia	ENDF/B-VI.8	1996	293.6	466257	25606	150	yes	no	yes	no	no
26057.62c	56.4460	actia	ENDF/B-VI.8	1996	293.6	318268	14266	150	yes	no	yes	no	no
26058.62c	57.4360	actia	ENDF/B-VI.8	1989	293.6	165829	11111	20	yes	no	yes	no	no
28058.62c	57.4380	actia	ENDF/B-VI.8	1997	293.6	617974	39020	150	yes	no	yes	no	no
28060.62c	59.4160	actia	ENDF/B-VI.8	1997	293.6	407398	21131	150	yes	no	yes	no	no

Table 3. Appendix G.2 Entries for the ACTI Library

ZAID	AWR	Library Name	Source	Org. Eval. Date.	Temp. (K)	Length (words)	Number Energies	Emax (MeV)	GPD	Nu- bar	СР	DN	UR
28061.62c	60.4080	actia	ENDF/B-VI.8	1997	293.6	247188	7379	150	yes	no	yes	no	no
28062.62c	61.3960	actia	ENDF/B-VI.8	1997	293.6	234511	9168	150	yes	no	yes	no	no
28064.62c	63.3790	actia	ENDF/B-VI.8	1997	293.6	198313	7894	150	yes	no	yes	no	no
29063.62c	62.3890	actia	ENDF/B-VI.8	1998	293.6	335072	22892	150	yes	no	yes	no	no
29065.62c	64.3700	actia	ENDF/B-VI.8	1998	293.6	296916	17593	150	yes	no	yes	no	no
74182.62c	180.3900	actia	ENDF/B-VI.8	1996 ^b	293.6	258342	16815	150	yes	no	yes	no	yes
74183.62c	181.3800	actia	ENDF/B-VI.8	1 996 ^b	293.6	224856	13086	150	yes	no	yes	no	yes
74184.62c	182.3700	actia	ENDF/B-VI.8	1996 ^b	293.6	194523	10107	150	yes	no	yes	no	yes
74186.62c	184.3600	actia	ENDF/B-VI.8	1996 ^b	293.6	202211	10833	150	yes	no	yes	no	yes
12000.61c	24.0963	actib	ENDF/B-VI.8	1978	77	69108	3213	20	yes	no	no	no	no
13027.61c	26.7497	actib	ENDF/B-VI.8	1997	77	220073	3038	150	yes	no	yes	no	no
14028.61c	27.7370	actib	ENDF/B-VI.6	1997	77	264592	7472	150	yes	no	yes	no	no
14029.61c	28.7280	actib	ENDF/B-VI.8	1997	77	252671	4879	150	yes	no	yes	no	no
14030.61c	29.7160	actib	ENDF/B-VI.6	1997	77	196252	5831	150	yes	no	yes	no	no
16000.61c	31.7888	actib	ENDF/B-VI.8	1979	77	162749	10459	20	yes	no	no	no	no
16032.61c	31.6970	actib	ENDF/B-VI.8	1977	77	14930	885	20	yes	no	no	no	no
17035.61c	34.6684	actib	ENDF/B-VI.8	2001 ^a	77	316441	7217	20	yes	no	yes	no	no
17037.61c	36.6483	actib	ENDF/B-VI.8	2001ª	77	137963	3495	20	yes	no	yes	no	no
20000.61c	39.7360	actib	ENDF/B-VI.8	1997	77	185636	4178	150	yes	no	yes	no	no
22000.61c	47.4676	actib	ENDF/B-VI.8	1977	77	131345	11427	20	yes	no	no	no	no
24050.61c	49.5170	actib	ENDF/B-VI.8	1997	77	405367	29959	150	yes	no	yes	no	no
24052.61c	51.4940	actib	ENDF/B-VI.8	1997	77	344811	21143	150	yes	no	yes	no	no
24053.61c	52.4860	actib	ENDF/B-VI.8	1997	77	292322	14242	150	yes	no	yes	no	no
24054.61c	53.4760	actib	ENDF/B-VI.8	1997	77	262192	13814	150	yes	no	yes	no	no
25055.61c	54.4661	actib	ENDF/B-VI.8	1988	77	279378	11967	20	yes	no	yes	no	no
26054.61c	53.4760	actib	ENDF/B-VI.8	1996	77	318575	20129	150	yes	no	yes	no	no
26056.61c	55.4540	actib	ENDF/B-VI.8	1996	77	475976	26821	150	yes	no	yes	no	no
26057.61c	56.4460	actib	ENDF/B-VI.8	1996	77	319262	14390	150	yes	no	yes	no	no
26058.61c	57.4360	actib	ENDF/B-VI.8	1989	77	169389	11556	20	yes	no	yes	no	no
28058.61c	57.4380	actib	ENDF/B-VI.8	1997	77	630981	40646	150	yes	no	yes	no	no
28060.61c	59.4160	actib	ENDF/B-VI.8	1997	77	424742	22574	150	yes	no	yes	no	no
28061.61c	60.4080	actib	ENDF/B-VI.8	1997	77	247660	7438	150	yes	no	yes	no	no
28062.61c	61.3960	actib	ENDF/B-VI.8	1997	77	234983	9227	150	yes	no	yes	no	no
28064.61c	63.3790	actib	ENDF/B-VI.8	1997	77	199097	7992	150	yes	no	yes	no	no
29063.61c	62.3890	actib	ENDF/B-VI.8	1998	77	348384	24556	150	yes	no	yes	no	no
29065.61c	64.3700	actib	ENDF/B-VI.8	1998	77	304772	18575	150	yes	no	yes	no	no

