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Abstract – In this work, we define the various time constants (i.e., life spans, lifetimes,
and generation times) associated with the life of a neutron in non-multiplying and multi-
plying systems.

I. INTRODUCTION

For the last 50 or so years, the nuclear industry has been trying to validate nuclear cross
section sets using keff measurements obtained from a wide variety of benchmark critical-mass
experiments. However, benchmarking against keff is not as beneficial as one might hope since keff

is merely the ratio of the neutron production rate to the neutron loss rate. As such, the absolute
value of the cross sections in any given library may be significantly in error and still yield reason-
ably accurate estimates of keff if the ratio of νΣf /Σa is correct. Although a keff measurement is a
necessary and vital measurement, by itself, it is not sufficient to validate any cross section set; a
favorable comparison between a measured and calculated keff only tests one aspect of that cross
section set—namely, the ratio of νΣf /Σa . To validate other aspects of a cross section set, other
integral quantities such as neutron lifetime, effective delayed neutron fraction, fission ratios, cen-
tral-worth reactivity worths, neutron spectra, etc. must also be measured. 

A neutron lifetime measurement is particularly useful in this regard because the neutron
lifetime in both multiplying and nonmultiplying systems varies approximately as 1/Σa  and can be
easily and accurately measured using standard die-away techniques. However, some care must be
exercised when comparing measured and calculated lifetimes for the following two reasons. 

First, the proper interpretation of a neutron lifetime measurement in a complex system is
quite complicated and, judging from the literature, often misconstrued. For example, in some
types of reflected systems, spatial effects are prevalent and several decay constants may be
observed. Often, these measurements are analyzed using one-region expressions which, in most
cases, do not apply. It is not surprising that comparison between the measured and calculated life-

a. The authors would like to acknowledge the valuable suggestions and contributions made to this work by Dr. K. J. 
Adams, Dr. D. K. Parsons, and Dr. J. S. Hendricks of the Los Alamos National Laboratory, and by Dr. L. Petrie of the 
Oak Ridge National Laboratory.
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times for these types of systems indicates poor agreement.
And second, one can formulate numerous lifetimes corresponding to various reactions

occurring within a given system and can calculate these various lifetimes either as unweighted
quantities or as adjoint-weighted quantities. For small, bare systems, the difference between an
unweighted and an adjoint-weighted lifetime can be relatively small—5 to 10%—whereas, in
large, complex systems, the difference can be several orders of magnitude. These differences may
be further exacerbated depending on how the neutron and adjoint fluxes used in the evaluations
have been determined; the eigenfunctions obtained from an α-eigenvalue solution and a k-eigen-
value solution can be significantly different for systems in which k>>1. These differences in the
eigenfunctions can lead to differences of several orders of magnitude in a lifetime calculation 

Thus, not only is it important to understand which lifetime is measured during an experi-
ment, but it is just as important to understand how to calculate a specific lifetime using Monte
Carlo and/or deterministic transport solutions; after all, a comparison between a measured and a
calculated lifetime can only be meaningful it the two quantities are the same. 

Historical Background and Previous Works

It is unknown who first defined a neutron lifetime in a quantitative sense. However, esti-
mates of the neutron lifetime in a thermal system and in a fast system are mentioned in the Frisch-
Peierls Memorandum1 written in early 1940. By the time the Los Alamos National Laboratory
was formed in March 1943, the basic concept that the neutron lifetime is inversely proportional to
the absorption rate must have been well understood as evidenced by the mundane manner in
which Serber2 discussed it in the Los Alamos Primer, LA-1.b Serber defined the neutron lifetime
as the ‘mean time between fissions’ based on two assumptions: 1) the system was so large that
neutrons would not be lost by leakage and 2) all neutrons absorbed in the system would only be
absorbed in fission reactions (i.e., no parasitic absorption). Hence, Serber’s lifetime definition
corresponded to

, (1)

where v is the average neutron velocity and Σf is the average macroscopic fission cross section.
In October 1943, Feynman3 extended Serber’s definition to an ideal 1/v absorber, includ-

ing both parasitic absorption and fission absorption. Feynman defined the absorption lifetime in
the same manner as Serber, but used the macroscopic absorption cross section rather than the fis-
sion cross section. He also stated that the reciprocal of the absorption lifetime was, by definition,
the ‘probability per second of being captured.’ In that same report, Feynman formulated the the-

b. The Los Alamos Primer, LA-1, is a collection of lecture notes used by Serber to indoctrinate new recruits into the 
Manhattan project in April, 1943. It is now an unclassified document readily available to the public.

