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CORRECTION TO THE MCNPTMPERTURBATION FEATURE
FOR CROSS-SECTION DEPENDENT TALLIES

by

J. D. Densmore, G. W. McKinney, and J. S. Hendricks

ABSTRACT

The differential operator perturbation technique is a new feature of

the Monte Carlo N-Particle Transport Code MCNP1 version 4B that

will allow users to calculate the effects of cross-section data

perturbations on tallies. The implementation of the differential

operator perturbation technique in MCNP assumes that the tally is

independent of any perturbed cross-section data, an assumption that

may not be valid for some tallies. We provide derivations of both

the first- and second-order corrected perturbations. In addition, the

appropriate perturbation corrections are demonstrated so users may

accurately calculate perturbation effects for any cross-section

dependent tally. Finally, corrected perturbations from six example

problems are compared to actual MCNP results.

MCNP isatrademarkoftheRegentsoftheUniversityofCalifornia,LosAIamosNationalLaboratory.
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I. INTRODUCTION

Perturbation techniques are powerful tools for radiation transport problems. These

techniques allow the user to determine the effects of small changes in the problem. For many

years the users of the Monte Carlo code MCNP have expressed interest in adding a perturbation

feature to MCNP. The recently released MCNP4B has a new feature that uses the differential

operator technique to calculate the effects of perturbations of cross-section data. The

perturbations of cross-section data can include density and composition changes for specific

reactions over specific energy ranges. The perturbation feature is used to calculate the effects of

cross-section changes on tallies.

The differential operator technique allows the precise calculation of perturbations even if

the uncertainty in the unperturbed tally is greater than the calculated perturbation. The

differential operator technique is approximated by a second-order Taylor series expansion. The

implementation of this expansion assumes that the tally response estimator is independent of any

perturbed cross-section data. For some tallies, such as reaction rate estimators, this assumption is

invalid. To correct for this assumption, a correction term must be added to the calculated

perturbation to account for the tally response estimator’s dependence on the perturbed cross-

section data.

This report will provide the correction to the first and second-order Taylor series

expansion and will provide verification of this correction. In Section II we derive the corrected

first-order perturbation by starting from the original Taylor series. In addition, the first- and

second-order corrected perturbations are derived beginning with the coefficients as implemented

in MCNP. In Section III, the use of this correction will be demonstrated for several types of

problems, illustrating how perturbations of cross-section dependent tallies can be done with

MCNP4B. Finally, in Section IV we compare perturbed calculations with actual tallies for

various types of problems, including fixed-source reaction rate problems and track-length

estimates for keffto demonstrate the validity of the correction.

2



3

II. PERTURBATION CORRECTION

A. Theory

We repeat here much of the theory presented in X-6:GWM-94-1242 and LA–13098.3

Consider a track-length estimate which is a function of some cross-section data set X. A subset of

this data set, Xv, can be defined as

XV={Xb(h) = Kb(h)e’;b = B;h e H} , (1)

where Kb(h) is some constant, B represents a set of macroscopic cross sections, and H represents

a set of energies. This definition allows for a subset of X to be represented by a single parameter

v. Notice that

LX hdv b( ) = Kb(h)ev = Xb(h)

and

(2)

dxb(h)
dv = —

xb(h) “

This equation shows that dv is simply the fractional change in the macroscopic cross section.

For Monte Carlo calculations, a track-length estimate tally is given by

(3)

where tj is the tally response estimator of path segment j

j. Converting Eq. (4) from a path segment estimator to a

(4)

and qj isthe probability of path segment

history-based estimator,2 the result is

(5)



where the summation over j’ includes only those path segments in particle history i and N is the

total number of particle histories. Equation (5) gives the average value of the tally, which is the

tally as reported by MCNP.

For cross-section dependent tallies, the tally response estimator is given by

tjz = DX~(h)Lj, , (6)

where xb(h) is the cross section upon which the tally response estimator is dependent, D is other

data upon which the tally response estimator is dependent, and ~j. is the length of the last track in

path segment j’. For example, consider a track-length estimate for ~ff which is given by

keff= Pfpwf(mw, wv~~ .
VE

(7)

This equation can be calculated with the use of track-length estimate of flux and a tally multiplier

card. In this case, the cross section is

xb(h) = pof(h) = xf(h) (8)

and the other data is

D = v(h)/V .

Note that the track-length estimate of the flux for path segment j’ is

(9)

(lo)

For other track-length estimates, the results are similar.

As stated before, MCNP uses a second-order Taylor series to calculate perturbations. This

series takes the form

Ac = d: AV2
~Av -t —

dv2 ‘
(11)



which can be rewritten as

Ac = UIAV + U2AV2, (12)

where Ac is the change in the tally caused by the perturbation, U1and U2are coefficients of the

series, and Av is the percent change in the data (density, concentration, etc.). The nti order

coefficient is given by

1 dnc
Un = — “—

n! dv?l ‘

which can be written as

(13)

[)anc
:, ~ z ‘~(h)atjylz) ‘Un = —

“b= Bh~ H

(14)

where B represents a set of macroscopic cross sections and H represents a set of energies or an

energy interval. Using Eq. (4), this becomes

(15)

Un=

where

+~’Ynjtj4j
. .J

(16)

(17)

With some manipulations presented in Ref. 2, the path segment estimator of Eq. (16) can be

converted to a particle history estimator of the form
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Un= ~Vn,~, , (18)
i

thorder coefficient estimator for historywhere pi is the probability of the ithhistory and Vniis the n

i, given by

(19)

Note that this sum involves only those path segments j’ in particle history i. Equation (19) shows

how the history estimator for the nth order coefficient can be computed from the track (or path

segment) based operator ynj~. The Monte Carlo expected value of unbecomes

for a sample of N particle histories.