ZAID	AWR	Library Name	Source	Org. Eval. Date.	Temp. (K)	Length (words)	Number Energies	Emax (MeV)	GPD	Nu- bar	СР	DN	UR
74182.61c	180.3900	actib	ENDF/B-VI.8	1996 ^b	77	269718	18237	150	yes	no	yes	no	yes
74183.61c	181.3800	actib	ENDF/B-VI.8	1996 ^b	77	235761	14449	150	yes	no	yes	no	yes
74184.61c	182.3700	actib	ENDF/B-VI.8	1996 ^b	77	200883	10902	150	yes	no	yes	no	yes
74186.61c	184.3600	actib	ENDF/B-VI.8	1996 [♭]	77	207824	11635	150	yes	no	yes	no	yes
74182.63c	180.3900	actib	ENDF/B-VI.8	1996 [♭]	3000	232047	13528	150	yes	no	yes	no	yes
74183.63c	181.3800	actib	ENDF/B-VI.8	1996 ^b	3000	198226	9757	150	yes	no	yes	no	yes
74184.63c	182.3700	actib	ENDF/B-VI.8	1996 [♭]	3000	181213	8443	150	yes	no	yes	no	yes
74186.63c	184.3600	actib	ENDF/B-VI.8	1996 ^ь	3000	190276	9128	150	yes	no	yes	no	yes

.

^a New evaluations for ENDF/B-VI.
^b Examples of evaluations that have a significantly older date for evaluated data with incident neutron energies below 20 MeV.

Description of Terms:

ZAID - The ZAID is the nuclide identification number with the form

ZZAAA.NNc or ZZAAA.NNd,

where ZZ is the atomic number, AAA is the mass number (000 for naturally occurring elements), NN is the neutron cross-section set identifier, and c or d indicates continuous energy or discrete reaction data respectively.

Atomic Wt. Ratio: The atomic weight ratio (AWR) is the ratio of the atomic mass of the nuclide to a neutron. This is the AWR that is contained in the original evaluation and that was used in the NJOY processing of the evaluation.

Library - Library that contains the data file for that ZAID.

Source - Indicates the originating evaluation for that data file.

ENDF/B-V.0 or ENDF/B-VI are the evaluated nuclear data files, a US effort coordinated by the National Nuclear Data Center at Brookhaven National Laboratory. The evaluations are updated periodically by evaluators from all over the country, and the release number of the evaluation is given. This is not necessarily the same as the ENDF revision number for that evaluation. For example, Pu-242 is noted as ENDF/B-VI.2 as it is from release 2 of ENDF/B-VI, but it is revision 1 of that evaluation.

----:X - indicates the original evaluation has been modified by the Los Alamos National Laboratory group X-5.

Org. Eval. Date - Indicates the year that the original ENDF evaluation was completed or accepted prior to the modificatiosn described in this paper.