τ 1
vΣf
--------=
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ory for the 1/v–absorption technique that is still occasionally used to measure the absorption life-
time in a multiplying system.

About a year later, de Hoffmann et al.4 developed a more general expression for the defi-
nition of a fission lifetime. In their derivation, de Hoffmann et al. defined Pp as the probability of
a prompt neutron, emitted at time t', causing a fission at any later time. The chance of producing a
fission at time t was found by weighting Pp by a function R(t – t')dt such that PpR(t – t')dt  is the
probability that a neutron born promptly at time t’ will produce a fission in the interval dt at time
t. By writing down an expression governing the variation of the time-dependent fission rate and
expanding this expression in a Taylor series, de Hoffmann et al. showed that the ‘average time
from one fission to the next fission due to prompt neutrons’ is given by

, (2)

where the integral of R(t – t')dt  is appropriately normalized to 1.0. 
In March 1946, Kupferberg5 wrote another Los Alamos report in which the neutron life-

time for a nonmultiplying reflector was defined such that the loss rate due to absorption and leak-
age were both included. In his report, Kupferberg stated (without any formal derivation) that the
mean neutron-lifetime in the reflector, τr, is

, (3)

where 1/τa is the probability per unit time of an absorption and 1/τl is the probability per unit time
of a leakage. (Note, we have changed Kupferberg’s original nomenclature to maintain consis-
tency within this manuscript.) In accordance with Kupferberg’s definition, 1/τr is the probability
per unit time of either an absorption or a leakage.

During the period of time from 1943 to 1947, several techniques were developed to mea-
sure the neutron lifetime in multiplying and nonmultiplying systems. These included the 1/v-
absorber technique, the rod-oscillator technique, the pulsed-neutron technique, and the Rossi-α
technique developed by Feynman6 in July, 1946. In his derivation of the Rossi-α equation, Feyn-
man used the fission lifetime, τf , as the basic measure of the time duration of a prompt fission
chain. In January 1947, Baker et al.7 rewrote Feynman’s Rossi-α equation in terms of the prompt
multiplication factor and the ‘mean life of a neutron’, which they defined as τ = τf / νp where νp is
the average number of prompt neutrons released per fission.

In 1948, Hurwitz8 presented his derivation of the point kinetic equations in which he
defines a quantity τ that he refers to as the ‘prompt neutron generation time.’ Later on in the
manuscript, Hurwitz describes τ as the ‘average time it takes a prompt neutron to produce a fis-

Tf t t'–( )R t t’–( )dt
0

∞

∫=

1
τr
---- 1

τa
----- 1

τl
----+=
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sion.’ He also derives an expression to calculate τ which is very similar in form to the expression
derived by de Hoffmann et al.4 

, (4)

where P(r,r’,T) is the probability that a neutron liberated in a fission at point r' and time t = 0
gives rise to a fission at point r and time t, per unit time and volume, T is the time from birth-to-
fission and V is the system volume.

During the 1950s there was an explosion of articles written on the subject of reactor phys-
ics and reactor kinetics in which some type of neutron lifetime was invariably defined. The defi-
nitions were usually based on diffusion theory, or on the somewhat nebulous life-cycle model in
which neutrons in one generation (which is not well defined) produced neutrons in the next gen-
eration. Several textbooks on reactor theory began to appear in the early 1950s which propagated
the life-cycle model of neutron reproduction and repeated many of the same definitions previ-
ously mentioned in this section. The most common expression for the neutron lifetime found in
the literature during this era was the expression derived from one-group diffusion theory.

