
Los Alamos National Laboratory is operated by the University of California
for the United States Department of Energy under contract W-7405-ENG-36.

LA-13925

EOLUS Project and

Monte Carlo Team Software

Quality Assurance Plan

Approved for public release;
distribution is unlimited.

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the Regents of the University of California, the United States
Government nor any agency thereof, nor any of their employees make any warranty, express
or implied, or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
Regents of the University of California, the United States Government, or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or reflect those of
the Regents of the University of California, the United States Government, or any agency
thereof. Los Alamos National Laboratory strongly supports academic freedom and a
researcher's right to publish; as an institution, however, the Laboratory does not endorse
the viewpoint of a publication or guarantee its technical correctness.

An Affirmative Action/Equal Opportunity Employer

Edited by Vin LoPresti, Group IM-1

EOLUS Project and
Monte Carlo Team Software
Quality Assurance Plan

Gregg Giesler

LA-13925

Issued: April 2002

 iv

 v

TABLE OF CONTENTS

I. PURPOSE.. 2
II. MANAGEMENT .. 4

A. Organization..4
B. Tasks ..5
C. Responsibilities..5

III. DOCUMENTATION.. 5
IV. STANDARDS, PRACTICES, CONVENTIONS, AND METRICS........................... 6
V. REVIEWS AND AUDITS.. 6
VI. TEST .. 7
VII. PROBLEM REPORTING AND CORRECTIVE ACTION 7
VIII. TOOLS, TECHNIQUES, AND METHODOLOGIES.. 8
IX. CODE CONTROL.. 8
X. MEDIA CONTROL ... 9
XI. SUPPLIER CONTROL ... 9
XII. RECORDS COLLECTION, MAINTENANCE, AND RETENTION 10
XIII. TRAINING.. 10
XIV. RISK MANAGEMENT ... 10
REFERENCES.. 12
APPENDIX A. DEFINITIONS AND ACRONYMS .. 15
APPENDIX B. SOFTWARE DEVELOPMENT PROCESS .. 19
I. FEATURES, ENHANCEMENTS, AND BUGS .. 20
II. RELEASES.. 25
III. OTHER.. 27
IV. MEETINGS... 28
V. WORKING.. 30
APPENDIX C. RAZOR IMPLEMENTATION ... 31
I. ISSUES... 32

A. Issues Forms ..33
B. Default Issues Group ..35
C. Release Issues Group ..37
D. Other Issues Group...37
E. Meetings Issues Group ...37
F. Working Issues Group..40

II. VERSIONS.. 41
III. THREADS ... 45
IV. SETUP.. 46
APPENDIX D. DETAILED PROCESS DESCRIPTIONS.. 49
I. FEATURES & BUGS PROCESS ... 49

Step 1: Submitted...49
Step 2: Requirements...50
Step 3: Design ...50
Step 4: Code..51
Step 5: Document ...52
Step 6: Integrate...52
Step 7: Test ...53

 vi

Step 8: Approve ..54
Step 9: Finalize ...55
Step 10: Closed ...56

II. RELEASE PROCESS...56
Step 1: Proposed ...56
Step 2: Complete...57
Step 3: Document ...57
Step 4: Test..58
Step 5: Approve ..59
Step 6: Release ..59
Step 7: Closed ...60

III. OTHER PROCESS...60
Step 1: Reported ...60
Step 2: Investigate ..61
Step 3: Correct..62
Step 4: Document ...62
Step 5: Inspect...63
Step 6: Test..63
Step 7: Review...64
Step 8: Closed ...64

IV. MEETINGS PROCESS..65
Step 1: Schedule..65
Step 2: Actions ..66
Step 3: Closed ...67

V. WORKING PROCESS...68
Step 1: Active ..68
Step 2: Closed ...68

APPENDIX E. ROLES..71
I. ROLE DESCRIPTION...71

A. Anyone..71
B. Board of Directors...71
C. Developer..72
D. Integrator ...72
E. MC Team ...72
F. MC Team Leader ..74
G. Release Manager ...75
H. Software Quality Analyst ...75
I. Razor Administrator...75

APPENDIX F. WORK PRODUCTS..77
I. WORK PRODUCTS...77

A. Software Requirements Specification..77
B. Software Design Description ..77
C. Code..78
D. Software Documentation ..78
E. Software Test Plan ..79
F. Software Test Results..79
G. Review Results...79

APPENDIX G. SOFTWARE VALIDATION AND VERIFICATION PLAN...................81

 vii

I. PURPOSE.. 81
II. DEFINITIONS.. 82
III. V & V OVERVIEW.. 82
IV. V&V PROCESS.. 85

A. Software Development Process V&V..86
B. Code Product V&V...89

V. V&V REPORTING REQUIREMENTS .. 91
VI. V&V ADMINISTRATIVE REQUIREMENTS .. 91
VII. V&V DOCUMENTATION REQUIREMENTS.. 92
REFERENCES.. 93

 viii

LIST OF FIGURES

Fig. B1. Monte Carlo Team Software Development Process...19
Fig. B2. Features, Enhancements, and Bugs Development Subprocess21
Fig. B3. Software Release Process..26
Fig. B4. Other Subprocess. ...27
Fig. B5. Reviews Subprocess..29
Fig. B6. Working Subprocess ...30
Fig. C1. Issues Main Window. ..33
Fig. C2. Error Message Window. ...35
Fig. C3. Features, Enhancements, and Bugs Issues Form ...36
Fig. C4. Release Issues Form. ...38
Fig. C5. Other Issues Form...39
Fig. C6. Reviews Issues Form. ..40
Fig. C7. Working Issues Form..41
Fig. C8. Versions Main Window. ...42
Fig. C9. Versions Branching Window..44
Fig. C10. Window with Branched File...44
Fig. C11. Threads Main Window. ..45
Fig. C12. A Thread Window..46
Fig. C13. Razor Information Response. ..47
Fig. G1. Relationship Between Nature and Computer Code. ..83
Fig. G2. Code Product Verification..90

 ix

 x

 1

EOLUS PROJECT AND MONTE CARLO TEAM

SOFTWARE QUALITY ASSURANCE PLAN

by

Gregg Giesler

ABSTRACT (U)

MCNP is a computer code that is used to describe the transport of neutrons,
photons, and electrons through matter. This Software Quality Assurance Plan is
a revision of the previously published plan and describes the process to be used
by the Eolus Project and Monte Carlo team to improve software quality while
maintaining and enhancing this and other codes. The software development
process and its implementation in the Razor tool are described in detail.
Included in this document is the Software Verification and Validation Plan.

 MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory.
 Razor is a trademark of Tower Concepts, now a part of Visible Systems Corporation.

 2

I. PURPOSE

The X-5 Monte Carlo team is responsible for developing and maintaining computer

codes that simulate particle and radiation transport using the Monte Carlo method. Two of its

principal codes are MCNP (Monte Carlo N-Particle), a radiation transport code based on codes

developed and maintained at the Los Alamos National Laboratory (LANL) for more than fifty

years.1,2 and LAHET,3 a high-energy particle transport code based on HETC4 from Oak Ridge

National Laboratory. Both are mature products that are continually being upgraded with a

major version released for international distribution every few years; and MCNP has

approximately quarterly intermediate releases of newly integrated features for internal use and

testing. Both are supported on a variety of computer platforms, primarily in the UNIX and

Windows operating environments. The Eolus Project of the Advanced Simulation and

Computing (ASCI) Program is the current program providing most of the financial support for

this team.

In 1996, a Software Quality Assurance (SQA) Plan5 was written for MCNP because one

of its authors thought it was important to document the process used to maintain MCNP. The

plan described how new features and bug fixes were developed and reviewed to provide code

for implementation. It also described how intermediate and major releases were created,

reviewed, and released. This document replaces that report.

In 1999, the Monte Carlo team decided to implement a software-based, auditable

version of this process and apply it to all of its code products: MCNP, LAHET, and others.

There were several reasons for this decision. The foremost is that the ASCI Program required

improvements in the way its projects developed software. Using a software-based tool ensures

that a consistent development process is followed. This places more responsibility for the

quality of the code on the individual developer. By following a defined process with

intermediate reviews, the developer will have to more clearly define what is to be done and

how it is done before the coding is completed. As a result, the integration of the new code into

the base code should be much easier, and fewer failures in system testing should result. Also,

this should enhance software development skills of members of the team and improved

performance by the team. Most important, this should result in improved software products.

Also, a software-based tool makes it much easier to audit the software development

process. As part of formalizing the process, a tool can track who moved an issue to the next

 3

step and when the step was started. It also provides the ability to keep a log of what was done

during each step of a process. Additional capabilities of configuration control and release

management that can also be linked to issues in the development process will make the process

more consistent and auditable. Using a software-based tool removes the need to handle and

track mountains of paper that would be needed to document such a development process

manually.

The purpose of this SQA Plan is to describe the process the Monte Carlo team uses to

maintain and improve the quality of the codes developed and maintained by its members.

These currently include MCNP Version 4C3 and LAHET Version 3.16. MCNP is used to

describe the transport of neutrons, photons, electrons, and other particles through matter and is

used for many purposes including radiation shielding, criticality safety, oil well logging, and

medical imaging and treatment calculations, to mention a few. LAHET is used in the

accelerator, medical, and space sciences communities for facility, detector, and shielding

design. MCNP has an international user community of over 3,000 users at more than 260

institutions, while LAHET has an international user community of about 200.

The scope of this SQA plan is the ongoing maintenance phase of a typical software life

cycle of these codes. This phase includes change proposal, requirements and design,

implementation, test, installation and checkout, release, and maintenance for new features,

enhancements, and bug fixes to the codes. This plan is to replace the previous SQA plan and is

being written to reflect the use of a software-based tool to control and monitor this software

development process. The process itself and the implementation in Razor, a tool that combines

issue tracking, version control, and release management, are described in detail in Reference 6

that is extracted into Appendices B through F. Additional documents will be produced

providing additional details for some of the process steps. This plan does not cover the quality

assurance of the data libraries distributed and used with these codes.

This SQA plan is written primarily for the Monte Carlo team members who maintain

and improve these codes. However, the audience of this SQA plan is not only the members of

the Monte Carlo team, but also its international user community and the managers of the ASCI

Program of which the Eolus Project is currently a part. This document is an indication of how

the codes are maintained and improved and will be used as a reference in audits by

organizations external to this team.

This plan has seven appendices. Their contents are as follows.

 4

• Appendix A�—definitions and abbreviations

• Appendix B�—a narrative description of the Monte Carlo software development

process

• Appendix C�—a description of the implementation of this process in Razor

• Appendix D�—detailed description of each step in each subprocess

• Appendix E�—the activities assigned to each role mentioned in Appendix D

• Appendix F�—a description of the work products generated from the

subprocesses detailed in Appendix D

• Appendix G�—Software Verification and Validation Plan

This plan is compliant with IEEE Std 730-19987 and IEEE Std 730.1-1995.8 Also, ISO

9001:20009 and ISO 9000-3:199710 were used in preparation of this plan.

II. MANAGEMENT

A. Organization

Software quality assurance for these codes is the responsibility of the Monte Carlo team

itself. This team, which is lead by a Team Leader (a nonmanagement position at LANL), is at

this writing, part of the Diagnostics Applications Group (X-5) of the Applied Physics (X)

Division of LANL.

The team is also part of and is currently primarily supported by the ASCI Program. The

ASCI Program is a program of the National Nuclear Security Administration (NNSA) of the

U.S. Department of Energy (DOE) that includes the three DOE nuclear weapons laboratories.

Within each laboratory, its projects include part or all of some line organizations. As a result,

the Monte Carlo team leader as the Eolus Project leader also reports to the LANL office for the

ASCI Program. Although neither the higher-level LANL organizations nor the ASCI Program

have a documented SQA plan in place, these plans are being developed. DOE has recently

issued a Software Quality Assurance notice,11 ASCI has drafted a document on Software

Quality Engineering,12 and a working group in the LANL ASCI Program has prepared a

recommendation for a SQA plan13 for the LANL organizations.

A Board of Directors, composed of team members, other group members, and members

of other teams, as appropriate, reviews all proposed new features and their implementation,

 5

especially changes to the user interface. The Board of Directors meetings are held on an as

needed basis.

B. Tasks

A summary of the tasks to be performed as part of the Monte Carlo team software

development includes change proposal, requirements and design, implementation, test,

installation and checkout, release, and maintenance for new features, enhancements, and bug

fixes to the codes. Releases can be intermediate releases of new features and enhancements for

testing and use by the local user community, and major releases to the international user

community. Several reviews occur during the execution of these tasks. A narrative description

of this software development process is found in Appendix B, a description of the

implementation in Razor is found in Appendix C, and a detailed description of each step within

the process is found in Appendix D.

This plan shall be updated as the software development process evolves. After review

and approval by the team and the Board of Directors, the updated plan shall be distributed and

archived in the configuration management database.

C. Responsibilities

Software quality assurance activities are performed primarily by members of the Monte

Carlo team. In addition to developing code, team members perform the reviews, and

designated team members perform the testing and integration of new code into the baseline.

Designated members of the team will oversee the performance of the SQA activities. Detailed

responsibilities for each of the roles in this development process are found in Appendix E.

The maintenance of this SQA plan shall be done by members of the Monte Carlo team.

Suggestions for revisions shall be submitted as issues and worked like all other issues. The full

team shall review and approve the plan with final authority resting with the team leader. The

plan shall be distributed to members of the team and as determined by the team leader.

III. DOCUMENTATION

The work products required by this software development process are described in

Appendix F. These items are some of the outputs of the individual steps of the subprocesses

detailed in Appendix D. The work products produced by these subprocesses include Software

Requirements Specifications, Software Design Descriptions, Code, Software Documentation,

 6

Software Test Plans and Software Test Results, and Review Results. In Appendix F, each of

these products is described, where it is created, used, and reviewed is detailed, and references

to relevant standards are included.

IV. STANDARDS, PRACTICES, CONVENTIONS, AND METRICS

The ANSI C14 and Fortran 90/9515 standards are to be used, and the proposed

modifications to those standards shall be considered for all new code developments and

modifications. All code is compiled with ANSI C and Fortran standard compilers, thus

assuring language standard compatibility. Compliance with Fortran 7716 will no longer be

required, especially for features listed as obsolete or deleted in the Fortran 90/95 standard and

to be deleted in the proposed Fortran standard under development. Also, Fortran 77 standard

compilers are rapidly losing support.

Proposed coding and file documentation and commentary standards are found in

Ref. 17. Use of these standards is encouraged and will be required as the team adopts these

standards.

Metrics that will be collected will be determined during the implementation and use of

Razor and by ASCI Program management. The metrics collected will be used as a measure of

the software quality of the products produced, as a means to determine process improvements,

or as reportable items to management. Details as to which metrics will be collected are

awaiting the completion and publication of the LANL ASCI Software Quality Engineering

document.

V. REVIEWS AND AUDITS

The reviews and audits conducted by the Monte Carlo team are described in

Appendices B and D. Additional reviews and audits may be conducted by higher-level

organizations as they are determined to be necessary. Included in this is an annual review by

ASCI of all of its projects.

Internal reviews of compliance of the team with the process will also be conducted.

These reviews will be used to evaluate the process in order to improve the process and reduce

defects in the products.