Temp. - Indicates the temperature (°K) at which the data were processed. The temperature enters into the processing of the evaluation into a data file only through the Doppler broadening of cross sections. The user must be aware that without the proper use of the TMP card, MCNP will attempt to correct the data libraries to the default 293.6 °K by modifying the elastic and tot cross sections only.

Doppler broadening refers to a change in cross section resulting from thermal motion (translation, rotation, and vibration) of nuclei in a target material. Doppler broadening is done on all cross sections for incident neutron (nonrelativistic energies) on a target at some temperature (temp) in which the freeatom approximation is valid. In general, an increase in the temperature of the material containing neutron-absorbing nuclei in a homogeneous system results in Doppler broadening of resonances and an increase in resonance absorption. Furthermore, a constant cross section at zero degrees goes to 1/v behavior as the temperature increases. You should not only employ the best evaluations, but also employ evaluations that are at temperatures approximating temperatures in your application.

Length - The tot length of a particular cross-section file in words. It is understood that the actual storage requirement in an MCNP problem will often be less because certain data that are unneeded for a problem may be expunded.

Num. of En. - The number of energy points on the grid used for the neutron cross sections for that data file. In general, a finer energy grid (or greater the number of points) indicates a more accurate representation of the cross sections, particularly through the resonance region.

Emax - The maximum incident neutron energy for that data file. For all incident neutron energies greater than Emax, MCNP assumes the last cross section value given.

GPD - 'yes' means that photon-production data are present; 'no' means that such data are not present.

Nubar - for fissionable material, nubar indicates the type of fission nu data available. 'pr' means that only pr nu data are given; 'tot' means that only tot nu data are given; 'both' means that pr and tot nu are given.

CP - 'yes' means that secondary charged-particle data are present; 'no' means that such data are not present.

DN - 'yes' means that delayed neutron data are present; 'no' means that such data are not present.

UR - "yes" means that unresolved resonance data are present; "no" means that such data are not present.

~

Table 4. Example of the DISCrete Energy GAMma File for a MCNP Data Library

USERS GUIDE to DISCEGAM file

The DISCEGAM tables are designed to inform users of the MCNP transport code, and its variants, about the contents of a given library of nuclear data, specifically in respect to the generation of discrete-energy photons (gammas) by neutron interactions. Such information may be useful in choosing the best library for an application, in setting up tallies for output photons, or in biasing the photon generation with the use of PIKMT cards.

Most of the information in this Users Guide section is generic to any DISCEGAM file; however, at the end of this Users Guide section, some information specific to this file is given.

Users must keep in mind some warnings about the data in the tables below:

- 1. The tables describe the library data, not necessarily the reality of nature. Even when an evaluation includes some photon-production data, it may have been designed with other applications in mind. Note that there are several libraries available, based on ENDF/B-V evaluations, ENDF/B-VI evaluations, or specific Livermore or Los Alamos evaluations.
- 2. The isotopes listed in the tables form an incomplete set. Many isotopes are not included in the library at all, and others don't show up in the tables because they have no photon-production data. The table listing "all lines" is thus also incomplete.
- 3. Remember that there are neutron-induced photons which do not appear as discrete lines. These continuum spectra of photons can be as important, or more important, than discrete photons for many isotopes.
- 4. These tables are produced by running the DEG ("Discrete Energy Gamma") code on a library, and there are options which affect the recognition of "discrete lines" embedded in spectral data. There are also options to filter out line data, if the lines are not produced by neutrons at the "test energies". Thus, the contents of the tables will be (slightly) dependent on the options to the DEG code.

There are three tables that follow below. The first (largest) table is an isotope-by-isotope listing of discrete neutron-induced photons, for each isotope found on the library which has photon-production data. The second table is a compilation of all of the lines from all of the isotopes in the library, listed in ascending order of photon energy. The last table is simply a list of total neutron cross sections and total photon-production cross sections. The data in each table are given at three "test" neutron energies: 2.53E-8 MeV (labeled "thermal"), 1 MeV, and 14 MeV. The three tables are now described in greater detail.