For a first-order perturbation, the differential operator becomes

(20)

(21)

assuming the response estimator tj? is not a function of Xb(h). The path segment probability can

be written as the product of track probabilities

m

qj, = rI rk ,
k=O

(22)

where rk is the probability of track k and segment j’ contains m+l tracks. In terms of tracks, the

operator becomes
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or

m

k=O

where

(23)

(24)

(25)

Defining track probabilities, rk, in terms of Monte Carlo transport parameters is the final step of

this derivation. If the kthtrack starts with a neutron undergoing reaction type “a” at energy 1?’and

is scattered from angle 8’ to angle 0, and energy E continues for a length & and collides, then

‘k=(%).(E’ +E;tl’+ O)dEde(e-x~(E)A~)xT(E)dk, (26)

where xa(E’). is the macroscopic reaction cross section at energy E’, XT(E’) is the total cross

section at energy E’, and Pa(E’->E;O’-Ml)dEdO is the probability distribution function in phase

space of the emerging neutron. Equation (25) becomes

(27)

where ~hEand ha are unity if h=E and b=a; otherwise, they vanish. A similar derivation can be

performed for other types of tracks (i.e., collision to boundary, boundary to collision, and

boundary to boundary), leading to one or more of these four terms. Finally, combining Eqs. (20)

and (24) gives the expected value of the first-order coefficient
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‘U’)=WX+’19

wherepj,kiscalculatedfrom one or more terms of Eq. (27) for track k.

For a second-order perturbation, the differential operator becomes

(28)

(29)

again assuming the response estimator tj~is not a function of xb(h). Omitting steps presented in

Ref. 2, the second-order operator becomes

where

(30)

(31)

It is evident that Y2j,requires little additional effort to ~lj~, namely the COIllpUWiOIlOf~j’k. If rk is

given by Eq. (26), then ~j~k becomes

2tjEX;E)kk
+ ahExj(E)z; –

XT(E) .

(32)

Once again, for other types of tracks one or more of these four terms is required. The expected

value of the second-order coefficient, via Eq. (20), becomes



(33)

where ~j~k is given by one or more terms of Eq. (27) and~j’kbyoneormorete~s of M. (32) for

track k.

These coefficients were derived with the assumption that the tally response estimator is

independent of any perturbed cross sections. If this assumption is not valid, a term must be added

to these coefficients that accounts for the dependence of the tally response estimator

perturbed cross section. This correction term is given in Appendix D of Ref. 3 as

on the

(34)

where R1j~is the correction term, B refers to a set of macroscopic cross s~tions, and H refers to a

set of energies. The corrected coefficients, also given in Appendix D of Ref. 3, are then

‘1= j@[~~$oP~k+R~~]f]
=

(35)

and

(36)

B. First-Order Correction — Taylor Series

Considering only the first term of the Taylor series and substituting in Eq. (4), Eq. (11)

becomes

(37)

9
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‘c=[?’J~’+qJ4Av(38)
.

The original Taylor series was derived assuming that the response estimator was independent of

any perturbed data. In such cases, the derivative of tj with respect to v is equal to zero, and the

uncorrected perturbation is

[1x dq.
Ac = t,zJ Av = PERTuc1 , (39)

j

where PERTuc1 is the uncorrected first-order perturbation as reported by MCNP. Substituting

%. (39) into Eq. (38) gives

Ac = [1PERTucI + ~ql~j Av ,
j

(40)

Substituting Eq. (6) into Eq. (40) and assuming the track length is not a function of the perturbed

data, one obtains

Using the results from Eq. (2), the result is

Ac =
[ 1PERTu.c1+~qjD kjxb(h) AV = PERTuc I +~qjtjAv .

j j

(41)

(42)

Using the Monte Carlo definition of a tally, Eq. (4), the expected value of the first-order corrected

perturbation is

(Ac} = PERTuc I +TALLY . Av , (43)

which is the uncorrected perturbation plus the unperturbed tally times the percent change in the

perturbed data.
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c. First-Order Correction — Coefficients

Considering only the first term and substituting in Eq. (35), the expected value of Eq. (12)

becomes a

With a little algebraic manipulation, one obtains

Separating the two terms, Eq. (45) becomes

(44)

(45)

(46)

Notice that the coefficient of the first term of Eq. (46) is identical to Eq. (28), the uncorrected first-

order perturbation. Thus, the corrected first-order perturbation is simply the uncorrected first-

order perturbation plus some other term.

Now, let’s examine the R1j, term. By substituting Eq. (6) into Eq. (34), the result is

Performing the derivative and simplifying, Eq. (47) becomes

(47)

(48)

11

Equation (48) holds only if all cross sections involved in the tally (i.e., on the MCNP FM card) are

perturbed by the same amount over all energy ranges. Special perturbations, such as

concentration perturbations or the use of the RXN or ERG keywords on the FM card, will cause



I?lj, to be less than unity. This difficulty can be solved by separating the tally into bins that are

perturbed by the same amount.

Now Eq. (48) can be substituted into Eq. (46), giving

{Ac) = l’ERTucl+[;~#j’]Av 9 (49)

where PERTuc is the uncorrected first-order perturbation as reported by MCNP. Notice that the

second term of Eq.

can be written as

(49) is identical to Eq. (5), thehistory-based estimate of a tally. Thus, Eq. (49)

{Ac) = PERTuc I +TALLY “Av , (50)

where TALLY is the unperturbed tally as reported by MCNP. Note that this equation is consistent

with Eq. (48) and therefore Eq. (50) gives the corrected first-order perturbation for cross-section

dependent tallies.

D. Second-Order Correction — Coefficients

Now let’s consider only the second term of Eq. (12). Substituting Eq. (36) and setting

R,~,equal to one, the expected value of Eq. (12) becomes

Performing a little algebraic manipulation on Eq. (51) gives

Again, one can manipulate the

perturbation plus another term. In

12

(k=() ) k=O )-l

(51)

(52)

corrected perturbation so

this case Eq. (52)becomes

that it becomes the uncorrected



Notice that the coefficient

second-order perturbation,

uncorrected first-order perturbation. Equation (53) then becomes

of the first term in Eq. (53) is identical

and the coefficient of the second term

(Ac} = PERTuc2 +PERTuc I “Av ,

to Eq. (33), the uncorrected

is identical to Eq. (28), the

(54)

where PERTuc2 is the uncorrected second-order perturbation as reported by MCNP. Adding

Eq. (54) to Eq. (50), the total corrected perturbation becomes

{Ac) = PERTucT -I-TALLY “Av -I-PERTuc I . Av , (55)

where PERTucT is the total perturbation as reported by MCNP.

III. USE OF THE CORRECTION

The following section will demonstrate the use of the perturbation correction for both

density and composition changes.

A. Density Perturbations

For density perturbations, the implementation of Eq. (55) is elementary. The unperturbed

tally is printed in the output, and the total and first-order uncorrected perturbations can be

obtained by the use of a method=l and a method=2 keyword in the PERT card, respectively. The

percent change in the cross section will be just the percent change in the density.