 7

VI. TEST

Over the years, a number of test suites have been developed for these codes. A

regression test set containing more than thirty problems has been developed as one form of

verification for MCNP. This test set is used to verify that any changes to the code have not

adversely affected the code and is continually upgraded as changes are made to the code. It is

also being used as an installation test set. This test set is described in Ref. 18 that was updated

in Ref. 19. Additional tests have been developed and are run to better characterize specific

changes to or features of the code. Similar test sets have been developed for LAHET and other

Monte Carlo team codes.

In addition, a number of benchmark calculations have been performed with MCNP and

its LANL databases as validation to ensure agreement with physical measurements. The

benchmarking program is an ongoing and collaborative effort, and a number of benchmarking

documents are available from LANL and outside organizations that have done MCNP

benchmarking. A list of LANL benchmark publications is available from the team.

Additionally, many other laboratories throughout the world benchmark MCNP for their own

purposes, and the scientific literature includes approximately 10�–30 MCNP benchmarks per

year by other organizations. These are not part of this SQA Plan because they are primarily

conducted by the other organizations for their own purposes, but they do add additional

confidence in the code and the associated LANL databases.

A description of the test sets used by this team is found in the Software Test Plan

currently under development.

VII. PROBLEM REPORTING AND CORRECTIVE ACTION

All suspected problems with these Monte Carlo codes should be reported to the Monte

Carlo team. The e-mail address for MCNP problems is mcnp@lanl.gov. Problems with

LAHET can be reported to lcs-forum@lanl.gov, and problems with other codes can be reported

to the developer or the team leader. The goal is to enter all reported problems into the issue-

tracking database, and to have the team leader examine each entry. Those that are not user

error will be assigned to a developer for investigation and correction. Trivial bugs (incorrect

spellings in the code, etc.) can be quickly and easily processed and documented. The defect

reports will be made available to users on the Eolus website.

mailto:mcnp@lanl.gov
mailto:lcs-forum@lanl.gov

 8

Corrective action will be entered into the issue-tracking database as part of the issue.

The corrected code will be included in the next release of the code. A separate memo may also

be prepared describing the problem fix, consequences, and any possible work-around. This

memo will be referenced in the issue tracking, file tracking, and release tracking. Some of

these corrections may be posted to the website prior to the next release of the code.

Problems identified in the software development and maintenance process are the

responsibility of the Monte Carlo team leader who is ultimately responsible for software

problem reporting and corrective action. As stated above, they should be reported as issues in

the issue-tracking tool.

VIII. TOOLS, TECHNIQUES, AND METHODOLOGIES

Razor,20 a product of Visible Systems Corporation, is the tool currently being used by

the Monte Carlo team for problem tracking, version control, and release management. All

proposed new features and enhancements and reported defects in the released code are entered

into its problem-tracking tool. The development process for each of these items, including the

reviews, is then tracked through the tool through release and closeout. The version control tool

contains not only the source code, but also all documentation and other items related to the

codes and to the process itself. The release management tool is used to track intermediate and

major releases.

Another tool being used is GNU-Make, an open source software tool. It is being used

as the basis for the build system being for the Fortran 90/95 versions of the codes.

IX. CODE CONTROL

Code control is maintained by access controls in the version-control tool. Team

members are required to branch any locked files that they may want to modify. Only the

Integrator role is allowed to merge changes into locked (trunk) files.

Intermediate releases are made available to local users through the Los Alamos file

system. Major releases of MCNP and LAHET are released through the Radiation Safety

Information Computational Center (RSICC) in Oak Ridge, TN.

 9

X. MEDIA CONTROL

All development and archive files will be maintained in the development database,

which is backed up into LANL computer archives. Currently, no media are being released by

the Monte Carlo team, so none have to be controlled.

Major releases of the software are made available to users through the RSICC, on

RSICC media, according to RSICC procedures.

XI. SUPPLIER CONTROL

The only specific product currently used by this project is the Razor software from

Visible Systems Corporation. It is installed and used on many systems within LANL. This

software is tested, especially for security problems, before new versions are installed on the

production systems used by this project.

MCNP, LAHET, and the other codes have the usual reliance on the computer

environment in which they are used. This includes the use of standard ANSI Fortran and C

compilers and math libraries and graphics libraries (X Windows,21 Compaq Visual Fortran

QuickWin,22 Lahey/Fujitsu Fortran Winteracter23). The multiprocessing capabilities also

depend on distributed processor multiprocessing software and libraries such as OpenMP24 for

shared memory multiprocessing (SMMP) and PVM,25 UPS,26 and MPI27 for distributed

memory multiprocessing (DMMP). Other software may also be needed to support these

capabilities. Being part of the LANL computing environment, the Monte Carlo team has no

control over these, other than to report problems discovered to the appropriate support

organization.

The Monte Carlo team may contract with other individuals and organizations within or

outside of LANL for development of specified features and enhancements. Although the

LANL business operations would handle the mechanics of the contracting, the team, and

especially the team leader, will be responsible for defining the scope of the work and

overseeing its execution and completion. It is desired that such work would be performed in

accordance with this SQA Plan, and the team would be responsible for controlling the

integration of any contracted code into the baseline.

 10

XII. RECORDS COLLECTION, MAINTENANCE, AND RETENTION

All records developed under this plan shall be available to all members of the team

through the configuration management process stated in the appendices. They will be retained

there at least for the life of the project and will be transferred to other tools as they are adopted.

Access to documents resulting from the working of the issues shall be made to others, as

appropriate, upon request. As stated in the detailed process descriptions, approved changes to

the codes shall be released to the using public.

XIII. TRAINING

The Monte Carlo team presents several MCNP training courses each year at various

sites throughout the country. Both the Basic User Course and the Advanced User Course are

taught, but at different times and places. These courses also provide ample opportunity for new

team members to improve their skills in using MCNP.

In May 2000, all team members were trained on using Razor and the team�’s software

development process as implemented in Razor. The slides from this course have been edited

and are available in the database as is the document describing the process and implementation.

These may be extracted at any time by any member of the team for training or review. These

will also be used as part of the training that new members receive when they join the team.

Training opportunities in other areas of software development and software engineering

can be made available to the Monte Carlo team, higher management levels, and other

organizations within LANL. Training opportunities external to LANL can also be utilized.

XIV. RISK MANAGEMENT

The codes developed and maintained by the Monte Carlo team are not commercial

codes and are not as constrained to specific cost and schedule restraints as commercial codes

are. However, there are risks associated with the project software development activities.

These risks can be divided into two types: external and internal.

External risks can arise from any management level not directly involved with project

management details. Although none of the codes have specific cost or schedule constraints that

commercial development activities have for the addition of new features and enhancements and

the elimination of defects, funding and timing constraints are present. This project does not

 11

have an unlimited budget. Therefore, the level of effort for development activities is limited.

Also, higher management levels may impose milestones for the implementation of specific new

features. Meeting one of these milestones may result in tradeoffs being made in the

development of other new features and enhancements and defect removal.

Another large risk is that other commitments of LANL, such as support for other codes,

may become a significant risk to completion of activities related to the team codes by the

assignment of one or more team members to activities related to those other commitments.

Internal risks arise from the direct staffing of this project. The technical quality of the

codes is dependent on the expertise of the team members. Acquiring and retaining qualified

team members is always a problem. This can be affected by the restrictions from X Division

and LANL as well as by the environment external to X Division and LANL. The maintenance

and advancement of the expertise of team members can be performed by use of the

opportunities described in the training section above.

These risks can lead to numerous types of deficiencies. Code changes may not be

implemented in a timely manner. External and internal documentation may be inadequate or

missing entirely, and may not be of adequate quality. The test set may not adequately test all

parts of the code. The results of these deficiencies can not only lead to incorrect results for

uses within the capabilities of the codes, but also to use of the codes for applications for which

they are not suitable. A formal risk assessment and management document addressing the risks

and mitigation activities for them has not been written for this project.

 12

REFERENCES

1. Judith F. Briesmeister, ed., �“MCNP�—A General Monte Carlo N-Particle Transport

Code, Version 4C,�” Los Alamos National Laboratory Report LA�–13709-M (March

2000).

2. Gregg C. Giesler, �“MCNP Software Quality: Then and Now,�” Proceedings of 10th

International Conference on Software Quality, American Society for Quality, 611 East

Wisconsin Avenue, Milwaukee, WI 53202 (October 2000).

3. Richard E. Prael and Henry Lichtenstein, �“User Guide to LCS: The LAHET Code

System,�” Los Alamos National Laboratory Report LA-UR-89-3014 (September 1989).

4. Radiation Shielding Information Center, �“HETC Monte Carlo High-Energy Nucleon-

Meson Transport Code,�” Oak Ridge National Laboratory Report CCC-178 (August

1977).

5. Hilary M. Abhold and John S. Hendricks, �“MCNPTM Software Quality Assurance

Plan,�” Los Alamos National Laboratory Report LA�–13138 (April 1996).

6. Gregg C. Giesler, �“Eolus Software Development Process and Its Implementation in

Razor�™,�” Los Alamos National Laboratory document LA�–UR�–00�–1437 (April 2000).

7. IEEE Std 730-1998, �“IEEE Standard for Quality Assurance Plans,�” Institute of

Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017-

2394 (June 25, 1998).

8. IEEE Std 730.1-1995, �“IEEE Guide for Quality Assurance Planning,�” Institute of

Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York, NY 10017-

2394 (December 12, 1995).

9. ISO 9001:2000, �“Quality Management Systems�—Requirements,�” ISO (International

Organization for Standards) Central Secretariat, Case postale 56, CH-1211 Geneve 20,

Switzerland (2000).

10. 10.ISO 9001:2000, �“Quality Management and Quality Assurance Standards�—Part3:

Guidelines for the application of ISO 9001:1994 to the development, supply,

installation and maintenance of computer software,�” ISO (International Organization for

Standards) Central Secretariat, Case postale 56, CH-1211 Geneve 20, Switzerland

(1997).

11. US DOE Notice 203.1 �“Software Quality Assurance,�” (October 20, 2000).

 13

12. LANL ASCI SQE Working Group, �“ASCI-SQE Working Group Recommendations for

LANL ASCI Software Engineering Requirements,�” Los Alamos National Laboratory

Report LA_UR-01-6793 (December 2001).

13. Ann Hodges, et. al., �“ASCI Software Quality Engineering: Goals, Principles, and

Guidelines,�” DOE Document DOE/DP/ASC-SQE-2000-FDRFT-VERS2 (February

2001).

14. ANSI/ISO/IEC 9899-1999 �“Programming Languages - C,�” American National

Standards Institute, 1819 L Street NW, Washington, D.C. 20036 (1999).

15. ANSI X3.198-1992 (R1997) �“Programming Language - Fortran-Extended,�” American

National Standards Institute, 1819 L Street NW, Washington, D.C. 20036 (1997).

16. ANSI X3.9-1978 �“Programming Language�—Fortran,�” American National Standards

Institute, 1819 L Street NW, Washington, D.C. 20036 (1978).

17. Lawrence J. Cox, �“Standards For Writing and Documenting Fortran 90 Code,�” Los

Alamos National Laboratory document X�–5�–RN(U)00-28 (unpublished).

18. Ronald C. Brockhoff and John S. Hendricks, �“A New MCNP�™ Test Suite,�” Los

Alamos National Laboratory Report LA�–12839 (September 1994).

19. John S. Hendricks, and John D. Court, �“MCNP4BTM Verification and Validation,�”

LosAlamos National Laboratory Report LA�–13181 (August 1996).

20. �“RazorTM Release Management, File Version Control, Problem Tracking,�” Tower

Concepts, 248 Main Street, Oneida , NY 13421 (April 1999).

21. http://www.x.org

22. http://www.compaq.com/fortran

23. http://www.lahey.com

24. http://www.openmp.org

25. G. A. Geist, et. al., �“PVM 3.0 User�’s Guide and Reference Manual,�” Technical Report

ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, TN (1993).

26. Richard Barrett and Mike McKay Jr., �“Unified Parallel Software User�’s Guide and

Reference Manual,�”

http://laurel.lanl.gov:80/XCI/PROJECTS/UPS/doc/UserGuideHTML/ (2001).

27. Message Passing Interface Forum, �“MPI: A message-passing interface standard,�”

International Journal of Supercomputing Applications 8 (1994).

http://www.x.org/
http://www.compaq.com/fortran
http://www.lahey.com/
http://www.openmp.org/
http://laurel.lanl.gov/XCI/PROJECTS/UPS/doc/UserGuideHTML/

 14

 15

APPENDIX A.

DEFINITIONS AND ACRONYMS

ASCI Advanced Strategic Computing Initiative. A program sponsored by
the National Nuclear Security Administration of the U.S. Department
of Energy.

Base code or baseline The latest completed integration version of a code. It may include

changes after the latest Intermediate or Major Release, which in turn,
are identified by threads.

Benchmark (1) A standard against which measurements or comparisons can be

made.
(2) A procedure, problem, or test that can be used to compare
systems or components to each other or to a standard as in (1) (IEEE
Std. 610.12-1990).

Board of Directors (BoD) A representative advisement group from the Eolus user community

including at least one nonteam member interested in the items being
reviewed. The board provides advice on the development and
completion of new features and the major release of code versions.
The team leader or ASCI Project Office may override the
recommendations of the board.

Contributor A person not on the Monte Carlo team that provides code to be

included in a team product.

Developer A person with access to the version control tool who produces a

change for a code baseline. It is also a role performing that function
in the development tools.

DOE Department of Energy

Eolus Project A LANL code project within ASCI

IEEE Institute of Electrical and Electronics Engineers

Integrator A Monte Carlo team member who integrates a change into the code

baseline. It is also a role performing that function in the development
tools.

Intermediate Release A revision of a major version that includes new features, but has not

been released for international distribution.

 16

ISO Organisation Internationale de Normalisation (International
Organization for Standardization).

LAHET Los Alamos High Energy Transport, a particle transport code based

on HETC from Oak Ridge National Laboratory.

LANL Los Alamos National Laboratory

Major Release A version released to RSICC for international distribution.

MCNP Monte Carlo N-Particle; a radiation transport code which uses the

Monte Carlo method and is designed to transport neutrons, electrons,
and gamma rays in the energy range up to at least 20 MeV and to as
high as 1 GeV, depending on the data in the cross-section tables.

MCNP data Reviewed data files provided by other LANL teams and used by

MCNP for its calculations.

NNSA National Nuclear Security Administration, a part of the U.S.

Department of Energy

Razor A software tool from Visible Systems that combines issue tracking,

version control, and release management.

Regression testing Selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the system
or component still complies with its specified requirements (IEEE
Std. 610.12-1990).

Release Manager The person responsible for assembling and distributing an

intermediate or major release of a code baseline.

RSICC Radiation Safety Information Computational Center in Oak Ridge,

TN.

SDD Software Design Description

SQA Software Quality Assurance

SRS Software Requirements Specification

Team (MCteam) One or more members of the Eolus Project development team; this

role may include other people from X-5 and other LANL groups.

Team Leader (MClead) X-5 Monte Carlo Team Leader or appointed alternate

Test case A set of test inputs, execution conditions, and expected results

developed for a particular objective, such as to exercise a particular

 17

program path or to verify compliance with a specific requirement
(IEEE Std. 610.12-1990).

Test set A set of test cases packaged for easy execution with expected results

for comparison.

Unit testing Testing of individual hardware or software units or groups of related

units (IEEE Std. 610.12-1990).

Validation The process of evaluating a system or component during or at the end

of the development process to determine whether it satisfies specified
requirements (IEEE Std. 610.12-1990).

 The process of determining the degree to which a model is an

accurate representation of the real world from the perspective of the
intended uses of the model (AIAA G-077-1998).