. (5)

In some cases, slightly different slants were incorporated into the verbal definition of a neutron
lifetime and/or a neutron generation time. For example, Glasstone and Edlund9 stated that a neu-
tron generation time is “the average time between successive neutron generations and is equal to
the sum of the slowing down time of the fast fission neutrons and of the diffusion time, or life-
time, of the thermal neutrons.” From this definition, we infer that the lifetime must be a subset of
the neutron generation time. One paragraph later, Glasstone and Edlund further stated that “for a
reactor in which a considerable proportion of the fissions are caused by neutrons with energies
above thermal, the generation time is defined as the average time between successive fissions of
all types.” Based on this statement, one is drawn to another conclusion whereby the generation
time must be identically equal to the fission lifetime as defined by Serber.2 

In 1952, Weinberg10 introduced the concept of using an adjoint flux when solving the neu-
tron transport equation. In that work, Weinberg talked about the λ eigenvalue (which we believe
is equivalent to keff – 1) and briefly discussed the time-dependent solution. He qualitatively

τ
TP r r' T, ,( )dTdV∫
P r r' T, ,( )dTdV∫

---------------------------------------------=

τ 1
vΣa 1 L2B2+( )
------------------------------------=
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defined an adjoint-weighted neutron lifetime to be “the time required for a neutron to go through
a complete multiplication cycle or generation.” 

In 1955, Ussachoff11 derived the point-kinetic equation from the Boltzmann transport
equation. From that derivation, he obtained the following expression for the neutron generation
time, Λ, written in terms of the angular fluxes and angular adjoint fluxes.

. (6)

(As before, we have changed the original nomenclature to be consistent with the nomenclature in
this manuscript.) Ussachoff described this quantity as “the mean lifetime of the neutron in the
reactor.”

In 1958, Weinberg and Wigner12 published their book on reactor theory in which they ded-
icated an above–average number of pages to the discussion of neutron lifetimes and neutron gen-
eration times. They quickly pointed out that it is very difficult to rigorously define a neutron
lifetime based solely on the concepts of the life–cycle model since a generation time is not well
defined. Instead, they suggested a neutron–balance model in which the effective multiplication
factor is defined as the ratio of the neutron production rate divided by the neutron loss rate. This
contrasts with the definition of keff in the life–cycle model being the ratio of the neutron popula-
tions in successive generations. In the neutron-balance model, the neutron lifetime is defined such
that the total neutron population divided by the lifetime, N/τ , is equal to the total loss rate due to
absorption and leakage. When defined in this manner, the life-cycle model and the neutron-bal-
ance model yield consistent equations that describe the time rate of change of the total neutron
population. Furthermore, Weinberg and Wigner showed that the neutron lifetime was merely the
“local reciprocal lifetime,” 

, (7)

averaged over the reactor system by way of

. (8)

Λ

Φ+Ψ
v

------------ dΩdVdE∫
Φ+χfνtΣ'fΨ' dΩ E'dVdEd∫

------------------------------------------------------------------=

1
τ r E,( )
---------------- vΣa vφ 1– divDgradφ–=

1
τ
---

φ r E,( )
τ r E,( )
----------------- dVdE∫
φ r E,( ) dVdE∫
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However, without any supporting explanation, Weinberg and Wigner quickly stated that “the
effective reciprocal lifetime to be used with the criticality factor (i.e., keff) is not the quantity
defined above, but is the average of 1/τ(r,E) for all neutrons weighted with their importance.”

. (9)

In several places in their book, Weinberg and Wigner referred to τ as being both the neutron gen-
eration time and the neutron lifetime. They interpreted τ to be “the average time between succes-
sive generations,” or “the average time between birth and death of a neutron.” To complete their
discussion on neutron lifetimes, they went on to derive a more general expression for a neutron
lifetime based on the probability that a neutron of the ith type will produce neutrons of the jth type.
That is,

, (10)

where  , P * is the neutron importance, and tji is the time from birth-to-event.
In 1959, Lewins13 published a manuscript in which he defined the neutron lifetime as “the

mean time before one neutron is destroyed” and the neutron generation time as “the mean time
before one neutron generates one prompt neutron or one precursor.” Quantitatively, Lewins
defined the neutron lifetime as

, (11)

and

. (12)

Furthermore, he recognized that in a critical reactor, the neutron production rate was equal to the
neutron loss rate; hence, τ must be equal to Λ in a critical system.