TABLE 1. GAMMA LINE LIST (Isotope-by-isotope)

In this table, the discrete neutron-induced photons, as specified by the evaluator, are listed for each isotope. The list is broken into two parts: "strong photons" and "weak photons". The former is defined as a line that contributes at least 10% of all of the photons produced, at one or more of the "test energies". For each photon, the following quantities are given:

- 1. "n" is just the index, in energy order, of the line.
- 2. "Egam" is the discrete photon energy, in MeV. Note that there are cases where the same photon transition occurs for more than one "source" (neutron) reaction, such as for the inelastic reactions. In the table, they appear as different photons, but with the same energy, and for many

purposes, the user should sum their cross sections (at a given incident neutron energy) to obtain a total production cross section for that particular gamma-ray.

- 3. "p/np" indicates whether the particular photon is a primary or non-primary photon. The designation "n-p" means a non-primary photon; in this case, the photon energy is always exactly equal to Egam. On the other hand, for a primary photon (designated by "p"), the energy of the photon produced equals Egam+{(awr)/(awr+1)}*Eneut, where awr is the atomic weight ratio, and Eneut is the incident neutron energy. Primary photons, therefore, are generally useful as signature photons only when produced by thermal neutrons; for this reason, only "thermal" cross section data are listed for such photons. A flag designation of "np*" is used to specify a non-primary photon which has been represented as "almost-but-not-quite-discrete" by the evaluator; that is, it is represented by an isolated, narrow, peak in a continuum spectrum.
- 4. "MT" is the partial photon-production MT number. For a description of these MT numbers, see the MCNP Manual (Judith F. Briesmeister, Ed., "MCNP A General Monte Carlo N-Particle Transport Code, Version 4B," Los Alamos National Laboratory report LA-12625-M, Version 4B (March 1997)); the photon production MT numbers are contained in the MTRP Block, described in Table F.6 in Appendix F of the Manual. This MT value can be used on an FM card (page 3-77 of the Manual) as a flux multiplier to determine the number of photons produced with energy Egam, or on a PIKMT card (page 3-100 of the Manual) to bias the photon source. Note that the usefulness of MT is compromised, in some cases, when a single photon-production process produces a series of output lines. When this occurs, all of these lines have the same "MT", and so the tally or source weighting must be viewed as applying to the neutron reaction (not to the generation of any single photon). This is often not what the MCNP user desires.
- 5. "cross sections" are the photon-production cross section for the individual photon in question (at each of the "test energies"). Note that the listing may contain lines which appear in the photon spectrum, but whose "source" (neutron) reaction cross section happens to be zero at all of the "test energies"; such entries are legitimate, but of limited utility.
- 6. "strengths" are the relative strengths of the individual photon line for each of the incident neutron "test energies". Here, strength is defined as the ratio of the individual photon- production cross section to the "total photon-production cross section"; this equals the fraction of the total photons produced which have energy Egam, at that incident neutron energy.
- 7. "specific intensity" is the photon yield (number of photons generated) in the specified line, given that the source neutron reaction occurs. It is calculated as the ratio of the individual photon-production cross section to the neutron cross section corresponding to reaction "MT". Some "surprises" may occur in the tables in these columns: all zeroes result when the source neutron reaction cross section is not explicitly present in the dataset, or, in some cases, a nonzero "yield" occurs even though the source neutron reaction has a zero cross section.
- 8. "source reaction" is the type of neutron reaction responsible for the photon; if a "label" for the reaction is not known, then the neutron reaction "MT" value is given.
- 9. "width" applies only to "almost-but-not-quite-discrete" photons. It is the full-width, half-max value for the "peak" in the photon spectrum that represents the discrete line. Note that the units for "width" are keV, while the units for Egam are MeV. Also, if a value of ".0000" occurs, it means that the width is less than 0.00005 keV, but, it is still finite. The MCNP user should keep in mind that photons can be generated anywhere within the distribution peak, when deciding on tally bins. The "width" value is preceeded by a "shape flag": a blank indicates that the bin has a "histogram" shape (Egam is the bin midpoint); a "+" sign signifies a peak in a continuous distribution (with the "width" extending halfway to the neighboring points on each side of the peak); and, a "~" flag signifies that both continuous and histogram binning occurs (in spectra at different incident neutron energies).

TABLE 2. LIBRARY-WIDE LINE LIST.