Verification (1) The process of evaluating a system or component to determine

whether the products of a given development phase satisfy the
conditions imposed at the start of that phase. (2) Formal proof of
program correctness (IEEE Std. 610.12-1990).

 The process of determining that a model implementation accurately

represents the developer�’s conceptual description of the model and
the solution to the model (AIAA G-077-1998).

See Glossary in Razor Users�’ Manual for additional definitions of terms related to Razor.

 18

 19

APPENDIX B.

SOFTWARE DEVELOPMENT PROCESS

The Monte Carlo team software development process can be divided into five

subprocesses. These subprocesses and their relationships are shown in Fig. B1. The Features,

Enhancements, and Bugs subprocess is used to track the development and integration of a new

feature, an enhancement, or a bug fix to a Monte Carlo team code. This is the primary or

default subprocess of the Monte Carlo team software development process. The Releases

subprocess will be used to track an Intermediate or Major Release from proposal to release for

general use. The Other subprocess will be used for proposals that do not fall into the above two

categories such as changes to one of these subprocesses or the SQA plan. It is a process added

to those in the previous SQA plan. Because each subprocess (except Working) requires one or

more reviews of the product before completion of the process, there is a separate process for

tracking the progress of these review meetings. The Working subprocess is used for tracking

small developments, a day to a week in length, that may be part of other subprocesses. So it

can be considered a subprocess of any of the previous four subprocesses.

Select

Feature
Enhancement

Bug
Other

Working

Working

Working

Review (Meetings)

Release

Figure B1.Monte Carlo Team Software Development Process

 20

In the following sections, each of these subprocesses will be described in detail, one

subprocess per section. Included in each section will be a narrative discussion of the steps

involved, a summary of the entry conditions for each step, what is done in that step, any

reviews, and the possible exits from that step. A description of the implementation of each of

these subprocesses in Razor, especially in the Issues Groups, is given in Appendix C of the

SQA Plan.

 A detailed description of each step in each subprocess in a process description format is

given in Appendix D. This description includes the dependencies, inputs, and entry conditions

for starting the step, the objectives, responsibilities, related standards, and task description of

the actions in the step, and the verification, exit criteria, and outputs at the end of each step.

In Appendix E, the actions required of each of the roles used in Appendices B through

D are summarized. The summary for each role is divided into each subprocess in which the

role appears, the state within the subprocess in which the role performs an action, and what that

action is. In the process description following in this appendix, �“ROLES�” written in this

different font refer to specific roles used in the process. These roles may have several people in

them, for example a primary and a backup. The roles written in the normal font refer to

specific individuals who may have that title. For example, �“TEAM LEADER�” refers to that role

in the process while �“team leader�” refers to that management role.

Any of the reviews designated as a team review may be performed by the whole Monte

Carlo team or a subset of it. Depending on the work product, the subset may be as small as one

team member who is not the author. The documents produced as a product of many of the

steps (denoted with a [D] in the subprocess figures) in these subprocesses can be produced in

printed form or in electronic form. These documents, the review comments and results, and all

other outputs of the subprocesses will be maintained under configuration control. These work

products are summarized in Appendix F. In it, each work product is described including what

resources it uses, the step in which it is created and in which it is reviewed, which steps use it,

and any relevant standards.

I. FEATURES, ENHANCEMENTS, AND BUGS

The steps and process flow of the Features, Enhancements, and Bugs subprocess, to be

referred to as the primary or default subprocess, are shown in Fig. B2. It has ten steps and five

review meetings (three team reviews [one optional] and two Board of Directors reviews,

 21

although the Board of Directors review that only occurs for new features is optional), making it

the most elaborate of the subprocesses. It is also complicated by the fact that the results of a

review meeting may return the subprocess to an earlier step or send the issue to the end of the

subprocess for closeout as an outcome of a review. The return paths are not included in order

to clarify the figure.

Figure B2. Features, Enhancements, and Bugs Development Subprocess

The Submitted step is the initial step of this subprocess. This occurs when someone

proposes a new feature or enhancement or reports a bug. A new feature is either new or

additional functionality for the code and usually requires new routines or major changes to

existing routines, whereas an enhancement may be increased functionality to an existing

feature, or it may be a change to the code to improve processing without changing any

functionality. A bug is a minor defect in existing code and usually requires the change or

addition of only a few lines of code. However, if an enhancement request or a bug report leads

to major changes in the code, it can be promoted to feature status and require the additional

degree of formality and review.

Closed

Submitted

Requirements
[D]

Design
[D] Code Document

[D] Integrate

Test
[D]

Approve

Finalize

optional BoD
(Feature only) BoD, team

optional
team

team

Meetings

not approved

 22

The proposal must include a title, a description of the issue, and a reference that may

have more detailed information about the submission. The author submits the proposal when

the entries are complete. The TEAM LEADER then reviews the submission. In this step, if the

proposal is for a new feature, the Board of Directors may also review the proposal. However, any

decision by the Board of Directors is only advisory to the team leader because the team leader

has budgetary and performance responsibility for the team. If the proposal is accepted, the

TEAM LEADER will assign a priority and a DEVELOPER, and it can be promoted to the

Requirements step. If the proposal is deferred or is rejected, it can either remain in the

Submitted step awaiting revision, or it can be sent to the Finalize step and closed out. In either

case, the reason for rejection or deferral must be included before the subprocess can be moved

out of the Submitted step.

In the Requirements step, the DEVELOPER determines what must be done to produce

the proposed product or to correct the bug. The DEVELOPER takes the proposal and

investigates it to determine the detailed requirements of the feature, enhancement, or bug fix

and documents these requirements. For a bug, if the investigation shows that the bug is an

isolated problem with no additional side effects, the documentation may be just a short clear

description of the bug, a page or less, or just comments in an issue. For a new feature or an

enhancement, the documentation will be more detailed. It could be a Research Note or a full

Software Requirements Specification. When the requirements are documented and placed

under configuration control, the DEVELOPER advances the proposal to the Design step.

During the Design step, the DEVELOPER determines how the product is to be created to

meet the requirements and documents his or her efforts. If the product feature is complex,

separate preliminary and detailed designs should be done. Any code developed during this step

is considered to be prototype only and cannot be considered final.

If this design is for a simple bug fix, the design may be a simple statement of the fix,

and the design description is short. Again, it can be a page or less or just comments in an issue.

The DEVELOPER should include an analysis of potential side effects, if any. If the bug requires

a complex fix, more thorough documentation will be required at each step. If the impact of the

bug fix is severe, the reported bug should be resubmitted as a proposed feature change or

enhancement.

During this process, the team may hold a review meeting to verify that the requirements

and design are complete and correct and that the requirements are testable and don�’t have other

 23

defects. The review of the requirements and design of a bug fix should verify that no

undesirable side effects have been missed. If, during the review, the requirements are found to

be incomplete, incorrect, untestable, or have other defects, the process is returned to the

Submitted step, and the requirements and design are revised. If the design does not pass the

review, the process remains in this step until the requirements (if necessary) and design are

revised and pass review. In any case, the results of the review are documented.

Once the requirements and design have been reviewed and approved, the proposed

change is promoted to the Code step, and the developer can start the actual coding of the

product. Any code produced in earlier steps should be fully reworked based on the final

accepted design. Unit testing by the developer to verify that the new or modified code works as

designed is included in this step. The results of unit tests should be repeatable and compared

with results from the regression test suite. Specific integral tests may have to be developed.

Peer reviews by team members may be done at several points during the coding step. When

coding and unit testing are complete, the project is promoted to the Document step, and the

code, unit test set, and test results are placed under configuration management.

Now the documentation for the full code must be updated, if that has not already been

done. For MCNP, changes for Chapters 2, 3, and any other affected chapters or appendices of

the Users Manual must be produced. The developer has the primary responsibility to see that

this is done. Only when the documentation updates have been completed can the DEVELOPER

promote the activity to the Integrate step. This promotion to the next step does not mean that

the documentation of the code itself is complete, only that the changes to the manual are to be

provided in separate form and placed under configuration management.

When the developer has completed coding, unit testing, and documentation of this

project, the team performs a line-by-line review of the code and compares it with the approved

requirements and design. The team also reviews the documentation. If rework of the code or

documentation is required, the developer revises it and resubmits it for review. If the developer

while coding or the team during the review determines that design changes are required, the

project is demoted to the Design step, and reenters the subprocess flow from that step. If the

developer or the reviewers find the requirements to be incomplete or incorrect, this project

must be returned to the Requirements step. After the requirements have been reworked, the

subprocess continues from that step so that the design and coding can be revised to match the

revised requirements. This cycle back to an earlier step may occur multiple times before the

 24

code is approved. When the code with its requirements, design, and documentation pass the

coding and documentation review, the review results are documented, and the process

continues in the Integrate step.

In order to promote the project to the Integrate step, the TEAM LEADER must assign an

INTEGRATOR. The INTEGRATOR takes the reviewed and documented code and integrates it

into the base code. If anything more than minimal changes to the new code are required, the

code is returned to the DEVELOPER for correction and retesting. If the code fails integration

into the base code, perhaps due to conflicts with previously integrated modifications, the code

is returned to the DEVELOPER for modification, and the project is demoted to the Code step.

When the integration is complete, the INTEGRATOR documents the results of the integration,

and promotes the project to the Test step.

After the feature, enhancement, or bug fix has been integrated into the base code, the

test suite must be run in all processing modes to ensure that the full code including the new

feature, enhancement, or bug fix works properly on all supported platforms. To complete this,

the test suite must be modified or expanded to test the new code and perform regression testing

on the rest of the code. This testing may be done by one or more members of the team. If the

testing does not produce acceptable results from one or more of the tests, the process must be

returned to the appropriate step (Requirements, Design, or Code) depending on the root cause

of the failure. When the newly integrated code passes all tests, the test suite documentation has

been updated to include the modifications for testing the new code, and these and the test

results have been placed under configuration control, the project can be promoted to the

Approve step.

At this step, the development of the new feature or bug fix is done. The entire

development package (requirements, design, code, documentation, and test results) is reviewed

by the team to complete the verification of the feature, enhancement or bug fix. For a simple

bug fix, this package may be very small. Also, for new features only, the Board of Directors

holds a review meeting of the package to verify that the user interface, input and output, is

correct and complete. If the review or reviews are passed, the project is promoted to the

Finalize step. If the package fails a review, the project is returned to the step that needs to be

redone to correct the cause of the review failure. Also, the results of these reviews shall be

documented.

 25

The only remaining tasks to be performed after approval are the releasing of the code,

publishing and distributing the information about the new feature or bug fix, and the filing of

the relevant documentation. Once that is complete, the TEAM LEADER can promote the project

to the Closed step. Once a project is in the Closed step, it cannot be modified.

II. RELEASES

A release can be one of two types. An intermediate release can be produced when one

or more issues have been integrated into the main code. A new version of the code is produced

when a new feature, enhancement, or bug fix is integrated into the main code. However, the

new version may not produce a new release. An intermediate release is a limited distribution

release available mostly to internal LANL users. It contains the updated code, a list of changes

to the code, and possibly updates to the Users Manual. There will be several intermediate

releases between each major release. Because this is primarily an internal release, the Board of

Directors is not involved in its approval. An Intermediate Release can be considered a form of

extensive user testing.

A major release has been produced approximately once every three years. This is a

release to the international user community. It contains all new features and all bug fixes

produced since the last major release. It includes not only the new baseline code and updated

Users Manual, but also contains updated installation procedures, regression test sets, data files,

and test results. It becomes the baseline for all future development.

The subprocess used for a release is shown in Fig. B3. It begins when the RELEASE

MANAGER proposes a new release. The release may be prompted by the completion of a new

feature(s) or by the time elapsed since the last major release. The release is promoted to the

Complete step where the RELEASE MANAGER checks all code changes, both new features and

bug fixes, since the last release and verifies their integration into the base code. Then the code

is frozen, and the release is promoted to the Document step.

All features and bug fixes to be included in this release are then documented in a memo

from the RELEASE MANAGER. In the memo, the RELEASE MANAGER must certify that the

features, enhancements, and bug fixes meet software specifications and designs, that they are

properly integrated, and that they have been multiply reviewed. The team now reviews this

package of features, enhancements, bug fixes, and documentation. For Major Releases, the

team reviews the entire Users Manual, especially Chapters 2 and 3, to verify the manual is

 26

complete and consistent with the code being released with it. If the package passes the review,

the release is promoted to the Test step. If it does not pass review, the release is returned to the

Propose step so the package can be revised. In either case, the review is documented.

Figure B3. Software Release Process

In this step, the TESTER reviews the test results from the integration of the new features

and bug fixes. If they cover completely the proposed release, then no further testing is done.

However, if there are gaps in the coverage, the release is then run through the entire test suite to

make sure everything works as described and that nothing has been broken while preparing this

release. Also, the test suite documentation shall be updated to reflect this release, its updated

test suite, and the results of the testing. When that is complete, the release is promoted to the

Approve step.

For Intermediate Releases, the team now reviews documents that specify the user

interface and describe the testing and validation of the features, enhancements, and bug fixes.

If the Intermediate Release passes this review, it is promoted to the Release step. For Major

Releases, the team must review this package, and both the team and the Board of Directors

must review the user interface to verify that it is ready for international release. Once these

ClosedPropose

Complete

Document
[D]

Test
[D]

Approve

Release

team, BoD

Meetings

team

not approved

 27

approvals are obtained, the release is promoted to the Release step, and the package is now

ready for release to the user community. In all cases, the results of the reviews are

documented.

After the code has actually been released to the internal users for an Intermediate

Release or to the Radiation Safety Information Computer Center (RSICC) for a Major Release,

the TEAM LEADER makes a final check to verify that everything is complete. With that

verification completed, the release is promoted to the Closed step.

III. OTHER

This subprocess is used to track Monte Carlo team issues that do not involve changes in

a code itself. These include such things as changes to the processes, changes to its

implementation in Razor, and all other changes outside the codes. This subprocess is shown in

Fig. B4 and is a simplified version of the primary subprocess. If the proposed product includes

code, it will probably be between a bug fix and a new feature in size and complexity.

Figure B4.Other Subprocess

ClosedReport

Investigate
[D]

Correct Document
[D]

Inspect

Test
[D]

Review

team

Meetings

team

 28

When a proposal for an Other item is made, it starts in the Report step. The proposal

will contain the same information as a new feature, enhancement, or bug fix proposal: title,

reference, and a description. The TEAM LEADER verifies that the proposal is complete, and if

accepted, assigns a priority to the proposal and a DEVELOPER to investigate the details of the

proposal, documents the review, and promotes the proposal to the Investigate step. If the

proposal is rejected, the process is moved to the Review step and closed out.

The Investigate step is similar to the Requirements step in the primary process; namely,

the developer analyzes the proposal and develops the requirements to implement it. Once

investigated, the DEVELOPER will promote the proposal to the Correct step.

Here, the developer designs and creates a �“correction�” based on the requirements.

When the �“correction�” is complete, the proposal is promoted to the Document step. The

developer will then insure that the �“correction�” and the results of the investigation have been

properly documented. The proposal can then be promoted to the Inspect step.

This �“correction�” and its documentation are then inspected by the team or by the team

leader. If the �“correction�” fails the inspection, the process is returned to the Investigate step.

Otherwise, the process is promoted to the Test step. This �“correction�” is now �“tested.�”

Obviously, some proposals may not be able to be tested in the conventional sense. If the

proposal passes testing, it is promoted to the Review step. If it fails the testing, it is returned to

the Investigate step for rework.