The following example is a density perturbation of the Lady Godiva critical assembly, one

of the problems included in the next section. In this example, the perturbation in ~ff caused by a

density change from 18.74 g/cc to 20.0 g/cc will be calculated. In addition to the normal input

deck, the following cards were added:
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f4:n 1

sd4 1

fm4 (-1 1-6 -7)

Pertl :n cell=l rho=-20 method=2

Pert2:n cell=l rho=-20 method=l

The first card calculates the track-length estimate of the flux in cell 1 (the fissile cell). The second

card sets the volume of the cell equal to unity so that a track-length estimate of the neutron

population is calculated. The third card multiplies the tally by the atom density, fission nu, and

fission cross section of material 1. These three cards will calculate ~ff. The last two cards

perturb the density of cell one to 20.0 g/cc and calculate the change in the tally using the first-

order perturbation (method=2) and the total perturbation (method= l). The following output was

generated by this input (errors given are relative errors):

TALLY=O.998398MI.0008

PERTuc1=-1.31884E-2&.0114

PERTucT=-1.35OO7E-2A.O1O7

Using Eq. (55), the corrected perturbation is

{Ac) =
-00135m7-00131884(2011!:4)+0998398(20i::4)

= 0.0527430.00015 ,

where the errors given are standard deviations.

and the uncorrected perturbation is negative.

Notice that the corrected perturbation is positive,

If an uncorrected perturbation is used in this

problem, not only will an incorrect value for ~fi be calculated, but the user will believe that an

increase in density will cause &ff to decrease, which is obviously incorrect.

B. Composition Perturbation

Composition perturbations are a bit more complicated. Since the cross section of each

isotope is being perturbed separately, the tally must be broken up into a bin for each isotope. The

multiplier for the bin will be the macroscopic cross section of interest for that particular isotope,

and the percent change in the macroscopic cross section will be the percent change in the weight
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or atom fraction. In this manner each individual bin can be corrected and then added together to

obtain the total corrected perturbation.

The following example is a composition perturbation of the Lady Godiva critical

assembly, one of the problems included in the next section. In this problem the perturbation in

keffcaused by a composition change in the fissile material is calculated. The original composition

was 94.73% U-235 5.27% U-238, and the new composition is 87$Z0U-235, 13Y0U-238. The

percents given are weight percents. In addition to the normal input deck, the following cards are

needed.

ml 92235-94.7392238-5.27

rn2 92235-8792238-13

m3 92235-1

m4 92238-1

f4:n 1

sd4 1

fm4 (-1 1-6 -7) (-0.947931 3-6 -7) (-0.0520694 -6 -7)

pertl:n cell=l mat=2 method=2

pert2:n cell=l mat=2 method=l

The first material card is the original composition, whereas the second material card is the

perturbed composition. The last two material cards will be used to divide the tally into a separate

bin for each isotope. The tally cards are identical to the last example, except that two new bins

have been added to the FM card. These multiply the flux by each isotope’s respective

macroscopic cross section (the first number is atom fraction of that isotope in the material) so that

each bin can be corrected separately. The PERT cards change the composition of cell one from

material one to material two and calculate the change in &ff by using the first order and total

perturbation. The following output was generated (errors given are relative errors):

TALLY(235)=0.988752MMIO08

TALLY(238)=0.00964622MNI017

PERTuc1(235)=0.0264468MI.0264

PERTuc1(238)=0.000059659N.0961

PERTucT=O.0256058M).0318
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where the (235) and (238) refer the to U-235 and U-238 bins of the tally. Using the last two terms

of Eq. (55), the correction to the U-235 bin is

(Ac)235 =
“88752(87G?:73) ‘0002’44’8(87ii%73)

= –0.082841*0.000086 .

The correction to the U-238 bin is

(Ac)238 =
O“””’’’’223iJi7)+050’’x’04(13i~:7)7)

= 0.014237*0.000025

And the total corrected perturbation is

<Ac) = 0.0256058 + 0.014237– 0.08284:

= –“.”’3””*”.”””82 ,

where the errors given are standard deviations.

IV. VERIFICATION RESULTS

In this section, corrected perturbations are compared to actual MCNP results. Six test

problems were used that will demonstrate the validity of density and composition perturbations

for criticality and fixed neutron and gamma sources. For the most part, these problems were taken

from the MCNP4B test suite except that two problems involving the Lady Godiva critical

assembly were included because of the lack of appropriate criticality problems in the test suite.

The problems taken from the test suite have been modified to emphasize the use of a perturbed

cross-section dependent tally. In some cases, tally, variance reduction, and physics cards have

been removed or altered. However, the original geometry and materials remain the same. This
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verification differs from a benchmark in that results calculated using the MCNP perturbation

feature will be compared to actual MCNP results, not experimental results.

Each example consists of five input files. The first file contains four perturbations,

approximately a 5%, 10%, 20%, and 30% change in the unperturbed tally. The remaining four

input files contain the actual perturbations. In this way, it can be determined how well the

perturbation feature predicts actual MCNP results (see Appendix A for a listing of the input

titles).

A. Criticality-Source Problems

In this section, the KCODE feature is used to calculate keff, and the macroscopic fission

cross section is perturbed. The KCODE feature cannot calculate perturbed eigenvalues, so a

track-length estimate for ~ff is used.

1. Godiva-Density Perturbation. In this problem, the density of the Godiva critical

assembly, an unreflected sphere of highly enriched uranium, was increased from 18.74 g/cc to 26

g/cc. A track-length estimate was used to calculate &ff. The unperturbed value for keff was

0.99840MMIO080,where the error given is a standard deviation. Table I gives the results from this

problem, and the results are graphed in Fig. 1. As can be seen in Table I, the predicted values

match the actual values, within statistics, up to about 5%. After this point the second-order

perturbation underestimates ~ff. This bias is due to the inability of the differential operator, as

implemented in MCNP, to calculate perturbed eigenfunctions. Essentially, the calculation of the

perturbed eigenvalue is based on the eigenfunction at 18.74 g/cc.