This table contains a list of the same gamma lines as shown in the "Gamma Line List", except that they are sorted in order of increasing energy across all the isotopes in the library. There is one list for "strong photons", and another for "weak photons". When deciding on a signature photon to tally on, this table should be helpful in determining if there is likely to be interference from another nearby (in energy) discrete photon.

TABLE 3. TOTAL CROSS SECTION LIST.

For help in "ballpark calculations", the "Total Cross-section List" gives some cross sections for each isotope. The cross sections given are the total neutron cross section and the total photon-production cross section, at each of the test energies. These numbers should give a rough estimate of how important an isotope is as a "photon-producer". Remember that the ratio of the total photon-production cross section to the total neutron cross section is equal to the average number of photons produced per neutron collision.

GAMMA LINE LIST (isotope-by-isotope)

1	
i Z= 1 hydrogen	1
l h- 1	1
ZAID= 1001.62c	1
l (actia)	1
	!

strong photons

cross sec n Egam p/np MT thermal 1 Me 1 2.22330 p 102001 3.32E-01	tions ! strengths V 14 MeV thermal 1 MeV 14 MeV 1.00E+00	specific intensity thermal 1 MeV 14 MeV 1.00E+00	l source width reaction (keV) (n,gamma)
	 Z≖ 4 beryllium be- 9 ZAID= 4009.62c (actia)		
	·		

strong photons

				Т	cro	oss sectio	ons	Т		strengths		L	spec	ific inte	nsity	I source	width
n	Egam	p/np	MT	L	thermal	1 MeV	14 MeV	1	thermal	1 MeV	14 MeV	L	thermal	1 MeV	14 MeV	l reactio	n (keV)
-				Т				T				1					
1	0.47700	n-p	701001	1	0.00E+00	0.00E+00	7.25E-03	Т	0.00E+00	0.00E+00	9.42E-01	1.0	0.00E+00	0.00E+00	1.00E+00	l(n,t)*	
2	0.85360	n-p	102008	1	2.02E-03	2.66E-05	6.68E-05	Т	1.49E-01	1.49E-01	8.68E-03	1.3	2.35E-01	2.66E-01	6.68E-01	(n, gamma)
3	2.59000	n-p	102007	1	1.95E-03	2.55E-05	6.42E-05	1	1.43E-01	1.43E-01	8.34E-03	1	2.26E-01	2.55E-01	6.42E-01	l(n,gamma)
4	3.36760	n-p	102004	ł	2.85E-03	3.74E-05	9.41E-05	1	2.10E-01	2.10E-01	1.22E-02	1 3	3.30E-01	3.74E-01	9.41E-01	(n,gamma)
5	6.80990	n-p	102001	1	5.64E-03	7.40E-05	1.86E-04	ţ	4.16E-01	4.16E-01	2.42E-02	E (6.54E-01	7.40E-01	1.86E+00	I (n, gamma)

----weak photons

				I	cro	oss sectio	ons	ł		strengths		1	spect	ific inte	nsity	l source	width
n	Egam	p/np	MT	I	thermal	1 MeV	14 MeV	ł	thermal	1 MeV	14 MeV	ł	thermal	1 MeV	14 MeV	l reaction	(keV)
-				1				I									
1	0.21930	n-p	10203	11	4.31E-06	5.65E-08	1.42E-07	T	3.17E-04	3.17E-04	1.84E-05	Т	4.99E-04	5.65E-04	1.42E-03	l(n,gamma)	
2	0.54740	n-p	10203	0	1.38E-05	1.81E-07	4.55E-07	ł	1.02E-03	1.02E-03	5.91E-05	T	1.60E-03	1.81E-03	4.55E-03	l(n,gamma)	

\$

4

3 0.63180 n-p 102009 | 2.07E-05 2.71E-07 6.82E-07 | 1.52E-03 1.52E-03 8.86E-05 | 2.40E-03 2.71E-03 6.82E-03 |(n,gamma) 4 2.81180 n-p 102006 | 1.12E-05 1.47E-07 3.69E-07 | 8.25E-04 8.25E-04 4.80E-05 | 1.30E-03 1.47E-03 3.69E-03 |(n,gamma) 5 2.89640 n-p 102005 | 1.29E-05 1.69E-07 4.26E-07 | 9.52E-04 9.52E-04 5.54E-05 | 1.50E-03 1.69E-03 4.26E-03 |(n,gamma) 6 3.44360 n-p 102003 | 9.13E-04 1.20E-05 3.01E-05 | 6.73E-02 6.73E-02 3.91E-03 | 1.06E-01 1.20E-01 3.01E-01 |(n,gamma) 7 5.95660 n-p 102002 | 1.28E-04 1.68E-06 4.24E-06 | 9.46E-03 9.46E-03 5.50E-04 | 1.49E-02 1.68E-02 4.24E-02 |(n,gamma)