Now the proposal item is complete and needs to be reviewed. The team will review the

entire package, the �“correction,�” its documentation, and the testing results. If the �“correction�”

fails this review, the proposal is returned to the Investigate step for rework. If the review is

passed, the �“correction�” can be released, and the process closed.

IV. MEETINGS

The Meetings subprocess covers the steps related to holding a review or inspection

required by one of the other subprocesses. Each review will be linked to one or more proposals

in those subprocesses. Although this is the Meetings subprocess, an actual meeting to perform

the review may not be held. The Meetings process is shown in Fig. B5.

When a review is required by another subprocess, the proposed review starts in the

Schedule step. In this step, the Board of Directors chair or the moderator appointed by the

team leader determines what items are to be reviewed, who will do the reviewing, and he or she

 29

schedules the review. The moderator will notify the participants and provide the items to be

reviewed early enough for the reviewers to have adequate time to perform their review.

Figure B5. Reviews Subprocess

When the meeting convenes, the moderator determines if the reviewers are adequately

prepared for the review. If the meeting does not proceed because of lack of a quorum, or the

participants are not prepared, or any other similar reason, the meeting is rescheduled, and the

issue remains in the Schedule step. If the reviewers are prepared and a quorum is present, the

meeting continues. If the review cannot be completed in the time allotted, it is recessed and

continued at a later time. The proposal remains in the Schedule step. After the review is

completed, the comments and results are documented.

Once the review and its documentation are complete, the proposal is promoted to the

Actions step where the action items produced in the review are worked. After all the action

items are completed, the moderator reviews the results of the action items and related

documentation for completion. The moderator may decide further work is needed. He or she

returns the items to the author for rework, closes this review, and returns the parent process to

the appropriate previous step. The moderator may decide the completed work needs only

another review. He or she then schedules and holds the additional review. When everything is

complete and the moderator is satisfied, the review can be promoted to the Closed step, and the

parent process can proceed.

ClosedSchedule Actions

 30

V. WORKING

The Working subprocess covers low-level activities that are performed as part of the

development of work products in another subprocess. These activities may be coding a subset

of a new feature, writing part of a document, or working an action item from a review. It

allows more detailed tracking of activities that may take a day to less than a week to do. This

subprocess has two states: Active and Closed. The Working process is shown in Figure B6.

Figure B6. Working Subprocess

A new proposal is created in the Active state and requires only a title and a description

of the proposed activity. The identification of the developer and related issues should be

included. As activities proceed, the proposal should be updated describing the activities

completed. When the activities covered by this proposal are complete, the description of the

activities covered should be completed, and the proposal is moved to the Closed state.

ClosedActive

 31

APPENDIX C.

RAZOR IMPLEMENTATION

Razor is a software product designed as an integrated problem tracking, configuration

control, and release management tool. It was developed to run in a Unix environment and has

been extended to run in a Microsoft Windows NT environment on personal computers. Razor

is divided into three elements: Issues, a problem tracking system; Versions, a file version

control system; and Threads, a build management tool. In this appendix, each of these

elements will be described. Also, information on how to access Razor will be provided.

The following outlines the use of Razor to implement the software development process

described in this SQA Plan. When a new feature or enhancement is proposed or a bug is

reported, it is entered as a new issue in the primary or default Issues group. This issue is then

used to track the development, coding, testing, and reviews of the proposal until it is complete,

and the code is ready for release to users. If the completed issue leads to a new intermediate

release, the Release Issues Group is used to track that part of the process. When it is time to

produce a new major release, the Release Issues Group is used to ensure that all necessary steps

are completed. The Other Issues Group is used to track issues not directly part of code

development. These issues include, but are not limited to, changes in the process and changes

in the Razor implementation. The Meetings Issues Group is used for the various reviews

required by the SQA Plan. These include features reviews, design reviews, code reviews, and

release approvals. The meetings are linked to the related issues so that an issue cannot have its

state changed without the required review being completed. The Working Issues Group can be

used to track activities performed as a subset of a step in any of the other Issues groups.

The Versions element of Razor is the code repository and configuration management

tool. The code is stored in its database burst into a separate file for each module, subroutine, or

function instead of the old method of including the entire code in one file. As a subroutine or

function is needed, it can be checked out of the repository by identifying the issue or issues

related to the check out. The routines can be saved to a separate branch while in development,

but can only be checked back into the trunk or base module after proper reviews and

integration. An issue cannot be closed until all related branches have been checked back into

 32

the trunk. The repository can save any type of file, not just code. This includes scripts

controlling Razor, documentation files, and other project files. More information on this is

provided in Section II.

Threads is a tool used to manage releases of a product. It is used to tie together various

items in the Versions database to generate a release. It is not limited to code modules, but can

also link documentation and other files. A project can be created to link several threads

together. This may occur when the code modules are tracked with one or more threads while

the documentation is tracked with other threads. Threads will be linked to a release in the

Release Issues Group.

Roles in Razor control what individual can do what action and when he or she can do it.

The roles currently defined in this implementation of Razor are RAZOR_ADMIN, SQA, BoD,

team member (MCteam), team leader (MClead), Developer, Integrator, Tester, and Release

Manager (RelMgr). The functions of these roles were described in the subprocesses. A

summary of the functions performed by each role is given in Appendix E. Individuals may be

assigned to one or more roles, and one or more roles can be assigned to other roles. Each role

contains backup, and the SQA role is a member of all other roles. These assignments may

change as implementation and use of this software development process and Razor proceed.

I. ISSUES

The Issues element of Razor has been configured to track proposed features and

enhancements, reported bugs, proposed releases, other issues, and the reviews related to them.

Each issues group requires several items of information in order to document the issue and

track and control its movement through the process. Therefore, each issue has a series of

states, each of which corresponds to a step in the process. In order to advance to some of these

states, reviews must be held and documented in the Reviews Issues Group. If properly

formatted, the text blocks in a Reviews Issues Group form can be directly used to produce the

meeting agenda and minutes.

To start the Issues tool of Razor on a system that has been set up as described in Section

IV below, the following characters are entered at the Unix prompt.

issues &

 33

After a series of messages have been displayed in a startup window, a window similar to that

shown in Fig. C1 will be displayed. Details about the contents of the window and the use of

the icons and functions are found in the Razor Users Manual.

Figure C1. Issues Main Window

In the scrollable region, a list of the existing issues in the Issues group identified at the

top of the window is displayed. The leftmost icon indicates the state, and the large dots are

used to indicate the priority, one for the lowest and four for the highest. Each issue number

(the periods are place holders) and its title are displayed. To select an issue, just click on it, and

an issue form with that issue�’s information will be displayed. To create a new issue, either

select File, and then select New Issue from its menu or click on the leftmost icon on the tool bar

just below File.

To select a different Issues group, select �“Groups,�” and an alphabetical list of Issues

groups will be displayed. Click on the desired group, and the list of its issues will be displayed.

A. Issues Forms

When an issue is selected, a window with a form similar to one of those shown in

Fig. C3 through Fig. C7 will be displayed. Each Issues group has its own issues form, and the

groups and their associated process will be discussed in the following sections. Although the

Issues forms are different, they have many things in common.

 34

Each form has three sections. The first section contains the attributes of that issues

group. The first attribute is the Title, or the Version for the Release Issues Group. The Title or

Version must be filled in for the issue to be accepted. This attribute is followed by one or more

attributes such as Reference, Priority, Developer, Integrator, Related Issues, or projected

release date. These attributes may not have to be filled in until later, and they may have limits

as to what roles can enter or change them. Below the attributes is a large block in which the

states for the issue are listed. As the state of an issue is changed, including to the same state,

the date, the time, and the username of the person who requested the change are displayed on

the line of the new state.

The next section is the first of two text blocks and is the Problems or Description

section. A description of the feature, bug, meeting agenda, or release must be entered. It need

not be detailed because details can be provided in the Reference. However, it must contain

enough information so that the issue is understood. The last section on the form is the second

text field and is the Actions Taken section. Every time anything is changed on the form, an

entry must be made therein. A specific format has not been defined yet. However, the

requestor should put his or her name or initials and a date and time at the beginning of the

entry. This field can provide a history of actions taken on an issue, and in the case of the

Meetings Issues Group, be used as the minutes of the meeting.

Razor automatically creates the issues form window at what it determines is the height

of the screen. This may be larger that the usable area of the screen. This window can be

resized using common methods. The sections inside the window can be resized by placing the

cursor in the box toward the right-hand side of the separator line and moving it up or down as

necessary. The issues forms shown in the following figures are sized to show the attributes.

As a result, the text blocks at the bottom of the issues form are much smaller than normally

displayed.

Each field on the Issues form will be checked to see if it is in the proper state or not. If

an invalid entry is found in a field, a window such as that in Fig. C2 will be displayed. If the

item is not in the proper state, the message displayed will indicate what must be changed.

Explanations of the messages produced by the scripts and what must be corrected are given in

Appendix C of Ref. 5. Pressing the button will return input to the issues form to correct the

error.

 35

Figure C2. Error Message Window

B. Default Issues Group

The issues form for the default issues group is shown in Fig. C3. In this and the other

figures of Issues forms, the Feature Description and Actions Taken text boxes have been

minimized to expand the size of the attributes box display. The form begins with a Title text

line, a Reference text line, and a Type selection. These must be completed for the form to be

accepted. The Feature Approval and Priority are set by the TEAM LEADER after he or she

reviews the proposed feature. If the feature is approved, the issue can be promoted to the

Requirements state. Otherwise, the issue can only be promoted from the Submitted state to the

Release state.

The process associated with this form is described in Appendix B, Section I. The

promotion of an issue from the Submitted state can only occur after several requirements have

been met. In addition to approving the proposal and setting the priority, the MCLEAD must also

assign the DEVELOPER. A BoD review of a proposed new feature may also be done. Reviews

are also required to promote from the Design state to the Code state and from Integrate state to

the Test state. Only the DEVELOPER can promote an issue from the Requirements state and

from the Code state. Before the issue can be changed to the Integrate state, MCLEAD must

assign an INTEGRATOR, and only the INTEGRATOR can change the issue from the Integrate

state. Only someone in the TESTER role can move the issue out of the Test state.

 36

Figure C3.Features, Enhancements, and Bugs Issues Form

 37

Before the issue can be promoted to the Release state, both the BOD and MCTEAM must

complete their reviews and mark the appropriate Complete Approved box. Only the MCLEAD

can close an issue. Most other state changes can be done by anyone in MCTEAM. Note that an

issue can be demoted one or more steps if it fails a review required for a promotion from a

state. Details of each step in this subprocess are found in Appendix D, the actions required of

each role are found in Appendix E, and the work products from each state are described in

Appendix F.

C. Release Issues Group

Figure C4 shows the Release Issues Form. The only attributes this issues group has in

addition to its states are the Version, Release type, projected release date and release approval.

The release approval applies only to a Major Release. This issue group has two reviews

required. One is a documentation review, and the other is the release review. The Board of

Directors is only involved in the Major Release approval review. The process associated with

this form is described in Appendix B, Section II.

D. Other Issues Group

This issues group is the catchall issues group, and its form is shown in Fig. C5. It can

be used to track modifications in the process, it can be used to track changes in this

implementation, and it can be used to track any other issue that does not fall in the default

Issues Group or the Release Issues Group. These issues are usually team internal issues.

Although it is general in application, there are two possible reviews. One may be to review

�“correction�” and documents created during the process. After the Document state is complete,

the products of this issue are inspected by the team. Also, the products may be tested, and the

team will review the results of any tests. However, there are fewer other restrictions as to who

can do what. Otherwise, it is very similar to the Features and Bugs Issues Group.

E. Meetings Issues Group

The Meetings Issue Group is different from the previous issues groups because it is a

child group and the three previously described groups are parent groups. The Meetings Issue

Group form is shown in Fig. C6. Some of the fields are the same as those in other issues

groups, especially the Release Issues Group. However, this form has attributes fields that none

of the other issues groups have, namely, Location and Issues. The location is self-explanatory.

 38

Figure C4. Release Issues Form
The issues entered in the Issues field are the parent issues that are then linked to this child

issue. This allows the parent issues to be able to check on the status of the child issues as part

of their state promotion process.

The reviews reported in this issue group do not have to be big elaborate, formal meetings.

They can be simple two or three person meetings in an office to perform the review. All that is

required is that the results are documented in this issues group. The agenda is a description of

 39

Figure C5. Other Issues Form

 40

Figure C6. Reviews Issues Form
The issue or issues to be discussed in this review and may be generated from the list in the

Issues text line. The entries in Actions Taken can be extracted and used for the minutes of the

review. The process associated with this form is described in Appendix B, Section IV.

F. Working Issues Group

The Working Issues Group is similar to the Reviews Issues Group in that it is a child issues

group. However, it can be a child of any other issues group including itself. Its form is shown

in Figure C7. This form has only the Title, Developer, Issues, and State attributes. Although it

has a Issues attribute like the meetings issue form, it is currently not activated as a required link

to the parent issue.

 41

Figure C7. Working Issues Form

II. VERSIONS

Versions is the configuration management system of Razor. It can contain the source

code and any other related files such as scripts and documentation. It allows tracking and

controlling access and changes to any of the files. The main development path of a file is

known as the trunk. Developers can branch a file and the check out the branch for use in

development without affecting the trunk copy or other users. The trunk is locked against

updating by anyone other than the INTEGRATOR.

Versions is started by entering the following at the Unix prompt.

versions &

In the IRIX environment, the following must be used to start Versions because IRIX

defines an internal tool to respond to the versions command.

 42

$RAZOR_HOME/bin/versions &

After a series of messages have been displayed in a startup window, a window similar to that in

Fig. C8 will be displayed.

Figure C8. Versions Main Window
Whether or not some of the buttons on the right-hand side of the screen are active

depends on the item selected and its current state. If a folder is selected or nothing is selected,

a new file can be introduced or the folder can be opened to display a list of files in that folder.

If a file is selected, it can be checked out for edit or as read only, or a branch can be created to

use for development. If the trunk is locked, which should be the normal case, the file can only

be checked out from a branch.

The current Versions folder tree includes Documents, Process, Source, Templates,

Testing, and Tools. Each folder will have a number of folders below it containing specific

categories of items. The Documents folder will contain copies of requirements specifications,

 43

design documents, users manuals, Research Notes, and all other project related documents.

The Process folder will contain the scripts used in this process and standards related to this

process. The source code itself will be found in the Source folder. Code module templates and

document templates will be found in the Templates folder. The Testing folder will contain both

the test decks and copies of the testing results from both regression testing and unit testing of

new features. Test results templates will also be found here. Finally, the Tools folder will

contain the executables of various tools that can be used in code development.

Figure C9 shows a copy of the window used to create a branch of a file. As usual, a

title is required. The description is optional. A list of all the available versions of the file is

displayed for selection of the desired version. One or more issues must be associated with the

branch being created. Directions on how to do this are in the Razor Users Manual Chapter 4.

When the branch is created, it will be listed in the Versions window immediately following the

parent file. Figure C10 shows the results from branching several files. Note the �“�…�” for file

name and the appended branch numbers to the version number. This branched file is a copy of

the trunk file, but it can be checked out for editing. The DEVELOPER will have the option

regarding where to store it. By default, it will be stored in a folder tree off the home directory

that is the same as the Versions tree. In this example, a branch of Depends will be stored in

/home/user/Source/src/Depends. It can then be processed as a normal text file.