2. Godiva-Composition Change. In this Problem, the composition of the Godiva

critical assembly was perturbed from the original 94.73% U-235 5.27% U-238 to 50% of each

isotope. The percents given are weight percents. A track-length estimate was used to calculate

kefi. The unperturbed value for kefiis again 0.9984W0.00080. Table II gives the results from this

problem, and Fig. 2 contains a graph of the results. The second-order perturbation accurately

predicts, within statistics, the actual &fi estimator up to about 5%, after which the second-order

perturbation underestimates the actual ~fi estimator. Again, this bias is due to the use of the

unperturbed eigenfunction to calculate the perturbed eigenvalue.
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TABLE I

GODIVA DENSITY PERTURBATION — k,fl ESTIMATE

Density
Percent

Standard
Percent

Change Change
Standard

(g/cc)
(Predicted)

Deviation (Actual)
Deviation

20 I 5.283 I 0.016 I 5.41 I 0.12

21 9.304 0.088 9.61 0.11

23.5 18.696 0.059 19.29 0.12

26 27.142 0.093 28,19 0.12

0 1 2 3 4 5 6 7 8

Change in Density Qlcc]

Fig. 1. Godiva-Density Perturbation. The predicted change is indicated by
the dashed 1ine;the actual change is indicated by the solid line.
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TABLE 11

GODIVA COMPOSITION PERTURBATION — &fiESTIMATE

U-238
Weight

Percent
Standard

Percent
Change Change

Standard
Fraction

(Predicted)
Deviation

(Actual)
Deviation

(%)

13 -4.307 0.082 -4.31 0.11

26 -12.89 0.33 -11.71 0.11

38 -22.31 0.74 -19.54 0.10

50 I -33.2 I 1.3 I -28.44 I 0.10

.. .. .
‘. -.“I

Change in U-233 Weight Fraction

Fig. 2. Godiva-Composition Perturbation. The predicted change is indicated
by the dashed line; the actual change is indicated by the solid line.
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3. Test Problem INP184Q Estimate. This problem is a density perturbation of

problem INP18 from the MCNP4B test suite. The input file is a hexagonal lattice core of a light

water reactor. The density of the fuel was perturbed from the original 13.75 g/cc to 26 g/cc.

Again, a track-estimate of &fiwas tallied. The unperturbed value for &fi is 1.0537MM011. The

results are presented in Table III and in Fig. 3. Again, the second-order perturbation is useful up

to about 5%. Notice in this problem that the discrepancy between the actual and predicted values

increases at a greater rate as density is increased than in the Godiva examples. This difference is

due to the fact that eigenfunctions are more easily perturbed by density and composition changes

in reflected thermal systems than in bare fast systems. Thus, the difference between the actual

and unperturbed eigenfunction in this case is expected to be greater than in a bare unreflected

assembly, introducing more inaccuracy into the perturbation.

B. Fixed-Source Problems

In this section, fixed neutron, photon, and coupled neutron-photon problems are used to

calculate various reaction rates with the cross section of interest being perturbed.

1. Test Problem INP02-Neutron Absorption Rate Estimate. This problem is a

density perturbation of problem INP02 from the MCNP4B test suite. The input file is a large set

of spheres with an inner region of boron surrounded by an aluminum shell. Within this aluminum

shell is another set of spheres filled with aluminum. A neutron source is distributed in the boron

sphere and has a uniform energy spectrum of 0.1 to 10 MeV. In this problem, the density of one

of these spheres is perturbed from 2.7 g/cc to 3.6 g/cc, and the neutron absorption rate is tallied.

The unperturbed tally is (6.58i0.l 1)E-8. The results from this problem are given in Table IV and

in Fig. 4. As can be seen, the second-order perturbation predicts, within statistics, the actual

MCNP tally up to at least a 30% increase in the unperturbed tally. Although the large error in the

actual tally indicates that more histories should have been run, the corrected perturbation still

predicts the tally well.

20



TABLE III

TEST PROBLEM INP18— k.fiESTIMATE

Density
Percent

Standard
Percent

Change Change
Standard

(g/cc) (Predicted)
Deviation (Actual)

Deviation

15.5 4.970 0.047 5.01 0.15

17 8.735 0.084 9.09 0.15

21.5 17.30 0.23 19.28 0.16

26 21.78 0.50 27.50 0.16

30

25

5

0.

. .. . .... -

0 2 4 6 8 10 12 14

Change in Density @.fee]

Fig. 3. Test Problem INPIS-lqfiEstimate. The predicted change is indicated
by the dashed line; the actual change is indicated by the solid line.
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TABLE IV

TEST PROBLEM INP02— NEUTRON ABSORPTION RATE ESTIMATE

Density
Percent

Standard
Percent

Change Change
Standard

(g/cc)
(Predicted)

Deviation (Actual)
Deviation

2.85 5.61 0.14 5.6 2.5

3 11.25 0.28 11.1 2.5

3.3 22.52 0.56 22.0 2.7

3.6 33.82 0.83 33.4 2.9

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Change kl tkdty @/CC)

Fig. 4. Test Problem INPO%Neutron Absorption Rate Estimate. The pre-
dicted change is indicated by the dashed line; the actual change is
indicated by the solid line.
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2. Test Problem INP04-Photon Collision Rate Estimate. This problem is a

concentrationperturbationof problemINP04 fromthe MCNP4B test suite. In this problemthere

is a large innersphere composed of UH3 with an outershell of ULi3. This spherecontains two

smallerspheresof ~i3. A 3 MeV photonpointsourceis placed in thecenterof the largesphere,

and the photon collision rate is calculatedin the outer shell. The composition of the shell was

perturbedfrom the originalcompositionof 75%Lithium,25%Uraniumto 92.5% Lithium,7.5%

Uranium. The percents given are atom percents. The unperturbedtally for this problem is

(6.987M.006)E-4. The results fromthis problemare given in TableV and in Fig. 5. As can be

seen in Fig. 5, the correctedperturbationdoes not predict the actual values very well. Let us

examine the perturbationmore closely. Valuesfor the uncorrectedfirstandtotal perturbationof

the lithium bin are given in TableVI. Notice for the 5% perturbation(77.5% Li) that the total

perturbationis approximatelyten percentlargerthanthe first-orderperturbation.This magnitude

representsthe limit of the differentialoperatortechnique as implemented in MCNP. Having a

second-ordertermthatis ten percentof the first-ordertermindicatesthatsome higherorderterms

are needed to predict the tally accurately. The situation is worse with the 30% increase in the

unperturbedtally (92.5% Li). Forthis perturbationthe second-orderterm is almost equal to that

of the first-orderterm. This problemdemonstratesthatthe perturbationfeaturecannotaccurately

predict every tally, and a second-orderTaylorseries approximationwill fail if the tally exhibits

higher than second-order behavior.