LIBRARY-WIDE LINE LIST (energy-ordered)

Order of Strong Photons

						I	Cr	oss Sectio	ons	1		Strength	5	1	width	data
isot	ope	ZAID	Egam	p/np	D MT	l	thermal	1 MeV	14 MeV	۱	thermal	1 MeV	14 MeV	1	(keV)	library
					·	1				Т				1		
be-	9	4009.62c	0.47700	n-p	701001	ţ	0.00E+00	0.00E+00	7.25E-03	i	0.00E+00	0.00E+00	9.42E-01	i		actia
be-	9	4009.62c	0.85360	n-p	102008	ł	2.02E-03	2.66E-05	6.68E-05	l	1.49E-01	1.49E-01	8.68E-03	1		actia
h-	1	1001.62c	2.22330	р	102001	ł	3.32E-01			1	1.00E+00			1		actia
be-	9	4009.62c	2.59000	n-p	102007	1	1.95E-03	2.55E-05	6.42E-05	ł	1.43E-01	1.43E-01	8.34E-03	1		actia
be-	9	4009.62c	3.36760	n-p	102004	ł	2.85E-03	3.74E-05	9.41E-05	I	2.10E-01	2.10E-01	1.22E-02	ł		actia
be-	9	4009.62c	6.80990	n-p	102001	T	5,64E-03	7.40E-05	1.86E-04	1	4.16E-01	4.16E-01	2.42E-02	1		actia

Order of Weak Photons

						1	Cr	oss Sectio	ons	Ŧ	Strength	s	L	width	data
isotop	pe	ZAID	Egam	p/n	D MT	ł	thermal	1 MeV	14 MeV	1 thermal	1 MeV	14 MeV	ł	(keV)	library
						1							Į.		
be- S	9	4009.62c	0.21930	n-p	102011	ł	4.31E-06	5.65E-08	1.42E-07	3.17E-04	3.17E-04	1.84E-05	i		actia
be- 9	9	4009.62c	0.54740	n-p	102010	Т	1.38E-05	1.81E-07	4.55E-07	1.02E-03	1.02E-03	5.91E-05	1		actia
be- 9	9	4009.62c	0.63180	n-p	102009	ł	2.07E-05	2.71E-07	6.82E-07	1.52E-03	1.52E-03	8.86E-05			actia
be- 9	9	4009.62c	2.81180	n-p	102006	1	1.12E-05	1.47E-07	3.69E-07	1 8.25E-04	8.25E-04	4.80E-05	l		actia
be- S	9	4009.62c	2.89640	n-p	102005	I	1.29E-05	1.69E-07	4.26E-07	1 9.52E-04	9.52E-04	5.54E-05	1		actia
be- 9	9	4009.62c	3.44360	n-p	102003	1	9.13E-04	1.20E-05	3.01E-05	1 6.73E-02	6.73E-02	3.91E-03	L		actia
be- S	Э	4009.62c	5,95660	n-p	102002	Т	1.28E-04	1.68E-06	4.24E-06	1 9.46E-03	9.46E-03	5.50E-04	1		actia

TOTAL CROSS-SECTIONS (by isotopes)

Cross Section Tabulation

		1	Total new	utron cross	section	1	Total photon-	-production	cross sectio	n I	data
isotope	ZAID	1	thermal	1 MeV	14 MeV	ł	thermal	1 MeV	14 MeV	- 1	library
		I.				l				1	
h- 1	1001.62c	3	.0472E+01	4.2587E+00	6.8903E-01	I	3.3203E-01	3.4460E-05	2.9830E-05	1	actia
be- 9	4009.62c	16	.5028E+00	3.2508E+00	1.5276E+00	1	1.3571E-02	1.7797E-04	7.6977E-03	1	actia