Note that the list of versions in Fig. C9 contains only those versions available at the

time. As development continues, new versions will be created by others and may be integrated

into the trunk. Before presenting files for integration, the DEVELOPER must make sure that all

branches are based on the current trunk version of each file otherwise the INTEGRATOR will

reject it when presented for integration.

When coding is completed, the edited version of the file is checked back in to the

branch. It may also be checked in periodically during development as an archiving measure.

After coding is completed and the issue is ready for integration, the INTEGRATOR merges the

 44

Figure C9.Versions Branching Window

Figure C10.Window with Branched File
branch into the trunk creating a new version of that module. Dead branches can be terminated

by the INTEGRATOR or SQA.

 45

III. THREADS

Threads is the release-control tool of Razor. With it, a set of files can be defined and

assembled. The releases may be an Intermediate or Major Release or the thread may be a

special build used for development or testing.

Threads is started by entering the following chatacters at the Unix prompt.

threads &

After a series of messages have been displayed in a startup window, a window similar to that in

Fig. C11 will be displayed. Within the window, a list of the threads that have been defined will

be displayed.

Figure. C11.Threads Main Window

In Fig. C12, a thread has been selected, and the Source/src folder within it has been

opened to show the list of files. The plus sign before a file name indicates that the file has been

selected for the thread. If it is desired to create a new thread, a window would be displayed

 46

with the same list, and the user would then be able to select which files and versions to include

or exclude from the list. Currently, there are no restrictions about who may create or modify a

thread.

Figure C12. A Thread Window

IV. SETUP

The environment in which development will be done is located on theta. It will contain

the current version of the source code, and its scripts will be configuration controlled. Changes

to scripts will be made only after the issue has been processed and closed.

Setting up a user to start Razor is an easy process. All that has to be done is include one

line in the login startup file. This line executes a script that defines three environmental

variables that Razor uses for path definitions. This line is dependent on the Razor environment

to be used. For C shell users, the line to be added to the startup file is as follows.

source /usr/projects/mcnp/dev/razor_db/rz_prep

For Bourne and Korn shell users, the line to be added to your startup file is the

following:

 47

. /usr/projects/mcnp/dev/razor_db/rz_prep.sh

If the following line is entered at the command prompt, a listing similar to that in

Fig. C13 is displayed.

razor info

The license manager is running on thetaserver, pid = 1171

Remote Clients are using Razor Password file

Connections:

Database '/usr/projects/mcnp/dev/razor_db/RAZOR_UNIVERSE',
is active on theta, rz_server pid = 3056445

Database '/usr/projects/mcnp/dev/lahet/RAZOR_UNIVERSE',
is active on theta, rz_server pid = 3018807

There are no application connections to the license
manager.

Figure C13.Razor Information Response

This listing tells that the license manager is running, that Razor is up serving the listed

databases, and that no one is currently using any of the Razor tools. If anyone were using any

of the tools, the user, the tool, and its PID would be listed. If a particular database is down, it

would not be listed. If this message is not displayed at all or a warning message is displayed,

the Razor license manager is down. In either case, contact the Razor Administrator to have the

situation corrected.

 48

 49

APPENDIX D.

DETAILED PROCESS DESCRIPTIONS

I. FEATURES & BUGS PROCESS

Step 1: Submitted

Objectives To submit a new feature or enhancement request or bug report.

Dependencies None

Responsibilities Any user or team member may submit an issue. Team leader reviews and

approves or rejects. Team leader assigns developer and priority to
approved submissions. BoD may review proposed feature paying special
attention to possible user interface modifications or extensions.

Inputs Title, reference (if any), designate as feature or bug, description of

feature, enhancement, or bug.

Entrance Criteria None

Task Description User supplies input information to define new feature, enhancement, or

bug. Team leader reviews submission, determines if it needs to be
worked, and sets priority. A BoD meeting may be held to review
proposed feature and reject or accept it. Multiple features may be
reviewed in a single meeting. The review(s) and its(their) results are
documented and placed under configuration control. If a submitted item
is rejected, the process is moved to Step 9: Finalize to be documented
and closed out. Otherwise, the team leader assigns a developer.

Verification Team leader reviews decision and may modify it based on personnel and

budgetary constraints.

Exit Criteria Review and decision documented. If approved, priority set and

developer assigned.

Outputs Acceptance or rejection of proposed issue, documented decision, priority

set, designer assigned to approved submissions.

Standards IEEE 1028-1997 Standard for Software Reviews.

 50

Step 2: Requirements

Objectives To develop a Software Requirements Specification (SRS) for the
approved feature or bug fix submission.

Dependencies This step is dependent on Step 1 of this process including developer

assigned.

Responsibilities The assigned developer is responsible for developing the SRS.

Inputs Approved submission from Step 1 of this process.

Entrance Criteria Successful completion of Step 1 of this process.

Task Description The developer determines what the product is to do based on the

approved submission. The detailed requirements are determined from
the raw requirements in the submission, the constraints and influences on
the system, and feedback from the technical community. The analysis
should include the functionality, external interfaces, performance,
attributes, design constraints, and risks associated with the requirements.
Each requirement should be complete, unambiguous, correct, consistent,
verifiable, modifiable, traceable, and ranked for importance. The SRS
can be documented in printed or electronic form. The SRS shall be
placed under configuration control. If the bug is an isolated problem
with no additional side effects, these requirements may be met with just
a short clear description of the bug.

Verification The SRS is reviewed and accepted by the team at the design review.

Exit Criteria Completed SRS

Outputs Completed SRS

Standards IEEE 830-1998 Recommended Practice for Software Requirements

Specifications.

Step 3: Design

Objectives To create a software design description (SDD) based on the SRS.

Dependencies This step is dependent on Step 2 of this process.

Responsibilities The developer shall create the design. The team shall review and

approve the SDD and the related SRS.

Inputs Completed SRS

Entrance Criteria Successful completion of Step 2 of this process.

 51

Task Description The developer determines how the product is to be designed to meet the
requirements in the SRS. This design shall include the module
descriptions, their dependencies on other modules and data, their
interfaces to other modules and the process, and their detailed design.
The design shall be described in an SDD that may be produced in printed
or electronic form. The SDD will be placed under configuration control.
If the bug is an isolated problem with no additional side effects, these
requirements may be met with just a short description of the correction
required.

 The completed SDD and SRS are reviewed and approved by the team

before coding begins. Any coding done to explore or create SRS and
SDD must be considered as prototypes. If the bug is an isolated problem
with no additional side effects, the team leader may approve the SRS and
SDD. If the SRS is not approved, the process returns to Step 2 for
revision of the SRS. If the SRS is approved, but the SDD is not, the
process remains in this step until the SDD is approved.

Verification Team approval of SRS and SDD.

Exit Criteria Approved SRS and SDD.

Outputs Approved SRS and SDD.

Standards IEEE 1016-1998 Recommended Practice for Software Design

Descriptions, IEEE 1028-1997 Standard for Software Reviews.

Step 4: Code

Objectives To produce the code product based on the approved SDD.

Dependencies This step is dependent on Step 3 of this process.

Responsibilities The developer shall develop and test the code.

Inputs Approved SDD from Step 3 of this process.

Entrance Criteria Successful completion of Step 3 of this process.

Task Description The developer creates the code for the feature or bug fix based on the

SDD. Any code prototyped during SRS or SDD development must be
recreated to insure its suitability and compliance with the SRS and SDD.
The developer also creates a test set and performs unit testing on the
code to insure that the base code works correctly with the new code
added, both without using the new functionality and with using it. The
testing shall also determine that the new code meets the requirements.
Regression testing on the modified code may be performed, if
appropriate. The code may be inspected by the team. The code and test

 52

set shall be placed under configuration control, and the unit test set shall
be passed to system test for assistance in upgrading the base code test
set.

Verification Verification shall be done during Step 6: Integration, if it is not done

during this step.

Exit Criteria Coding complete and unit tested by developer.

Outputs Code and unit test set.

Standards IEEE 1008-1987 (R1993) Standard for Software Unit Test, IEEE 1028-

1997 Standard for Software Reviews.

Step 5: Document

Objectives To update the Users Manual and to provide test set documentation.

Dependencies This step is dependent on Step 4 of this process.

Responsibilities The developer shall create or revise the documentation.

Inputs Code and test set from Step 4 of this process.

Entrance Criteria Successful completion of Step 4 of this process.

Task Description The developer provides updates to the descriptions in the Users Manual

Chapter 2, Geometry, Data, Physics, and Mathematics, and Chapter 3,
Description of Input. If this new feature of bug fix produces changes
that affect other chapters in the manual, changes to those shall also be
provided. Additionally, documentation for the unit test set shall be
provided. All documentation shall be placed under configuration control.

Verification The documentation will be validated in Step 6: Integration.

Exit Criteria Completion of documentation of the code and test set by developer.

Outputs Code and test set documentation.

Standards Coding Standards,13 IEEE 1063-2000 Standards for Software User

Documentation.

Step 6: Integrate

Objectives To integrate new feature code or bug fix into base code.

Dependencies This step is dependent on Step 5 of this process and on the team leader

assigning an integrator.

 53

Responsibilities The team reviews the code and documentation from Steps 4 and 5 of this
process. After the review is passed, the integrator integrates the new
code into the base code.

Inputs SRS from Step 2, SDD from Step 3, code from Step 4, and

documentation from Step 5, all of this process.

Entrance Criteria Successful completion of Step 5 of this process and integrator assigned.

Task Description The team does a line-by-line review of the code, comparing it with the

approved SDD. They also review the documentation to verify that it
reflects the requirements in the SRS, the design in the SDD, and the
actual code and that it is ready for inclusion in the Users Manual. They
review the documentation on the unit test set to verify that it correctly
tests the new code. They will use the unit test results to verify the
correct execution of the code. If any part of the package fails this
review, the process returns to the step where the failed item as created
for correction of the failing item. The process will then continue from
that point. The results of the review shall be documented and placed
under configuration control.

 After all aspects of the development have passed the review, the

integrator merges the changes into the base code. If there is a failure
during this integration, the process is returned to the appropriate step to
correct the cause of the failure and then resumes from that step. The
results of the integration shall be placed under configuration
management.

Verification Successful review by the team and integration into the base code.

Exit Criteria New code successfully integrated into the base code.

Outputs Reviewed documentation and integrated code, documentation of review

and integration.

Standards IEEE 1028-1997 Standard for Software Reviews.

Step 7: Test

Objectives To perform regression testing on integrated code.

Dependencies This step depends on Step 6 of this process.

Responsibilities Team members assigned by team leader shall perform the tests.

Inputs Integrated code and reviewed documentation from Step 6 of this process.

Entrance Criteria Successful completion of Step 6 of this process.

 54

Task Description The tester(s) shall modify the system test set to include testing of the

new feature or bug fix and shall update the test set documentation. The
units tests from the developer may be used to aid in this effort. The
testing shall verify that the competed feature or bug fix meets all of the
requirements in the SRS. The updated test set and documentation may
be reviewed by the team for completeness and possible errors. The
entire test set is run on all supported platforms. The results are reviewed
by the tester(s) to insure the integrated code still gives the same results or
explained differences for all problems and platforms. The testing
documentation and results shall be placed under configuration control.

Verification The results of this step shall be verified in the next step.

Exit Criteria Successful test set execution on all supported platforms.

Outputs Test set extensions documentation and results.

Standards IEEE 829-1998 Standard for Software Test Documentation.

Step 8: Approve

Objectives To verify and validate the results of this process for a particular
submission.

Dependencies This step depends on Step 7 of this process.

Responsibilities The team shall review the results from integration and testing. The BoD

shall review any changes to the user interface.

Inputs Documentation from Step 5, integrated code from Step 6, and test

documentation and results from Step 7, all of this process.

Entrance Criteria Successful completion of Step 7 of this process.

Task Description The team shall review the entire package from submission through

system testing for completeness and correctness. The team shall also
review the test documentation and results to insure the changes have
been properly and completely tested.

 The BoD shall review any changes to the user interface, both input and

output, which resulted from this new feature. If the package fails either
of these reviews, the process returns to the step where the failing item
was created for correction of that item. The process will then continue
from that point. The results of these reviews shall be documented and
placed under configuration control.

Verification The team leader shall verify the completion of this step.

 55

Exit Criteria Approvals of the package by team and the BoD.

Outputs Documentation of the reviews.

Standards IEEE 1028-1997 Standards for Software Reviews, IEEE 1012-1998

Standard for Software Verification and Validation.

Step 9: Finalize

Objectives To complete the processing the modified product for the LANL users
and for consideration of the feature for an Intermediate or Major Release.

Dependencies This step depends on Step 8 or Step 1 (for rejected submissions) of this

process.

Responsibilities The team leader shall oversee the release of the approved package.

Inputs Approved integrated code and documentation.

Entrance Criteria Successful completion of Step 8 of this process.

Task Description The team leader shall oversee the release of the package to users. For a

new feature, this would include the team and the local user community.
This may be done through the creation of an intermediate release. A
notice describing this new feature shall be sent to the team and all local
users.

 For a bug fix, notification shall be sent to the team and local users.

Announcement of the fix and its availability to all users shall be made on
the web site.

 For a rejected submission, the team leader shall verify that a notice

documenting this rejection is distributed to the team, the BoD (for
features only), and the submitter.

 The team leader shall also verify that all products of this process are

properly documented and under configuration control.

Verification The team leader shall verify that the process is complete.

Exit Criteria Release of integrated feature or bug fix and its documentation, and all

process products are under configuration control.

Outputs Released code and documentation.

Standards None

 56

Step 10: Closed

Objectives To close the process on the submitted feature or bug.

Dependencies This step depend on Step 9 of this process.

Responsibilities The team leader is responsible for closing the process.

Inputs The complete package for a released item.

Entrance Criteria Successful completion of Step 9 of this process.

Task Description Once the team leader has verified that the product is released, the

notifications have been sent, and all items are under configuration
control, this process may be closed.

Verification None

Exit Criteria Release complete and products under configuration control.

Outputs None

Standards None

II. RELEASE PROCESS

Step 1: Proposed

Objectives To propose an Intermediate or Major Release.

Dependencies This depends on all related features and bug fixes being integrated.

Responsibilities The Release Manager is responsible for the proposal.

Inputs Base code with modifications not included in the last Intermediate or

Major Release.

Entrance Criteria Proposed inclusions are integrated.

Task Description The Release Manager determines that an Intermediate Release is needed

for the recent feature(s) added or it is the time for another Major Release.
He or she proposes the release with projected release date and features
and bugs to be included.

Verification The team leader concurs.

Exit Criteria A release is proposed.

 57

Outputs Proposed release version and projected date.

Standards None

Step 2: Complete

Objectives To determine that all the included features and bug fixes are complete.

Dependencies This step depends on Step 1 of this process.

Responsibilities The Release Manager checks for item completion.

Inputs List of features and bug fixes to be included.

Entrance Criteria Successful completion of Step 1 of this process.

Task Description The Release Manager verifies the status of each feature or bug fix to be

included in the release. If any of them do not meet the requirements for
being released, this process must wait in this step until all items meet
requirements or the incomplete item is removed from the release. Once
all items are closed, the base code is frozen against further changes until
after the release is complete.

Verification The team leader shall concur with the list of included items.

Exit Criteria All proposed inclusions are closed, and the code is frozen. The Release

Manager or team leader documents that all features and bug fixes to be
included in the release meet SRS and SDD requirements, that they are
properly integrated, and have been multiply reviewed.

Outputs Documentation of all items to be included in the release.

Standards None

Step 3: Document

Objectives To verify that the documentation for all included features and bug fixes
have been included in the Users Manual and other relevant
documentation.