3. Test Problem INPIO-Photon Collision Rate Estimate. This problem is a density

perturbation of problem INP1O from the MCNP4B test suit. The geometry of this problem

consists of two concentric infinite cylinders. The inner cylinder is filled with water, and the outer

shell is filled with copper. Near the origin the inner cylindrical region is separated into several

disks filled with water, carbon, and one with void. The disk with the void contains a cube of CuO,

and an adjacent disk of water contains a void torus surrounded by a shell of copper. A Watt

fission spectrum neutron source is distributed evenly in the CUO cube, and the photon collision

rate is tallied in one of the carbon disks. The density of this disk was perturbed from the original

2.25 g/cc to 3.6 g/cc, and the unperturbed tally is (6.64+0.02)E-6. The results from this problem

are given in Table VII and in Fig. 6.
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TABLE V

TEST PROBLEM INP04— PHOTON COLLISION RATE ESTIMATE

ILi Atom Percent
Standard

Percent
Fraction Change Change

Standard

(%) (Predicted)
Deviation

(Actual)
Deviation

I 77.5 I -0.726 I 0.022 I -1.97 I 0.12

82.5 -2.921 0.083 -7.85 0.12

87.5 -6.11 0.17 -18.35 0,11

92.5 -10.28 0.34 -37.60 0.11
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Fig. 5.

Change in LiAtom Frmtion [%]

Test Problem INP04-Photon Collision Rate Estimate. The predicted
change is indicated by the dashed line; the actual change is indicated
by the solid line.
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TABLE VI

LITHIUM BIN UNCORRECTED PERTURBATIONS

Li Atom First-Order Total
Fraction Uncorrected Uncorrected

(%) Perturbation Perturbation
I

77.5 6.68556E-7 7.21353E-7

92.5 4.67989E-6 7.26697E-6

Again, the second-order corrected perturbation predicts the actual MCNP values well up to a 30%

increase in the unperturbed tally. Although the perturbation begins to diverge from the actual

value after about a 109o increase in the unperturbed tally, the predicted values agree with the

actual values, within statistics, up to 30%.

v. RECOMMENDATIONS

The corrections presented here allow the users of MCNP4B to accurately calculate

perturbations in cross-section dependent tallies. It is recommended that the perturbation routines

in MCNP be rewritten to fully account for any cross-section dependent tallies. In addition, it is

recommended that a method of perturbing eigenfunctions be developed for criticality problems.

This capability will allow for the calculation of perturbed eigenvalues with the same confidence as

fixed source problems.

VI. SUMMARY

The recently released MCNP4B employs the differential operator technique to calculate

perturbations in tallies caused by changes in cross-section data. The implementation of this

technique may cause incorrect results to be generated if the tally is dependent on perturbed cross-

section data. To extend its generality, additional terms must be added to the perturbation that

account for this dependence. Corrections to both the first- and second-order perturbations are

derived and demonstrated for various types of perturbations. In addition, the correction is verified

with six test problems covering criticality and fixed sources.
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TABLE VII

TEST PROBLEM INP1O— PHOTON COLLISION RATE ESTIMATE

Density Percent
Standard

Percent
Change Change

Standard
(g/cc)

(Predicted)
Deviation

(Actual)
Deviation

i
2.4 4.80 0.14 4.49 0.50

2.6 11.01 0.48 10.69 0.52

3 22.8 1.9 20.83 0.54

3.6 38.8 5.9 32.83 0.57
●
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Fig. 6. Test Problem INPIO-Photon Collision Rate Estimate. The predicted
change is indicated by the dashed line; the actual change is indicated
by the solid line.
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APPENDIX A

INPUT FILES

The input files for the test problems in Section IV, “Verification Results;’ are listed. For

each example five input files are needed. The first file contains four perturbations and gives the

unperturbed result. The remaining four files give the “true” MCNP results for the perturbations

by running with the perturbed densities and./orconcentrations. To save space, only the first input

file for each example is listed. The remaining four input files are the same except for the changes

noted.

I. GODIVA-DENSITY PERTURBATION

The inputfor the unperturbedproblem,input=godival, is

Godiva pert-back
11 -18.74 -1
2 01

1 SO 8.741

kcode 3000 1.0 20 220
ksrc O 0 0
imp:n 1 0
ml 92235 -94.73 92238 -5.27
f4:n 1
fm4 (-1 1 -6 -7)
sd4 1
pertl:n cell=l rho=-20 method=2
pert2:n cell=l rho=-20 method=l
pert3:n cell=l rho=-21 method=2
pert4:n cell=l rho=-21 method=l
pert5:n cell=l rho=-23.5 method=2
pert6:n cell=l rho=-23.5 method=l
pert7:n cell=l rho=-26 method=2
pert8:n cell=l rho=-26 method=l

The ’’true’’results for the four perturbations are obtained by deleting thePERT cards and

changing thedensityofcell 1 online2,

11 -18.74 -1

with the first perturbation, input=godiva2,

11 -20 -1
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or with the second perturbation, input=godiva3,

11 -21 -1

or with the third perturbation, input=godiva4,

11 -23.5 -1

or with the fourth perturbation, input=godivti,

11 -26 -1

II. GODIVA-COMPOSITION CHANGE

The inputfor the unperturbedproblem,input=gconcl, is

Godiva concentration
11 -18.74 -1
2 01

1 SO 8.741

kcode 3000 1.0 20 220
ksrc O 0 0
imp:n 1 0
ml 92235 -94.73 92238 -5.27
m2 92235 -87 92238 -13
m3 92235 -74 92238 -26
m4 92235 -62 92238 -38

m m5 92235 -50 92238 -50
m6 92235 -1
m7 92238 -1
f4:n 1
fm4 (-1 1 -6 -7)

(-0.9479316 -6 -7)
(-0.0520697 -6 -7)

sd4 1

I pertl:n cell=l rho=-18.74 mat=2 method=2

I
~ert2:n cell=l rho=–18.74 mat=2 method=l
pert3:n cell=l rho=-18.74 mat=3 method=2
pert4:n cell=l rho=-18.74 mat=3 method=l

n nert5:n cell=l rho=-18.74 mat=4 method=2
~ert6:n cell=l rho=-18.74 mat=4 method=l
pert7:n cell=l rho=-18.74 mat=5 method=2
pert8:n cell=l rho=-18.74 mat=5 method=l

The ’’true’’results for the fourperturbations are obtained by deleting thePERT cards and

replacing material lofcell l(line2)andtheFM card (lines 18-20),

11 -18.74 -1
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fm4 (-1 1 -6 -7)
(-0.9479316 -6 -7)
(-0.0520697 -6 -7)

with the first perturbation using material 2, input=gconc2,

12 -18.74 -1

fm4 (-1 2 -6 -7)

or wjth the second perturbation using material 3, input=gconc3,

13 -18.74 -1

fm4 (-1 3 -6 -7)

orwiththethirdperturbationusingmaterial4, input=gconc4,

14 -18.74 -1

fm4 (-1 4 -6 -7)

orwiththefourthperturbationusingmaterial5, input=gconc5,

1

fm4

III.