In 1963, Hishihara and Ukai14 derived an integral version of the Weinberg and Wigner12

1
τ
---

φ+ r E,( )φ r E,( )
τ r E,( )

------------------------------------- dVdE∫
φ+ r E,( )φ r E,( ) dVdE∫

---------------------------------------------------------=

τ
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-----------------------=

P νΣfφ≈

τ 1
vΣa vDB2+
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Λ 1
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expression for the effective neutron lifetime [see Eq. (10)] starting from the general neutron trans-
port equation. They further demonstrated that their integral equation could be rewritten in a form
identical to the equation previously derived by Ussachoff.11 They, however, defined the effective
neutron lifetime “as the mean interval of successive fission events in the course of the importance
transport.”

In 1964, Asaoka et al.15 were developing Monte Carlo techniques to estimate the neutron
lifetime and generation time using the Monte Carlo code TIMOC. In their work they defined
three different neutron lifetimes: 1) the effective mean lifetime, 2) the dynamical mean lifetime,
and 3) the chronological mean lifetime. The effective mean lifetime was defined as “the total
importance divided by the rate of destruction of importance”; the dynamical mean lifetime was
defined as “the total number of neutrons divided by the destruction rate”; and the chronological
mean lifetime was defined as “the average time from birth to death of the neutrons.” They also
defined three neutron generation times analogous to the aforementioned lifetimes but based on
the production of neutrons rather than on the destruction of neutrons.

In 1967, Rief and Kschwendt16 presented two expressions used in another Monte Carlo
code, MOCA, to calculate the neutron production lifetime and the neutron destruction lifetime.c

Both of these equations were of the same general form as Eq. (10) developed by Weinberg and
Wigner,12 but with unity weighting rather than importance weighting. They found that their
destruction lifetime agreed exactly with the reciprocal of the unweighted loss rate (absorption
plus leakage), but that their production lifetime did not always agree with the reciprocal impor-
tance-weighted average loss rate. In 1971, Nelson17 reviewed the work of Rief and Kschwendt
and demonstrated that the production lifetime and the reciprocal importance-weighted average
loss rate are similar, but that they are not precisely the same.

During the 70s, 80s and 90s, the effort to clearly define a neutron lifetime and a neutron
generation time continued. In fact, one debate started in the early 80s is still drawing attention. In
1981, Marotta18,19 proposed a new parameter, which he named excess time, which he claimed
would be useful in “giving physical insight into the degree of utilization of neutrons toward a
chain reacting process in a complicated fissionable system.” The excess time was defined to be
the difference between the neutron lifetime and the neutron generation time where, according to
Marotta’s definitions, the neutron lifetime is “the average life span of a neutron in the system until
it escapes from the system or is absorbed,” and the neutron generation time is “the average time
between neutron generations.” Marotta argued that the neutron lifetime and the neutron genera-
tion time are “numerically equal only for the maximum (not necessarily critical) keff state of the
system.” This, of course, was contrary to the popularly-held belief that the neutron lifetime and
the neutron generation time are equal at delayed critical. Marotta based this conclusion on results
generated by the Monte Carlo code KENO-IV which calculates both a system lifetime and a neu-
tron generation time. Lewins,20 feeling somewhat responsible for a certain amount of confusion

c. It is presumed that the expressions presented by Rief and Kschwendt were similar, if not exact, to the expressions 
used by Asaoka since Rief was one of the co-authors on Asaoka paper. 
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concerning the neutron generation time he defined in an earlier work,13 attempted to clarify his
previous work by redefining the neutron generation time as the “mean time for one neutron to
cause fission,” and introducing the neutron reproduction lifetime as the “mean time for one neu-
tron to be replaced by another neutron on fissioning.” In his response to Marotta’s claims, Lewins
demonstrated that the neutron lifetime had to be equal to the neutron reproduction lifetime at
delayed critical. In 1995, a third party joined into the debate. Hayashi21 wrote a Letter to the Edi-
tor of Nuclear Science and Engineering in which he claimed that there was no difference whatso-
ever between the neutron lifetime, the neutron generation time, and the mean fission lifetime.