Dependencies This step depends on Step 2 of this process.

Responsibilities The team reviews the package for each item to be included in the release.

Inputs The code and documentation package for each item to be included in the

release.

Entrance Criteria Successful completion of Step 2 of this process.

 58

Task Description The team members reviews the package for each item to be included in
the release. In particular, for a Major Release, the team members review
the entire Users Manual, especially Chapters 2 and 3. They review the
manual to insure that the manual is complete and consistent with the
code being released with it. For an Intermediate Release, only change
pages are necessary to be included. If the documentation does not pass
this review, the process is returned to Step 1 to await completion of the
documentation, and then continues from there. The reviewed and
approved documentation shall be placed under configuration control.

Verification The team leader verifies that this documentation is reviewed.

Exit Criteria The documentation passes this review.

Outputs An updated Users Manual.

Standards IEEE 1063-2000 Standards for Software User Documentation, IEEE

1028-1997 Standard for Software Reviews.

Step 4: Test

Objectives To perform regression testing on the proposed release.

Dependencies This step depends on Step 3 of this process.

Responsibilities Team members as assigned by the team leader shall perform the tests.

Inputs The integrated code proposed for release and the system test package.

Entrance Criteria Successful completion of Step 3 of this process.

Task Description The tester or testers insure that the system test set is modified to includes

testing of all the new features and bug fix in this proposed release. They
shall also insure that the test set documentation reflects these updated
tests. The entire test set is run on all supported platforms. The results
are reviewed by the tester or testers to insure the proposed release still
produces the same results or explained differences for all problems and
platforms. The testing documentation and results shall be placed under
configuration control.

Verification The results of this step shall be verified in the next step.

Exit Criteria Successful test set execution on all supported platforms.

Outputs Test results and updated test set documentation.

Standards IEEE 829-1998 Standard for Software Test Documentation.

 59

Step 5: Approve

Objectives To approve a proposed release for release.

Dependencies This step depends on Step 4 of this process.

Responsibilities The team approves an Intermediate Release, and the team and the BoD

must both approve a Major Release.

Inputs Documentation package for each new feature and bug fix, integrated

code, and test results from Step 4 of this process.

Entrance Criteria Successful completion of Step 4 of this process.

Task Description For an Intermediate Release or a Major Release, the team reviews the

documentation for the new feature(s) and bug fixes and the test
documentation and results to insure that the release is ready. For a Major
Release, the BoD must review and approve all changes to the user
interface, both input and output. Also for a Major Release, both the BoD
and the team must approve the proposed release for international release.
The documentation of these reviews and their results shall be placed
under configuration control.

Verification The team leader verifies the approvals.

Exit Criteria For an Intermediate Release, the team approves the release. For a Major

Release, both the team and the BoD approve the release.

Outputs Approved release and reviews documentation.

Standards IEEE 1028-1997 Standards for Software Reviews.

Step 6: Release

Objectives To execute the release of the product to users.

Dependencies This step depends on Step 5 of this process.

Responsibilities The Release Manager does the release.

Inputs The approved code and documentation package.

Entrance Criteria Successful completion of Step 5 of this process.

Task Description For an Intermediate Release, the Release Manager places the approved

code in a directory available to all users. He or she also distributes a
memo announcing the release and its contents and the availability of the
documentation for the new features and bug fixes. All items should
already be under configuration control.

 60

 For a Major Release, the Release Manager assembles the complete

package of approved code, updated Users Manual, and updated test set
and submits them with a memo describing the changes to RSICC for
international distribution. All items should already be under
configuration control.

Verification The team leader verifies the completion of this step.

Exit Criteria The approved package is released to users.

Outputs The approved package available to users.

Standards None

 Step 7: Closed

Objectives To close the process of releasing a version of a code.

Dependencies This step depends on Step 6 of this process.

Responsibilities The team leader is responsible for closing the process.

Inputs The released package

Entrance Criteria The successful completion of Step 6 of this process.

Task Description Once the team leader has verified that the release is complete, that the

notifications have been sent, and all items are under configuration
control, the process may be closed.

Verification None

Exit Criteria Release complete and products under configuration control.

Outputs None

Standards None

III. OTHER PROCESS

Step 1: Reported

Objectives To submit a proposal on an issue that does not directly affect the codes.

Dependencies None

 61

Responsibilities Any team member may submit a proposal.

Inputs Title, reference (if any), and description of issue.

Entrance Criteria None

Task Description Team member supplies information to define the proposal.

Verification Team leader verifies that required information has been supplied.

Exit Criteria Team leader accepts submission.

Outputs Completed submission

Standards ISO 9000-3:1997 Guidelines for the application of ISO 9001:1994 to the

development, supply, installation and maintenance of computer software,
IEEE/EIA 12207.n-1996 Software Life Cycle Processes,
IEEE 1219-1998 Standard for Software Maintenance.

Step 2: Investigate

Objectives To investigate the submitted proposal.

Dependencies This step depends on Step 1 of this process.

Responsibilities The team leader accepts, prioritizes, and assigns a developer to or rejects

the proposal. The developer investigates the proposal.

Inputs The submitted proposal

Entrance Criteria Successful completion of Step 1 of this process.

Task Description The team leader reviews the proposal and accepts it or rejects it. If it is

accepted, a developer is assigned and a priority is selected. The results
of this review are documented and placed under configuration control.

 The assigned developer investigates the proposal. The results of the

investigation are documented and placed under configuration control.
This is similar to Step 3: Requirements of the Features & Bugs Process.

Verification Completion of this step will be verified in Step 5: Inspect, if not sooner.

Exit Criteria The results of the investigation are documented by the developer.

Outputs Documented review by team leader, documented investigation by

developer.

 62

Standards None

Step 3: Correct

Objectives To develop a �“correction�” for the proposal.

Dependencies This step depends on Step 2 of this process.

Responsibilities The developer is responsible for producing the �“correction.�”

Inputs The completed investigation from Step 2 of this process.

Entrance Criteria Successful completion of this process.

Task Description The developer creates a �“correction�” based on the results of the

completed investigation. This �“correction�” may be code for support
software or it may be a new version of a document. This is similar to the
Design and Code steps of the Features & Bugs process. The
�“correction�” is placed under configuration control.

Verification The completion of this step will be verified in Step 5: Inspect, if not

sooner.

Exit Criteria A �“correction�” is completed by the developer.

Outputs A �“correction�”

Standards None

Step 4: Document

Objectives To document the �“correction.�”

Dependencies This step depends on Step 3 of this process.

Responsibilities The developer is responsible for completing the documentation.

Inputs The �“correction�” from Step 3 of this process.

Entrance Criteria Successful completion of Step 3 of this process.

Task Description If the �“correction�” itself is not a document, the developer documents the

�“correction.�” The documentation is placed under configuration control.

Verification The completion of this step will be verified in the next step, Inspect.

Exit Criteria The documentation of the �“correction�” completed by the developer.

Outputs The documentation of the �“correction.�”

 63

Standards IEEE 1063-2000 Standards for Software User Documentation.

Step 5: Inspect

Objectives To inspect the �“correction�” and its documentation.

Dependencies This step depends on Step 4 of this process.

Responsibilities The team performs the inspection.

Inputs The �“correction�” from Step 3 of this process and the documentation from

Step 4 of this process.

Entrance Criteria Successful completion of Step 4 of this process.

Task Description The team shall inspect the �“correction�” and its documentation to insure

that it is complete and correct. If either fail this inspection, the process
returns to the Investigate step and continues from there. The inspection
and its results shall be documented and placed under configuration
control.

Verification The team leader shall verify the results of the inspection.

Exit Criteria Successful completion of the inspection.

Outputs Documentation of the inspection and its results.

Standards IEEE 1028-1997 Standard for Software Reviews.

Step 6: Test

Objectives To �“test�” the correction.

Dependencies This step depends on Step 5 of this process.

Responsibilities Team members or others assigned by the team leader shall �“test�” the

�“correction.�”

Inputs The inspected �“correction�” and its documentation.

Entrance Criteria Successful completion of Step 5 of this process.

Task Description If the �“correction�” is code, for example a script, the tester(s) shall test it

in a manner similar to the testing of features and bugs. The tests and
their results shall be documented and placed under configuration control.

 64

 If the �“correction�” is documentation, it shall be reviewed and edited by
appropriate individuals. The edited �“correction�” shall be placed under
configuration control.

 If the �“correction�” is something else, it shall be tested in an appropriate

manner to insure it meets the requirements determined in Step 2:
Investigation. The tests and results of the testing shall be documented
and placed under configuration control.

Verification Verification of this step shall be done in the next step.

Exit Criteria Successful completion of the testing and documentation of the results.

Outputs Testing and results documentation.

Standards IEEE 829-1998 Standard for Software Test Documentation.

Step 7: Review

Objectives To review the �“correction,�” its documentation, and its testing.

Dependencies This step depends on Step 6 of this process.

Responsibilities The team shall perform this review.

Inputs The �“correction,�” its documentation, its test documentation and results.

Entrance Criteria Successful completion of Step 6 of this process.

Task Description The team or team leader shall review the entire package from submission

through testing for completion. They shall also review the test
documentation and results to insure that the �“correction�” meets
requirements and has been completely and properly tested. If any part of
the package fails this review, the process is returned to the Investigate
step and continues from there. The review and its results are
documented and placed under configuration control.

Verification The team leader shall verify completion of this step.

Exit Criteria Successful completion of this review.

Outputs Documentation of the review and its results.

Standards IEEE 1028-1997 Standard for Software Reviews.

Step 8: Closed

Objectives To close the process on the submitted proposal.

 65

Dependencies This step depends on Step 7 of this process.

Responsibilities The team leader is responsible for closing the process.

Inputs The complete package for the proposed item.

Entrance Criteria Successful completion of Step 7 of this process.

Task Description Once the team leader has verified that the completed proposal has passed

the review, that it has been released, if necessary, any necessary
notifications sent, and all items are under configuration control, this
process may be closed.

Verification None

Exit Criteria Successful completion of the review and release, if necessary, and all

items under configuration control.

Outputs None

Standards None

IV. MEETINGS PROCESS

Step 1: Schedule

Objectives To plan, schedule, and hold a review meeting.

Dependencies This step depends on one of several steps from one of the other

processes.

Responsibilities For a BoD review, the BoD chair shall be responsible. For a team

review, the team leader will be responsible.

Inputs The item(s) to be reviewed.

Entrance Criteria The item(s) are complete and ready for review.

Task Description For a BoD review, the chair determines which items will be on the

agenda. The items may include proposed new features, integrated and
tested features ready for release, and proposed Major Releases.

 A team review will usually be a small subset of the team reviewing one

or a few items. It may be an SRS or SDD, documentation, or test results.
It may also be a feature or bug fix ready for release or a proposed
Intermediate or Major Release. The team leader will assign the
moderator and reviewers and what is to be reviewed.

 66

 The responsible person determines how long the review will take and

how many people will be present. He or she selects a meeting site and a
time to hold the meeting. All interested parties are notified about time,
place, and agenda. Adequate advance notice and distributions of item(s)
to be reviewed is necessary in order for the reviewers to have adequate
time to prepare.

 When the review convenes, the moderator shall inquire as to whether the

reviewers have spent adequate time in preparation. If not enough
reviewers are present, or they have not spent adequate time in
preparation, or for a similar reason, the moderator adjourns the review,
and the process returns to Step 2 of this process to reschedule the review.

 If an adequate number of reviewers are present and they are prepared,

the review continues. The secretary records all issues and concerns
raised by the reviewers. When the review is complete, it is adjourned for
the author to respond to the issues and concerns raised. If the review is
not completed in the allotted time, the reviewers can decide to recess the
review until a later date or to continue to complete the review. If it is
decided to recess, this process returns to Step 2 for rescheduling the
review. When the review is complete, the issues, concerns, and
decisions are documented and placed under configuration control.

Verification The team leader will verify this step is complete, including scheduling,

adequate notice and preparation time are given, and the meeting is held.
 The moderator will verify that the review is complete and documented.

Exit Criteria Documentation of the review and its results.

Outputs List of issues and concerns of the reviewers, documentation of the

review and its results.

Step 2: Actions

Objectives To complete the response of the author to the issues and concerns of the
reviewers.

Dependencies This step depends on Step 1 of this process.

Responsibilities The moderator and the author are responsible for completion of this step.

Inputs The item(s) reviewed and the list of issues and concerns of the reviewers.

Entrance Criteria Successful completion of Step 1 of this process.

 67

Task Description The author takes the list of issues and concerns and determines his or her
response to each of them. If it was a document that was reviewed, the
appropriate changes are made in the document. If it was code that was
reviewed, the appropriate recoding is done. The author may decide that
an explanation to the reviewer or no action may be the appropriate
response.

 When the author completes his or her responses, they are sent to the

moderator for review. The moderator may request further work on one
or more responses. If necessary, the moderator may close this process
and return the parent process to the appropriate previous step to
accomplish the rework. When the moderator is satisfied with the
responses, he or she may close this step or schedule another review, if
the changes in the item(s) are significant. If the moderator decides to
have another review, this process returns to Step 2 for scheduling the
review and proceeds from there. The responses and modified item(s)
shall be placed under configuration control.

Verification The moderator shall verify that this step is complete.

Exit Criteria Completed, acceptable responses to the issues and concerns of the

reviewers.

Outputs Modified item(s), documented responses from author.

Standards IEEE 1028-1997 Standard for Software Reviews.

Step 3: Closed

Objectives To close this review.
.
Dependencies This step depends on Step 2 of this process.

Responsibilities The team leader is responsible for closing the review.

Inputs Modified item(s), documented responses from author.

Entrance Criteria Successful completion of Step 2 of this process.

Task Description The team leader reviews the documentation and results of the review, the

author�’s responses, and the modified item(s). If the team leader is not
satisfied, he or she consults with the moderator, and if necessary, returns
the process to Step 1 to redo the review. When the team leader is
satisfied, the review is closed.

Verification None

 68

Exit Criteria Review documentation and results, author responses, and modified
item(s) under configuration control.

Outputs None

Standards IEEE 1028-1997 Standard for Software Reviews.

V. WORKING PROCESS

Step 1: Active

Objectives To work a task.

Dependencies An issue in another issues group.

Responsibilities The developer will be responsible.

Inputs A task from another issue.

Entrance Criteria There is a task in another issue that needs to be subdivided and tracked

more closely.

Task Description The developer works the task generating work products, as appropriate.

Any work products generated are placed under configuration control.

Verification Developer verifies task is complete.

Exit Criteria Completed task

Outputs Updated issue(s) and other products generated by task placed under

configuration control.

Standards None

Step 2: Closed

Objectives To close this issue.
.
Dependencies This step depends on Step 1 of this process.

Responsibilities The developer is responsible for closing the issue.

Inputs Updated issue(s) and other products generated by task.

Entrance Criteria Successful completion of Step 1 of this process.

Task Description The developer closes the issue.

 69

Verification None

Exit Criteria Issue is closed.

Outputs None

Standards None

 70

 71

APPENDIX E.

ROLES

I. ROLE DESCRIPTION

A. Anyone

Process State Action

Features & Bugs Submitted Submit new feature request of bug report.

B. Board of Directors

Process State Action

Features & Bugs Submitted Optional review of requested Features, document

decision.

 Approve Review entire Feature package especially user

interface. Approve for release if satisfied.

Release Approve Review Major Release package, especially user

interface, to make sure the release is ready for
international distribution. Approve if it is ready.