5 -18.74 -1

(-1 5 -6 -7)

TEST PROBLEM INP18-~m ESTIMATE

The input for the unperturbed problem, input=inp181, is

testprob18 -- kcode in a hexagonal prism lattice.
c three half control rods and five whole control rods.
30 0 -905 -19 29 1 fill=l
31 0 -906 -19 29 1 fill=l (16.7113O O)
37 0 -907 -19 29 1 fill=l (-16.7113O O)
34 0 -913 -19 29 fill=l (O 11.9185 O)
32 0 -914 -19 29 fill=l (10.32175.9592 O)
33 0 -915 -19 29 fill=l (8.355714.4724 O)
35 0 -916 -19 29 fill=l (-8.355714.4724 O)
36 0,-917 -19 29 fill=l (-10.32175.9592 O)
c universe 1: structure of control rod.
38 11 -2.02 -880 U=l $ control rod core
39 6 -8.4 880 -881 U=l $ control rod cladding
40 12 -1.00 881 -882 U=l $ control rod gap
41 6 -8.4 882 U.1 $ control rod sheath
c the space between the control rods, filled with lattice.
140 0 -17 1 29 -19 905 906 907 913 914 915 916 917 fill=2
c universe 2: lattice of fuel rods with water in between.
42 12 -1.00 -301 302 -303 304 -305 306 u=2 lat=2 fill=

-37:27 -1:33 0:0 &
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c
23

c
154
149
144
159
141
162

2 4r 3 9r 2 4r 3 llr 2 4r 3 llr 2 4r 3 9r 2
2 4r 3 9r 2 3r 3 12r 2 3r 3 12r 2 3r 3 9r 2 lr
2 3r 3 IOr 2 2r 3 13r 2 2r 3 13r 2 2r 3 IOr 2 lr
2 3r 3 57r 2 2r &
2 2r 3 58r 2 2r
2 2r 3 16r 2 2r 3 17r 2 2r 3 16r 2 3r
2 2r 3 15r 2 3r 3 16r 2 3r 3 15r 2 4r
2 lr 3 15r 2 4r 3 15r 2 4r 3 15r 2 4r
2 lr 3 15r 2 3r 3 16r 2 3r 3 15r 2 5r
2 lr 3 15r 2 2r 3 17r 2 2r 3 15r 2 6r
2 lr 3 54r 2 7r &
can code remember & thru comment?

55r 2 7r
2 3 25r 2 2r 3 25r 2 8r
2 3 24r 2 3r 3 24r 2 9r
2 3 23r 2 4r 3 23r 2 IOr
2 3 15r 2 2r 3 4r 2 3r 3 4r 2 2r 3 15r 2 llr
2 3 14r 2 3r 3 4r 2 2r 3 4r 2 3r 3 14r 2 12r
2 3 13r 2 4r 3 llr 2 4r 3 13r 2 13r
2 3 13r 2 3r 3 12r 2 3r 3 13r 2 14r
2 3 13r 2 2r 3 13r 2 2r 3 13r 2 15r
2 3 46r 2 16r
2 3 45r 2 17r
2 3 44r 2 18r
2 lr 3 41r 2 20r
2 lr 3 40r 2 21r
2 lr 3 39r 2 22r
2 2r 3 36r 2 24r
2 2r 3 35r 2 25r
2 3r 3 32r 2 27r
2 4r 3 29r 2 29r
2 5r 3 26r 2 31r
2 6r 3 23r 2 33r
2 8r 3 18r 2 36r
2 llr 3 llr 2 40r
2 64r
universe 3: structure of fuel rod lattice elements.
2 -13.75 -58 U=3 $ fuel element
12 -1.00 58 -268 u=3 $ gap
7 -19.66 268 -478 U.3 $ liner
6 -8.4 478 -698 U.3 $ cladding
12 -1.00 698 U=3 $ water between the fuel rods
O 17:-29:19:-1 $ outside world

*1 PY o $ x-z plane, reflective
17 Cz 29.135

pz 31.75 $ top of reactor
:; pz -31.75 $ bottom of reactor
58 c/z 3.4414 .8515 .3240
268 c/z 3.4414 .8515 .3345
478 c/z 3.4414 .8515 .3475
698 c/z 3.4414 .8515 .4318
880 Cz 1.7251
881 Cz 1.8051
882 CZ 1.9051
905 Cz 2.1055
906 c/z 16.7113 0 2.1055
907 c/z -16.7113 0 2.1055
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913
914
915
916
917
301
302
303
304
305
306

c/z O 11.9185 2.1055
c/z 10.3217 5.9592 2.1055
c/z 8.3557 14.4724 2.1055
c/z -8.3557 14.4724 2.1055
c/z -10.3217 5.9592 2.1055
px 3.9330
PX 2.9498
P 1 1.73205080760 5.8994
P 1 1.73205080760 3.9330
P“ -1 1.73205080760 -.9834
P -1 1.73205080760 -2.9498

imp:n 1 18r O
m2 92235.50d -.70573 92238.40c -.23821 7014.50d -.05605
m6 41093.4OC -1.00000
m7 74000.55d -.74000
mll 5010.03d -.6870 5011.40C -.0840 6012.40c -.2290
m12 1001.6OC 1 1002.6OC 3 8016.40c 1
mt12 hwtr.01 lwtr.01
c pertl:n cell=42,141,40,149 rho=-1.50
kcode 2000 1 20 220
ksrc 3 .2 .2 .2 3 .2 -3 .2 .2 .2 3 .2 4 3 .2 -43 .243 .1-43 .2
ce .01 .1 1. 10.
c fq fe
c fc4 fuel rod flux in 5 y locations averaged over 5 x elements
c f4:n (154<(42[-1O:-6-1 O])) $ average 5 x elements at j=-1