Are you confused yet? We are! 

Intent

The primary purpose of this work is to develop both deterministic and Monte Carlo algo-
rithms that clearly define a neutron lifespan, a neutron lifetime, and a neutron generation time. In
addition, we will give verbal definitions that describe the physical significance of each of these
quantities. When appropriate, we will link our definitions to the definitions given by previous
authors. From a more global perspective, we hope that this work will eventually lead to a unified
set of equations and to a more consistent terminology concerning neutron lifetimes.

II. NOMENCLATURE

In any given system, neutrons are lost from that system in one of three ways—absorption
leakage, or radioactive decay. We can usually ignore radioactive decay since the half-life of a free
neutron is approximately 10.4 minutes and the typical lifetime of a neutron in most systems is on
the order of a few milliseconds or less. So, from a practical standpoint, there are only two ways
that a neutron can be lost from a system—absorption and leakage. 

It is worthwhile at this point to clearly define what we mean by a neutron absorption since
an absorption event can be defined in several different ways. For the most part, the terminology
used in the majority of the nuclear engineering textbooks is relatively consistent when defining
neutron cross sections. In particular, the total macroscopic cross section, Σt , is defined as the sum
of the macroscopic cross sections of all possible interactions. We can group these various interac-
tions into two broad categories corresponding to a macroscopic absorption cross section, Σa , and
a macroscopic scattering cross section, Σs ,

, (13)

where the scattering cross section is defined as the sum of the elastic, (n,n), and inelastic scatter-

Σt Σa Σs+=
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ing, , cross sections plus any other reaction in which a single neutron is re-emitted along
with any other outgoing particle produced during the scattering interaction, such as . 

, (14)

The macroscopic absorption cross section includes everything else; that is, the absorption cross
section is the sum of the cross sections of all non-scattering events (e.g., reactions that produce
zero neutrons or more than one neutron).

, (15)

where
 is the macroscopic radiative capture cross section, (n,γ),
 is the macroscopic proton production cross section, (n,p),
 is the macroscopic alpha-particle production cross section, (n,α),

 is the macroscopic fission cross section, (n,f),
 is the macroscopic (n,2n) cross section, 
 is the macroscopic (n,3n) cross section, and so forth.

For convenience, we can further separate the absorption cross section into two subcatego-
ries—parasiticd capture, , and neutron production reactions, . The parasitic capture cross
section is the sum of all reactions in which zero neutrons are re-emitted after the initial neutron
absorption—(n,γ), (n,p), (n,α), (n,t), (n,3he), etc. The neutron production cross section is the sum
of all reactions in which more than one neutron is re-emitted following the initial neutron absorp-
tion—(n,f), (n,2n), (n,3n), etc. So, we can define the absorption cross section as ,
and rewrite the total cross section as the sum of three terms.

. (16)

By defining the total cross section in the above manner, we now have three broad catego-
ries—reactions in which a neutron is absorbed and no neutrons are re-emitted; reactions in which
a neutron is absorbed and a single neutron is re-emitted; and reactions in which a neutron is
absorbed and more than one neutron is re-emitted. This categorization may seem somewhat arbi-

d. Referred to as pure capture by Bell.22

n n'γ,( )
n n'α,( )

Σs Σn Σn’γ Σn’α …+ + +=

Σa Σγ Σp Σα … Σf Σ2n Σ3n …+ + ++ + + +=

Σγ
Σp
Σα
Σf
Σ2n
Σ3n

Σpc Σπ

Σa Σpc Σπ+=

Σt Σpc Σs+ Σπ+=
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trary, but, as will be discussed in a later section, actually proves to be very useful from the stand-
point of tracking the neutron population. 