Meetings Schedule For a BoD review, determine agenda and schedule

review. Notify members of meeting and agenda.
Allow sufficient time for reviewers to examine the
material to be reviewed. Conduct review. Record
all issues and concerns. Recess meeting if
insufficient time to review all items or postpone
them to another meeting. Promote to Action after
meeting completed.

 Action Work all action items resulting from meeting.

BoD leader reviews completed action items to see
if they require further BoD review and action.
After all action items are acceptably completed,
leader verifies completion and all items are under
configuration management and response on all
action items has been sent to BoD members.
When all is complete, leader Closes review.

 72

C. Developer

Process State Action

Features & Bugs Requirements Develop Software Requirements Specification

(SRS), promote to Design when SRS completed.

 Design Create design and write Software Design

Document (SDD) Request review of SRS and
SDD when SDD complete.

 Code Develop code to comply with SDD, perform unit

testing, promote to Document when coding and
unit testing complete.

 Document Document code, unit testing, and update Users

Manual. Promote to Integrate when complete.

Other Investigate Investigate proposal. Promote to Correct when

investigation is complete.

 Correct Create a �“correction.�” Promote to Document

when �“correction�” completed.

 Document If �“correction�” is not a document, document it.

Promote to Inspect after documentation is
complete.

Working Active Creates issue linking it to parent issue and works

issue. When completed, documents activities and
promotes issue to Closed.

D. Integrator

Process State Action

Features & Bugs Integrate Integrate reviewed code into baseline. Promote to

Test when complete.

E. MC Team

Process State Action

Features & Bugs Submitted Submit new feature request of bug report.

 Design Review and approve SRS and SDD, promote to

Code if approved or to Requirements if rejected.

 73

 Integrate Line-by-line review of code and documentation
including comparing with SDD. Demote to
Requirements if doesn�’t pass review.

 Test Update and perform regression test suite on

integrated code in all supported environments.
Promote to Approve when all tests passed.

 Approve Review entire package including integration and

testing results. Approve if complete and ready for
release.

Release Document Reviews documentation of each included item.

For an Intermediate Release, this documentation is
change-pages. For a Major Release, this is
updated Users Manual especially Chapters 2 and
3.

 Test Perform regression test suite in all supported

environments. Promote to Approve when all tests
passed.

 Approve Review documentation and test results. Approve

Release if package complete and ready.

Other Reported Submit request on noncode issue.

 Inspect Review �“correction�” and its documentation.

Return process to Investigate if review failed,
promote to Test if passed.

 Test Test �“correction.�”

 Review Review entire �“correction�” package including test

results.

Meetings Schedule Moderator schedules review and notifies members

of the meeting and agenda. Allow sufficient time
for reviewers to examine the material to be
reviewed. Conduct review. Verify that reviews
spent sufficient time reviewing material. Record
all issues and concerns. Recess meeting if
insufficient time to review all items or postpone
them to another meeting. Promote to Action after
meeting completed.

 Action Work all action items resulting from meeting.

Moderator reviews completed action items to see

 74

if they require further review and action. After all
action items are acceptably completed, moderator
verifies completion and all items are under
configuration management and response on all
action items has been sent to reviewers.

F. MC Team Leader

Process State Action

Features & Bugs Submitted Verified issue submitted. Reviews, approves, and

prioritizes issue. Reviews BoD recommendations.
Assigns Developer for approved items.
Documents decision. Promotes to approved issues
Requirements and rejected issues to Release.

 Document Assign Integrator.

 Approve Promote to Release after both team and BoD

approve Feature or only team approves Bug fix.

 Finalize Oversee release of approved Feature or Bug fix to

users. This may include creating an Intermediate
or Major release. Verify notifications of release or
rejection have been distributed. Insure package
including all documentation is complete and under
configuration management. When process is
complete, Close issue.

Release Proposed Concur with release proposal. Promote to

Complete.

 Complete Concur with list of items to be included. Promote

to Document.

 Document Promote to Test after team approves

documentation.

 Approve Promote to Release after both BoD and team

approves Major Release or just team approves
Intermediate release.

 Release Promote to Closed after verifying release is

completed and everything is under configuration
management.

Other Reported Promote to Investigate when submission is

complete.

 75

 Investigate Accept or Reject submission. Assign Developer

and Priority if submission is accepted.

 Review After team approval, verify package is complete

and under configuration management. Promote to
Closed when package complete.

Meetings Schedule For team review, determine what will be reviewed

and who moderator and reviewers will be.

 Action Reviews documentation and results of review. If

not satisfied, returns review to Schedule. If
satisfied, verifies all is under configuration
management, then Closes review.

G. Release Manager

Process State Action

Release Proposed Propose new Intermediate or Major Release.

 Complete Verifies each Feature and Bug fix proposed for

inclusion in new release is complete and closed.
When all are ready, freeze the baseline until
release is complete.

 Release Distributes as required, approved release with

updated documentation. Sends notifications.

H. Software Quality Analyst

Process State Action

 There are no activities defined for this role in the

SQA Plan. However, this role will oversee the
execution of this plan.

I. Razor Administrator

Process State Action

 Razor was in use at the time the SQA Plan was

written, so this role is not defined in it. The Razor
Administrator will oversee the operation of the
Razor databases used in the execution of this plan.

 76

 77

APPENDIX F.

WORK PRODUCTS

I. WORK PRODUCTS

A. Software Requirements Specification

Description: A Software Requirements Specification (SRS) documents essential
requirements (functions, performance, design constraints, and attributes)
of the software and its external interfaces (IEEE 610.12-1990).

Resources used: Feature or enhancement request or bug report from user or team.

Created: Features & Bugs Process�—Requirements step.

Reviewed: Features & Bugs Process�—Design step.

Used: Features & Bugs Process�—Design, Document, and Test steps.

Standards: IEEE 830-1998 Recommended Practice for Software Requirements

Specifications.

B. Software Design Description

Description: A Software Design Description (SDD) is a representation of software
system created to facilitate analysis, planning, implementation, and
decision-making. The SDD is used as a medium for communicating
software design information, and may be thought of as a blueprint or
model of the software system (IEEE 610.12-1990).

Resources used: SRS

Created: Features & Bugs Process�—Design step.

Reviewed: Features & Bugs Process�—Design step.

Used: Features & Bugs Process�—Coding, Document, and Inspect steps.

Standards: IEEE 1016-1998 Recommended Practice for Software Design

Descriptions.

 78

C. Code

Description: Code is computer instructions and data definitions expressed in a
programming language or in a form output by an assembler, compiler, or
other translator (IEEE 610.12-1990).

Resources used: SDD

Created: Features & Bugs Process�—Code step; Other Process�—Correct step.
.
Reviewed: Features & Bugs Process�—Integrate step, Other Process�—Inspect step.
.
Used: Features & Bugs Process�—Integrate, Test, Approve, and Finalize steps;

Release Process�—Complete, Document, Test, Approve, and Release
steps; Other Process�—Inspect, Test, and Review steps; Meetings
Process�—Schedule and Actions steps.

Standards: Reference 13

D. Software Documentation

Description: Any written or pictorial information describing, defining, specifying,
reporting, or certifying activities, requirements, procedures or results
(IEEE 610.12-1990). This includes the SRS, SDD, User Manual, data
model, data dictionary, and any other documentation necessary to
describe the software, how it works, and how it is used.

Resources used: SRS, SDD, code.

Created: Features & Bugs Process�—Documentation step; Release Process�—

Document step; Other Process�—Document step.

Reviewed: Features & Bugs Process�—Integration step; Release Process�—Approve

step; Other Process�—Review step.

Used: Features & Bugs Process�—Integration, Test, Approve, and Finalize

steps; Release Process�—Test, Approve, and Release steps; Other
Process�—Inspect, Test, and Review steps.

Standards: IEEE 1063-2000 Standards for Software User Documentation.

 79

E. Software Test Plan

Description: A document describing the scope, approach, resources, and schedule of
intended test activities. It identifies test items, the features to be tested,
the testing tasks, who will do each task, and any risks requiring
contingency planning. (IEEE 610.12-1990).

Resources used: SRS, Users Manual.

Created: Features & Bugs Process�–Code and Test steps; Release Process�—Test

step, Other Process�—Test step.

Reviewed: Features & Bugs Process-Approve step; Release Process�—Approver

step; Other Process�—Review step.

Used: Features & Bugs Process�—Code and Test steps; Release Process�—Test

step, Other Process�—Test step.

Standards: IEEE 1008-1987 (R1993) Standard for Software Unit Test.

F. Software Test Results

Description: This describes the conduct and results of testing carried out for a system
or component (IEEE 610.12-1990).

Resources used: SRS, STP, test suite documentation.

Created: Features & Bugs Process�—Code and Test steps; Release Process�—Test

step, Other Process�—Test step.

Reviewed: Features & Bugs Process�—Approve step; Release Process�—Approve

step; Other Process�—Review step.

Used: Features & Bugs Process�—Code and Test steps; Release Process�—Test

step, Other Process�—Test step.

Standards: IEEE 829-1998 Standard for Software Test Documentation.

G. Review Results

Description: This included review meeting minutes, action items generated, action
item responses, metrics generated, and any other documentation from the
review and its results.

Resources used: Items to be reviewed.

Created: Meetings Process�—Actions step.

 80

Reviewed: Meetings Process�—Actions step.

Used: Features & Bugs Process�—Design, Integrate, and Approve steps;

Release Process�—Document and Approve steps; Other Process�—Inspect
and Review steps.

Standards: IEEE 1028-1997 Standard for Software Reviews, IEEE 1012-1998

Standard for Software Verification and Validation.

 81

APPENDIX G.

SOFTWARE VALIDATION AND VERIFICATION PLAN

I. PURPOSE

The purpose of this Software Verification and Validation Plan (SVVP) is to describe the

verification and validation (V&V) activities of the Monte Carlo team used to improve the

quality of the codes developed and maintained by members of the team. This includes, but is

not limited to, MCNP.

The scope of this SVVP is the ongoing development and phases of the typical software

life cycle. This plan supercedes SVVP in the previous MCNP SQA plan3 and is written to

reflect the use of a specific software-based tool, Razor ,16 to control and monitor this software

development process. The process itself and the implementation in Razor are described in

detail in Ref. 4 that is extracted into Appendices B through F of the Monte Carlo Team SQA

plan. Additional documents will be produced providing additional details for some of the

process steps. This SVVP does not yet cover the V&V of the data libraries distributed and used

with these codes. Such a plan is currently being developed. Also, a V&V plan covering the

use of the code and the data together has not yet been written.

This SVVP is primarily for the team members who maintain and improve these codes.

However, the audience is not only the members of the Monte Carlo team, but also its

international user community and the management of ASCI, of which the Eolus Project is

currently a part, as an indication of how the codes are maintained and improved. It will be used

as a reference in assessments and audits by organizations external to this team and by users

required to use software that satisfies specified V&V requirements. This is a living document,

and is subject to ongoing revisions.

This plan is based on the requirements in IEEE Std 1012-1998.G1 Also, ISO

9001:20007 was used in preparation of this plan.

 Razor is a trademark of Tower Concepts, now a part of Visible Systems Corporation.

 82

II. DEFINITIONS

See Appendix A.

III. V & V OVERVIEW

 �“Software V&V processes determine whether development products of a given activity

conform to the requirements of that activity, and whether the software satisfies its intended use

and user needs. This determination may include analysis, evaluation, review, inspection,

assessment, and testing of software products and processes. V&V processes assess the

software in context of the system, including the operational environment, hardware, interfacing

software, operators, and users.�”G 1

V&V processes provide an objective assessment of software products and software

development processes to demonstrate whether software requirements are correct, complete,

accurate, consistent, and testable. Other objectives include facilitating early detection and

correction of software errors, enhancing team and management insight into process and product

risk, and supporting software life cycle processes to ensure compliance with program

performance, schedule, and budget requirements.G 1

Verification and validation can mean different things depending on the viewpoint. Two

different sets of definitions for these terms are included in Appendix A of the Monte Carlo

Team SQA plan. The viewpoint used for the previous two paragraphs is the software

engineering viewpoint. It describes verification as the activities performed to ensure that the

outputs of a development process phase comply with the inputs of that phase, and validation as

the activities performed to ensure that the outputs of the process meet the requirements stated at

the start of the process. As Barry Boehm described V&V in 1979:G2

Validation: Are we building the right product?

Verification: Are we building the product right?

The computational physics viewpoint of V&V is different. It is focused on the

correctness and applicability of the physics models and infrastructure used in developing the

code (i.e., physics) rather than the development process. That viewpoint looks at whether the

physics models are adequate to describe the real world and whether those models were coded

correctly. This viewpoint is represented by the second set of definitions, from Ref. G3, for

 83

validation and verification in Appendix A. Here the definitions are summarized in a more

specific form as:

Validation: Are we solving the correct equations?

Verification: Are we solving the equations correctly?

A schematic drawing, adapted from Ref. G4, relating computational physics V&V

activities to the �“real world�” is shown in Fig. G1. A model of nature is expressed in a theory

that is represented by equations. Code verification is the evaluation of a computer simulation

to ensure that the equations are properly implemented in the code. It includes comparison of

calculated results with analytical solutions, regression test sets, and other codes. The computer

simulation is validated by comparing its output, using any required physical data, with the

results from experiments.

The relationship of experimental data to this drawing is not simple. Diagnostics that are

part of experiments produce the measured data that can be compared to the results of computer

simulations of the experiments. On the other hand, physical data may be used by the code to

produce the computer simulation. This physical data is obtained from other experiments and is

verified by comparison with theory. In this case, the verification and validation of the

computer simulation are the verification and validation of the code and data as a combined set.

Figure G1. Relationship Between Nature and Computer Code

Radiation Transport
(nature) Experiments

Theory
(equations)

Computer
 simulation

Diagnostics

Model

Verification

Validation

 84

These computational physics definitions of V&V are used for MCNP. In this case,

verification is activities that can be performed without regard to the quality of the nuclear data,

and validation is performed for the combination of MCNP and the best available nuclear data.

In the computational physics view of V&V, software engineering processes are part of

the conversion of theory to computer simulations. On the other hand, software engineering

would consider these definitions of V&V as part of the software development process

validation activities.

Because both the software engineering and computational physics viewpoints are

relevant to the codes developed by the Monte Carlo team, the V&V process will be detailed

from each viewpoint.

• The software engineering viewpoint will be used in Section G.IV.A describing

process V&V.

• The computational physics viewpoint will be used in Section G.IV.B describing

code product V&V.

The remainder of this SVVP is divided into four sections. Section G.IV describes both

V&V processes used by the Monte Carlo team. The reporting, administrative, and

documentation requirements of the process tasks will be described in Sections G.V through

G.VII.

The scheduling of many of the software V&V activities is described in Appendices B

through D in the Monte Carlo Team SQA plan. The scheduling of the remaining activities is

included in Section G.IV.

Software integrity levelsG1 or similar risk assessment criteria are frequently used as part

of verification and validation to denote a range of software criticality values necessary to

maintain risks within acceptable limits; namely, how critical is the software and how severe are

the consequences of a failure in the software. These levels are based on the intended use and

application of the software. Ref. G1 uses the following software integrity levels and describes

them in more detail. Documents are under development for risk assessment in ASCI programs

at LANL and for more general risk assessment at LANL.

 85

Criticality Description Level
High Selected function affects critical performance of a system 4
Major Selected function affects important system performance 3
Moderate Selected function affects system performance, but workaround strategies

can be implemented to compensate for loss of performance
2

Low Selected function has noticeable effect on system performance but only
creates inconvenience to the user if the function does not perform in
accordance with requirements.