(154-=(42[-10:-6 3 O])) & $ average 5 x elements at j=3
g (154<(42[-1O:-610 01)) $ average 5 x elements at j=10 &
c (154<(42[-10:-621 ()])) $ average 5 x elements at j=21
c (154<(42[-10:-629 O])) $ average 5 x elements at j=29
C sd4 104.7089062 4r $ 5 times the volume of cell 154
c fm4 (1 2 -5) (1 2 -6) (1 2 -7) (1 2 -8) (1 2 4001) (1 2 102021)
print 30 90 102 110 160 161 162
cprdmp2j -1
c Ptrac buffer=20 file=asc write=all event=bnk
f14:n 154
fm14 (-1 2 -6 -7)
sd14 1
fc14 Keff estimator for cel 154
pertl:n cell=154 rho=-15.5 method=2
pert2:n cell=154 rho=-15.5method=l
pert3:n cell=154 rho=-17 method=2
pert4:n cell=154 rho=-17 method=l
pert5:n cell=154 rho=-21.5 method=2
pert6:n cell=154 rho=-21.5 method=l
pert7:n cell=154 rho=-26 method=2
pert8:n cell=154 rho=-26 method=l

The ’’true’’results for the four perturbations are obtained bydeleting the PERT cards and

replacing thedensity ofmateria12, cell 154, 1ine58,

154 2 -13.75 -58 u=3 $ fuel element

withthefirstperturbation,input=inp182,

154 2 -15.5 -58 U=3 $ fuel element
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orwith the second perturbation, input=inpl 83,

154 2 -17. -58 u=3 $ fuel element

or with the third perturbation, input=inpl 84,

154 2 -21.5 -58 u=3 $ fuel element

or with the fourth perturbation, input=inpl 85,

154 2 -26. -58 u=3 $ fuel element

IV. TEST PROBLEM INP02-NEUTRON ABSORPTION RATE ESTIMATE

The input for the unperturbed problem, input=inp021, is

testprob02 -- three different tallies of the same ~hvsical auanti-tv.
1-
2
3
4
5
6

1
2
3
4
5

1 -2.45 -1 $pd5=.3 $
2 -2.7 1 -2 4 $pd5=l $
2 -2.7 2 -3 4 $pd5=l $
0 3 $pd5=l $
2 -2.7 5 -4 $pd5=l $
2 -2.7 -5 $pd5=l $

so 5
so 7
so 10
Sy 7 1.95
Sy 7 .3

boron ball with-v~lume s;urce -
aluminum shell
aluminum shell
outside world
al. ball to av. dxtran/tally2 con.
little aluminum ball for tally 4

c volume source in boron ball, biased in position.
c the symmetry is sufficient for the bias to be a fair game.
sdef cel d4 X dl y d2 Z d3 erg=l
sil -5 5
Spl 01
SC2 position is biased toward the dxtran and the ring detector.
si2 a -5 5
sp2 1 1
sb2 1 2
si3 -5 5
sp3 01
si4 1 1
sp4 v
c
ml 5010.00 .196 5011.40c .804 nli.b=03d $ natural boron
m2 13027.40c 1 $ aluminum-27
m3 5010.0 .250 5011.40c .750 nlib .03d $ enriched b-10 of .250
c pertl:n cell=l mat=3
c ctme 60
c phys:n 1.2 $ cross sections above 1.2 mev will be expunged.
c
c all tallies have the same energy bins.
c eO .01 .03 .1 .31
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c fc2 average flux on surface 2.
c f2:n 2
c fl:n 1
c cl -.8 3i O 4i 1 t
c fql c e
c tfl 1 7r
c ft2 tmc -2 .05
c t2 -2 9i 3 10 100
c fq2 t e
c ftl frv 3 4 5 geb 1 2 0
fc4 neutron absorption in cell 6
f4:n 6
fm4 (-1 2 -2)
C dd5 .003
c fq5 u e
c fus 1 8i 10
c fts inc
c fcs average flux at ring detector.
c fy5:n 5 4.89 .7
cdxc:n 1 .7 .9 0 11
cddl .04 100
thtme -10 0 .5 1 2
# tmpl tmp2 tmp3 tmp4 tmp5
1 le-8 2e-8 3e-8 4e-8 5e-8
2 2e-8 3e-8 5e-8 4e-8 3e-8
3 le-8 5e-8 4e-8 3e-8 2e-8
4 0 0 0 0 0
5 2e-8 le-8 5e-8 3e-8 le-8
6 3e-8 2e-8 le-8 2e-8 le-8

G

c dxt:n O 7 0 1 1.9 $ dxtran around cell 6, inside cell 5.
imp:nl 1 1 0 1 1
c
nps 10000000 $ run 5000 histories.
print 10 72 170
c prdmp 2500 625 -1 2 $ print metal file.
c dbcn 14j 1
c ptrac buffer=2 file=asc event=src nps=l,200 cell=3
pertl:n cell=6 rho=-2.85method=2
pert2:n cell=6 rho=-2.85method=l
pert3:n cell=6 rho=-3 method=2
pert4:n cell=6 rho=-3 method=l
pert5:n cell=6 rho=-3.3 method=2
pert6:n cell=6 rho=-3.3 method=l
pert7:n cell=6 rho=-3.6 method=2
pert8:n cell=6 rho=-3.6 method=l

The ’’true’’results forthe four perturbations areobtainedby deleting thePERT cards and

changing the density ofce116, material 2,1ine7,

6 2 -2.7 -5 $pd5=l

withthefirstperturbation,input=inp022,

6 2 -2.85 -5 $pd5=l

$ little aluminum ball for tally 4

$ little aluminum ball for tally 4
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or with the second perturbation, input=inp023,