III. LIFESPAN, LIFETIME, AND GENERATION TIME

In this section, we define, by way of example, three different types of time constants asso-
ciated with the life of a neutron in a given system—a neutron lifespan, a removal lifetime, and a
neutron generation time.

Consider a multiplying system with an effective multiplication factor of keff = 0.9 that is
in source equilibrium with an external/intrinsic neutron source. Neutrons will disappear from this
system in one of two ways—absorption or leakage. As noted in the previous section, when a neu-
tron is absorbed, it can be absorbed in either a neutron production reaction or a parasitic capture
reaction. It can be readily shown that in any multiplying system the fraction of neutrons absorbed
in a fission reaction is equal to  where  is the average number of neutrons (prompt plus
delayed) released per fission. Therefore, if we assume that  for this hypothetical system,
then 36% of the neutrons will be absorbed in a fission reaction. The remaining 64% will be lost
by leakage or parasitic capture—of which we arbitrarily assume, for purposes of this example,
that 20% are absorbed in a parasitic capture, and the remaining 44% leak from the system. We
also assume that the average time from birth–to–fission of those neutrons that are destined to be
absorbed in a fission reaction is 100 µs, the average time from birth–to–absorption of those neu-
trons that are destined to be absorbed in a parasitic capture reaction is 90 µs, and the average time
from birth–to–leakage of those neutrons destined to leak from the system is 50 µs. Consequently,
a neutron in this hypothetical system will live, on an average, for

.

Let’s also assume that the intrinsic source strength is such that the equilibrium neutron
population in this system is 1.0; that is to say, if a snap shot were taken at any point in time, the
total number of neutrons that could be found in this system would be, on an average, 1.0. To
maintain this equilibrium neutron population, one neutron must be injected into the system via the
fixed source and the fission source once every 76 µs since one neutron is lost from the system
once every 76 µs. This equilibrium neutron population and average removal lifetime corresponds
to an average loss rate of 13,158 n/s—of which 4,737 n/s (i.e., 36%) are being absorbed in fission
reactions, 2,632 n/s (i.e., 20%) are being parasitically captured, and 5,789 n/s (i.e., 44%) are leak-
ing. 

Because the system is in source equilibrium at a keff=0.9, neutrons must be appearing in
the system at a rate of 13,158 n/s —of which Skeff /(1 – keff) neutrons per second are being pro-

keff/νt νt
νt 2.5=

τ 0.36 100 0.20 90× 0.44 50×+ +× 76 µs= =
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duced by fission reactions. Hence, 11,842 n/s are being produced by fissions while the remaining
1,316 n/s are being injected by the source. This, of course, is consistent with the neutron loss rate
in which 4,737 neutrons are absorbed in a fission reaction, each yielding 2.5 neutrons/second.

Using this example we can readily identify several neutron time constants of primary
interest in reactor physics. In the context of neutron-balance theory, a neutron lifespan will be
used to denote the mean time from birth-to-event, whereas, a neutron lifetime is defined as the
average time from event-to-event. First we note that the mean time between the loss of a neutron
from the system (event-to-event) is 76 µs. We define this quantity as the mean removal lifetime. It
is simply the average of the individual lifespans corresponding to fission, parasitic absorption,
and leakage, weighted by their respective probability of occurrence. The lifespans, in turn, are
defined as the average time from birth to a specific event. In our example, the average lifespan for
fission is 100 µs; the average lifespan for parasitic absorption is 90 µs; and the average lifespan
for leakage is 50 µs.

Note that these lifespans, however, do not represent the mean time between events of a
particular type; the mean time between fission events corresponds to 211.1 µs (i.e., 1/4,737), the
mean time between parasitic absorptions corresponds to 380 µs (i.e., 1/2,632), and the mean time
between leakage events corresponds to 173 µs (i.e.,1/5,789). To our knowledge, this concept of a
neutron lifespan and its clear distinction from a neutron lifetime has not previously appeared in
the literature. This distinction, however, should be carefully noted, particularly when interpreting
lifetime calculations from Monte Carlo codes. MCNP-4A,23 for example, calculates an
unweighted removal lifetime, and three different neutron lifespans—escape, fission, and capture.e

The KENO24 code, on the other hand, calculates a removal lifetime (which is referred to as the
system lifetime) and another quantity that closely resembles an unweighted fission lifetime.