1

As the consequences of software failure increase, the breadth and formality of

verification and validation activities increases. Because MCNP and other codes developed by

the Monte Carlo team may be used in many applications of which the team is not aware, the

assignment of software integrity levels for those applications will not be done. However, an

assessment of the software for applications that the team is aware of within LANL will be done

as part of assessments of those applications by higher levels of program management. The

V&V activities required by the level(s) selected will be determined at that time.

The resources for process V&V and code product verification for Monte Carlo team

codes are the members of the team. They verify the completion of each step and of the entire

processing of an issue. The Monte Carlo team leader will perform many of the V&V activities

and is responsible for ensuring that all V&V activities that are team responsibilities are

completed. The validation of code product results will be done by separate ASCI and other

outside teams to be named by those organizations.

The tools, techniques, and methods to perform the process V&V tasks are described in

Appendices B through D in the Monte Carlo Team SQA Plan. The tools, techniques, and

methods necessary to perform the additional computational physics V&V tasks included in

Section G.IV will be described there.

IV. V&V PROCESS

According to Ref. G1, the standard SVVP includes descriptions and tasks involved in

the management, acquisition, supply, development, operation, and maintenance processes of a

software life cycle. The acquisition and supply processes do not apply to Monte Carlo team

software because they are the providers of the maintenance and upgrade activities of their

codes. Code developed by contractors to the team will be treated the same as code developed

by the team. The remaining life cycle processes are integrated into the development process

 86

described in the Monte Carlo Team SQA Plan Appendices B through D and therefore should be

considered as a unit. The contents of individual parts of a V&V overview, organization, master

schedule, resource summary, etc., are included in the text of Sections G.IV.A and G.IV.B and

are not described in separate subsections.

Reference G1 contains a table indicating the minimum V&V tasks assigned to each

software integrity level. This is a very long, detailed list so that it can be applied to any project

including very large ones. For the size of software projects covered by this V&V plan, the list

is vast overkill and needs to be greatly tailored. Although this SQA Plan contains most of the

required activities, a table that maps this plan�’s activities to those listed in Ref. G1 will not be

produced at this time. A primary reason is that software integrity level of the software covered

by this plan has not been determined.

The greatest area of noncompliance in this V&V plan with that overall guidance is in

the area of software testing. Although a number of test suites have been developed by the

Monte Carlo team, a plan guiding the preparation on contents of the suites and the individual

tests contained in them has not been prepared. This shortcoming is being corrected.

A. Software Development Process V&V

The various process step verification activities are mentioned in the process description

in Appendix B of the SQA plan, and are listed as part of the detail in the description of each

process step in Appendix D of that plan. The subprocesses in the Monte Carlo Team software

development process are: 1) Features, Enhancements, and Bugs; 2) Release; 3) Reviews; 4)

Other; and 5) Working. In the detailed description, the verification action in each step

describes the V&V actions needed to assure the completion of that step and the role or roles

that perform those actions. The overall V&V of the products and process is done by the team

leader as part of preparing to close an issue. Summaries of these actions for the first four

subprocesses are given in Tables G1 through G4. Because the Working subprocess is a simple

open-closed working process, no V&V activities are needed.

 87

TABLE G1

FEATURES, ENHANCEMENTS, AND BUGS SUBPROCESS
STEP VERIFICATION ACTIONS

Subprocess Step Step Verification Activity

Submitted Team Leader verifies required information has been supplied
Requirements SRS is reviewed and accepted by the team at the design review
Design Team approval of SRS and SDD
Code Verification shall be done in this step or the following Integrate step
Document Documentation will be validated in the Integrate step
Integrate Successful review by the team and integration into the base code
Test Results from this step shall be verified in the next step
Approve Team leader shall verify the completion of this step
Closed None

TABLE G2
RELEASE SUBPROCESS STEP VERIFICATION ACTIONS

Subprocess Step Step Verification Activity

Propose Team leader concurs
Complete Team leader shall concur with the list of included items
Document Team leader verifies that this documentation is complete and passed

review
Test Results of this step shall be verified in next step
Approve Team leader verifies approvals
Release Team Leader verifies completion of this step
Closed None

 88

TABLE G3

OTHER SUBPROCESS STEP VERIFICATION ACTIONS

Subprocess Step Step Verification

Reported Team leader verifies that required information has been supplied
Investigate Completion of this step will be verified in Inspect step, if not sooner
Correct Completion of this step will be verified in Inspect step, if not sooner
Document Completion of this step will be verified in Inspect step
Inspect Team leader shall verify the results of the inspection
Test Verification of this step shall be done in the next step
Review Team leader verifies completion of this step
Closed None

TABLE G4
REVIEWS SUBPROCESS STEP VERIFICATION ACTIONS

Subprocess Step Step Verification
Schedule Team leader verifies the scheduling and that adequate notice and

preparation time are given
Actions Moderator will verify that the review and action items are complete
Closed None

Software verification by the designated developer is part of the tasks in many of the

steps, and the Reviews subprocess is a verification activity itself. In the Features,

Enhancements, and Bugs subprocess, team (peer) reviews are part of the Design, Integrate, and

Approve steps. The BoD performs a review of proposed new features and the integration of

those features. This review may include a review of the V&V related to that feature. The

testing of the changes in the Test step is also a part of the verification process. In the Release

subprocess, the team performs reviews in the Document and Approve steps, and the BoD

reviews major releases before they are released to the world user community. The team

performs reviews in the Inspect and Review steps of the Other subprocess; there are no BoD

reviews in this subprocess.

The validation of the process results takes place in the Approval or Review step of the

subprocesses. Here, the Monte Carlo team reviews the products of each subprocess step

especially the results from running the regression test suite and any additional tests on the

developed code and the results from other product V&V activities. For new features integrated

 89

into the code, the BoD also reviews the process results including changes to the user interface.

Because there is no defined schedule for the completion of any step or subprocess, the V&V

activities are scheduled as part of the completion of a step before the issue can be advanced, or

are specific steps in a subprocess such as the Approve step.

B. Code Product V&V

Product verification includes a number of activities. These are included in Fig G2.

After a new feature, enhancement, or bug fix is coded, the code is verified by comparison to the

results obtained from other sources of information such as analytical solutions to the model

being tested, benchmarks, or results from other codes. Examples of these are found in

Refs. 16-17 and G5-G8. A large variety of benchmarks has been defined by various user

communities, and they evaluate the codes developed by the Monte Carlo team against them.

Also, problems are defined such that they can be calculated by codes supported by the Monte

Carlo team and by codes from other sources. This verification is repeated after integration to

ensure that no negative effects have occurred as a result of the integration.

Unit testing is typically done as part of the code development stage and is verified when

the code is integrated into the baseline version. These unit tests can be retained and included in

additional test sets that can be used for regression and verification testing.

For the Monte Carlo team, the use of the regression test suite is the primary means of

code version-to-version verification. This suite is run whenever new features, enhancements,

or bug fixes are integrated into the code. All tests exercising unaffected code should produce

results identical to those obtained before the integration. Identical in this case means that: 1)

the same number of random numbers are used, implying identical particle random walks; and

2) the answers agree to six significant figures (with few exceptions due to round-off errors such

as in small differences between two large, approximately equal numbers). This test suite is

expanded as new features, enhancements, and bug fixes are included in the code. A description

of the regression test suite and the procedures for updating it including adding tests for new

code as it is integrated is in the Software Test Plan (to be written). A goal is to provide as

complete coverage of code execution as possible.

 90

Figure G2. Code Product Verification

Code product validation is done by comparing results from �“real world�” experiments

with those results calculated by a code and any associated databases for a model description of

the experiment. These comparisons indicate how well the code and data calculate the results of

the experiment and how well the employed model and data represent the real world. Some of

these comparisons are included in Refs. G9 and G10. A validated code can also be used to

predict, within its range of applicability and with observed biases and expected statistical

variation, the results of an experiment to be performed. These validation activities are not done

by the Monte Carlo team and are not part of this plan.

In addition to the product V&V activities performed by the Monte Carlo team, many

user organizations perform their own V&V on the codes to ensure the reliability of a code to

their specific applications. The results of these additional tests are frequently published in open

literature.

Because Monte Carlo team software development life cycle is ongoing, everything is

continually being tested. Additionally, at each release, a code is tested again on all supported

platforms. In the future, test sets will include the team�’s published tests (benchmarks) that will

be used as additional verification activities.

New feature,
enhancement,
bug correction

Verification Integration

Regression
testing New code Release

If not pass

Verification

If not pass

If not pass

 91

V. V&V REPORTING REQUIREMENTS

A. Process V&V

The reporting requirements are described in the narrative process description in

Appendix B of the SQA plan and in the detailed process step descriptions in Appendix D of

that plan. They include new feature and enhancement requests and bug reports that are part of

that subprocess and the review and testing results from all subprocesses. Additional reports

may be defined as this software development process evolves.

B. Product V&V

The template copies of the results from running the regression test suite on release

versions of the codes are stored in the configuration management database. These results are

used to evaluate the effects of code changes. The results of these evaluations are reported to

the team and are published as research notes, meeting summaries, and/or peer-reviewed journal

articles.

The results from comparisons with analytical solutions, benchmarks, or results from

other codes will be reported in Los Alamos Research Notes and may also be published as Los

Alamos National Laboratory reports or in open literature.

VI. V&V ADMINISTRATIVE REQUIREMENTS

A. Process V&V

The administrative requirements are described in the narrative process description in

Appendix B of the SQA plan and in the detailed process step descriptions in Appendix D of

that plan. In particular, code anomalies are reported as issues in the Features, Enhancements,

and Bugs subprocess. The control procedures for the software development process are

embodied in the use of Razor to implement the process and the tracking included in that

product.

 92

B. Product V&V

The administrative requirements of product V&V are included in the administrative

requirements for process V&V and are described there.

VII. V&V DOCUMENTATION REQUIREMENTS

A. Process V&V

The software development process V&V documentation is the test documentation,

including the test plans, cases, procedures, and results. The test cases for previous versions of

MCNP have been documented in Refs. 16 and 17. An update to those will be published. The

template copies of the results from running the regression test suite on release versions of the

codes are included with the major releases and for all releases are to be stored in the

configuration management database. The software test plan and test procedures still need to be

written.

B. Product V&V

The documentation of results from product V&V will be reported in Los Alamos

Research Notes and also may be published as Los Alamos National Laboratory reports.

 93

REFERENCES

These references are additional references specifically used for this appendix. See

Section XIV of the SQA plan for references used throughout this document.

G1. IEEE Std 1012-1998, �“IEEE Standard for Verification and Validation,�” Institute of

Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017-
2394 (March 9, 1998).

G2. Barry W. Boehm, �“Software Engineering: R & D Trends and Defense Needs,�” Research

Directions in Software Technology (P. Wegner, ed.) MIT Press, Cambridge, MA
(1979).

G3. AIAA Guide G-077-1998, �“Guide for the Verification and Validation of Computational

Fluid Dynamics Simulations,�” American Institute of Aeronautics and Astronautics,
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344 (1998).

G4. Cindy Zoldi, �“Fluid Instabilities: A Computational and Experimental Analysis of a

Shock-Accelerated Heavy-Gas Cylinder,�” 2001 Science Day, Los Alamos National
Laboratory (February 13, 2001).

G5. Avneet Sood, R. Arthur Forster, and Donald K. Parsons, �“Analytical Benchmark Test

Set for Criticality Code Verification,�” Los Alamos National Laboratory Report LA�–
13511, Los Alamos, NM (July 1999). http://lib-www.lanl.gov/la-pubs/00460062.pdf

G6. John D. Court, John S. Hendricks, and Stephanie C. Frankle, �“MCNP ENDF/B-VI

Validation: Infinite Media Comparisons of ENDF/B-VI and ENDF/B-V,�” Los Alamos
National Laboratory Report, LA�–12887 (December 1994). http://lib-www.lanl.gov/la-
pubs/00287187.pdf

G7. John D. Court, Ronald C. Brockhoff, and John S. Hendricks, �“Lawrence Livermore

Pulsed Sphere Benchmark Analysis of MCNP ENDF/B-VI,�” Los Alamos National
Laboratory Report, LA�–12885 (December 1994). http://lib-www.lanl.gov/la-
pubs/00287083.pdf

G8. J. D. Court and J. S. Hendricks, �“Benchmark Analysis of MCNP ENDF/B-VI Iron,�”

Los Alamos National Laboratory Report, LA�–12884 (December 1994). http://lib-
www.lanl.gov/la-pubs/00287071.pdf

G9. D. J. Whalen, D. A. Cardon, J. L. Uhle, and J. S. Hendricks, �“MCNP: Neutron

Benchmark Problems,�” Los Alamos National Laboratory report, LA�–12212 (November
1991). http://lib-www.lanl.gov/la-pubs/00285970.pdf

G10. D. J. Whalen, D. E. Hollowell, and J. S. Hendricks, �“MCNP: Photon Benchmark

Problems,�” Los Alamos National Laboratory report, LA�–12196 (September 1991).
http://lib-www.lanl.gov/la-pubs/00285969.pdf and http://lib-www.lanl.gov/la-
pubs/00194077.pdf

http://lib-www.lanl.gov/la-pubs/00460062.pdf
http://lib-www.lanl.gov/la-pubs/00287187.pdf
http://lib-www.lanl.gov/la-pubs/00287187.pdf
http://lib-www.lanl.gov/la-pubs/00287083.pdf
http://lib-www.lanl.gov/la-pubs/00287083.pdf
http://lib-www.lanl.gov/la-pubs/00287071.pdf
http://lib-www.lanl.gov/la-pubs/00287071.pdf
http://lib-www.lanl.gov/la-pubs/00285970.pdf
http://lib-www.lanl.gov/la-pubs/00285969.pdf
http://lib-www.lanl.gov/la-pubs/00194077.pdf
http://lib-www.lanl.gov/la-pubs/00194077.pdf

This report has been reproduced directly from the
best available copy. It is available electronically on
the Web (http://www.doe.gov/bridge).

Copies are available for sale to U.S. Department of
Energy employees and contractors from—

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
(865) 576-8401

Copies are available for sale to the public from—

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22616
(800) 553-6847

	EOLUS Project and Monte Carlo Team Software Quality Assurance Plan
	TABLE OF CONTENTS
	I. PURPOSE
	II. MANAGEMENT
	A. Organization
	B. Tasks
	C. Responsibilities

	III. DOCUMENTATION
	IV. STANDARDS, PRACTICES, CONVENTIONS, AND METRICS
	V. REVIEWS AND AUDITS
	VI. TEST
	VII. PROBLEM REPORTING AND CORRECTIVE ACTION
	VIII. TOOLS, TECHNIQUES, AND METHODOLOGIES
	IX. CODE CONTROL
	X. MEDIA CONTROL
	XI. SUPPLIER CONTROL
	XII. RECORDS COLLECTION, MAINTENANCE, AND RETENTION
	XIII. TRAINING
	XIV. RISK MANAGEMENT
	REFERENCES
	APPENDIX A. DEFINITIONS AND ACRONYMS
	APPENDIX B. SOFTWARE DEVELOPMENT PROCESS
	APPENDIX C. RAZOR IMPLEMENTATION
	APPENDIX D. DETAILED PROCESS DESCRIPTIONS
	APPENDIX E. ROLES
	APPENDIX F. WORK PRODUCTS
	APPENDIX G. SOFTWARE VALIDATION AND VERIFICATION PLAN
	REFERENCES