6 2 -3. -5 $Pd5=l $ little aluminum ball for tally 4

or with the third perturbation, input=inp024,

6 2 -3.3 -5 $Pd5=l $ little aluminum ball for tally 4

or with the fourth perturbation, input=inp025,

6 2 -3.6 -5 $Pd5=l $ little aluminum ball for tally 4

v. TEST PROBLEM INP04-PHOTON COLLISION RATE ESTIMATE

The input for the unperturbed problem, input=inp041, is

testprob04 -– photons
1 1 .02 -1
2 2 .1 -2 1 3 4 :

o 2 $
: 2 .1 -3 5
5 2 .1 -4 6
6 2 .1 -5
7 2 .1 -6

1 so 10
2 so 20
3 s -10 2r 2.1
4 s 10 2r 1.1
5 s -10 2r 1.9
6 s 10 2r .9

mode p
imp: p 1 1 0 1 1 lm lm
ml plib=02p 92000 1
m2 92000 1 3000 3
m3 92000 0.9 3000 3.

uranium hydride
uranium-lithium
zero-importance

1000 3

1

ball with point source
shell
outside world

m4 92000 0.7 3000 3.3
m5 92000 0.5 3000 3.5
m6 92000 0.3 3000 3.7
m7 92000 1
m8 3000 1
c! monoenergetic isotropicpoint source at (0,0,0)
sdef erg=dl cel=l
Spl -4
c eO .01 .1 1 5
C f6:p 1267 $ heating tally
c f5x:p 12 15 1
fc4 collisions in ULi Shell
c f4:p 1267 $ flux tally
f4:p 2
fm4 (-1 2 -5)

(-0.25 7 -5)
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(-0.75 8 -5)
c fq4 e f
c ft4 tmc -2 .05
c ft5 tmc -2 .05
c t4 -2 9i 3 10 100
c t5 -2 9i 3 10 100
c fq6 f e
c fq5 e d
c fq25 e d
c fz25:p -12 15 -1 -7 7 2
C dd o 100 .01
C dd5 -.1
nps 1000000
c Print 30 160 161 162
c prdmp 2j -1
cde4 110100
C df4 0.8 0.9 1.0
c dxt:p -10 2r 1 2 10 2r 1 1 .01 .005
Cdxc:pl 1 0 .9 .9 .1 .1
cpd 1 1 0 .1 3r
cdd2 O 100 .005 .4m
c de25 .01 8i .1 8i 1 2
c df25 lin .8 18i .99
C ddl -0.01 1000
C phys:p .05
c cf4 4
C cf6 5
C cut:p .1 .01 .5 .2 .8
pertl:p cell=2 rho=O.1 mat=3 method=2
pert2:p cell=2 rho=O.1 mat=3 method=l
pert3:p cell=2 rho=O.1 mat=4 method=2
pert4:p cell=2 rho=O.1 mat=4 method=l
pert5:p cell=2 rho=O.1 mat=5 method=2
pert6:p cell=2 rho=O.1 mat=5 method=l
pert7:p cell=2 rho=O.1 mat=6 method=2
pert8:p cell=2 rho=O.1 mat=6 method=l
print

The ’’true’’results for the four perturbations are obtained by deleting thePERT cards and

replacing materia120fcel12 (line 3) and the FMcard (lines 36-38),

2 2 .1 -2 1 3 4 $ uranium-lithiumshell

fm4 (-1 2 -5)
(-0.25 7 -5)
(-0.75 8 -5)

with the first perturbation usingmateria13, input=inp042,

2 3 .1 -2 1 3 4 $ uranium-lithiumshell

fm4 (-1 3 -5)

orwiththesecondperturbationusingmateria14,input=inp043,
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2 4 .1 -2 1 3 4 $ uranium-lithiumshell

fm4 (-1 4 -5)

orwiththethirdperturbationusingmaterial5,input=inp044,

2 5 .1 -2 1 3 4 $ uranium-lithiumshell

fm4 (-1 5 -5)

orwiththefourthperturbationusingmaterial6, input=inp045,

2

fm4

VI.

6 .1 -2 1 3 4 $ uranium-lithiumshell

(-1 6 -5)

TEST PROBLEM INP1O-PHOTONCOLLISION RATE ESTIMATE

The input for the unperturbed problem, input=inplOl, is

testProb10 general test problem /x6code/@Prob
1-
2
3
4
5
6
7
8
9
10
11
12
13

1
2
4
5
6
7
8
9
10
11
12
13
14
20
21
31
32
33
34

38

1 -6:4 1 -2 -31 32 -33 34
0
2 -1
3 -8.94
0
4 -2.25
2 -1
2 -1
4 -2.25
2 -1
3 -8.94
0
2 -1

px o
px 10
px 11.9
tx 30 0 0
tx 30 0 0
px 50
px 70
px 90
px -20
:: ‘--o

Cx 45
px 30
Cx 10
CX 25
py 5
PY -5
pz 5
pz –5

10 -4 -12 #1
4 -14 -12 5
-5 6
-6
7 -8 -12
8 -9 -12
9 -12
11 -lo -12
-11 -12
12 -13
13
14 -7 -12 5

20 18 18
20 15 15



mode n p
ml 29000.02 1 8016.40 1
m2 1001.60 2 8016.40 1
m3 29000.02 1
m4 6012.40 1
imp:n 11 2 2 2 42 1 .5 .25 1 0 4
imp:p 11222 42 1 .5 .251 04
sdef erg=dl vec=l O 0 dir=d2 POS=5 O 0 rad=d3 cel=l
Spl -3
sb2 -31 1.2
si3 8.67
c f4:n 6
f14:p 6
fm14 (-1 4 -5)
fq s e
c fs -20 -21
phys:n j le-6
Phys:p 1 0
nps 2000000
cprdmp2j -1
print 50
pertl:n,p cell=6 rho=-2.4 method=2
pert2:n,p cell=6 rho=-2.4 method=l
pert3:n,p cell=6 rho=-2.6 method=2
pert4:n,p cell=6 rho=-2.6 method=l
pert5:n,p cell=6 rho=-3.O method=2
pert6:n,p cell=6 rho=-3.O method=l
pert7:n,p cell=6 rho=-3.6 method=2
pert8:n,p cell=6 rho=-3.6 method=l

The ’’true’’results forthefour perturbations areobtainedby deleting thePERTcards and

changing thedensityofcell 6, materia14,1ine7,

6 4 -2.25 7 -8 -12

withthefirstperturbation,input=inp102,

6 4 -2.4 7 -8 -12

orwiththesecondperturbation,input=inp103,

6 4 -2.6 7 -8 -12

orwiththethirdperturbation,input=inp104,

6 4 -3.0 7 -8 -12

orwiththefourthperturbation,input=inp105,

6 4 -3.6 7 -8 -12
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