The neutron lifespan and neutron removal lifetime, as defined above, characterize the loss
rate from the system. We can also define another lifetime that is associated with the production of
neutrons. We refer to this lifetime as the neutron generation time and define it as the mean time
between the appearance of fission neutrons. Hence, in our example, the neutron generation time
corresponds to 84.5 µs (i.e., 1/11,842). It is very important to recognize that the mean time
between the appearance of a fission neutron is a factor of ν smaller than the mean time between
fission events, 211.1 µs. By defining the neutron generation time in this manner, we can then state
that the effective multiplication factor is the ratio of the neutron lifetime to the neutron generation
time. Had we included the contribution from the fixed source in our definition of the neutron gen-
eration time, this statement would not be true; in equilibrium, the mean time between the appear-
ance of either a fission or source neutron would be identically equal to the mean time between the
loss of neutrons from the system (i.e., 76 µs), so the ratio would always be 1.0. In the absence of
a source, if neutrons are being lost from a system at a rate that is faster than the rate at which they
are being produced, the system must be subcritical; and if neutrons are being produced at a rate

e. The capture life span in MCNP actually corresponds to the absorption life span as defined in this manuscript while 
the fission life span is merely a subset of that quantity.
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that is faster than they are being lost, then the system must be supercritical; when the two rates are
equal, the system must be exactly critical.

In summary, we can state that a neutron life span is the average time from birth–to–event,
whereas, a neutron lifetime is the mean time from event–to–event in which the event is either an
absorption or a leakage. A neutron generation time, on the other hand, is the mean time between
the appearance of the neutrons produced by fission, (n,2n), ...etc. reactions. As we have demon-
strated, albeit somewhat informally, the neutron lifetime is a function of the individual neutron
life spans. The neutron generation time, however, is strictly a function of the fission, (n,2n), ...etc.
reaction rates and, as such, is not related to the neutron lifetime per se. However, the neutron life-
time and the neutron generation time can be related to each other by the effective multiplication
factor.

IV. TIME-DEPENDENT TRANSPORT EQUATION

Consider a hypothetical system that is infinite in extent and contains a hypothetical mate-
rial that only scatters neutrons (i.e., ). If a million neutrons are injected into this system
at t=0, and we counted neutrons at some later time, we would expect to find all one million neu-
trons to be still in the system. The scattering reactions that would be constantly occurring in the
system may cause drastic changes in the angular, energy, and spatial distribution of those neu-
trons, but these scatterings reactions would not cause a net change in the neutron population.

If this same hypothetical material, however, had a small (n,2n) cross section associated
with it (i.e., ), we would expect to find more than one million neutrons in the sys-
tem at a later time; every time a neutron is absorbed in a (n,2n) reaction, two neutrons would be
re-emitted—thus, there would be a net gain of one neutron per (n,2n) reaction. Similarly, if the
material were capable of fissioning, then there would be, on an average,  neutrons released per
neutron absorbed in a (n,f) reaction, which would result in a net gain of  neutrons in the neu-
tron population.

In contrast, if this hypothetical scattering material were incapable of multiplying, but
exhibited some parasitic capture reactions (i.e., ), then each time a neutron was
absorbed in a parasitic capture, there would be a net decrease of one neutron in the neutron popu-
lation. Consequently, the neutron population would decrease with time and would eventually
decay to zero.

In general, we can describe the time-dependent behavior of the total neutron population
for any of these situations using the time-dependent transport equation, where we include the
additional loss rate associated with neutrons that can potentially leak from a finite system. If we
assume that all neutrons in the system have equal importance (which, as will be discussed in a
later section, is not true in a multiplying system) and that the cross sections are time independent,
the energy–, spatial–, and time–dependent angular flux can be written as,22

Σt Σs=

Σt Σs Σ2n+=

ν
ν 1–

Σt Σs Σpc+=
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, (17)

where

,
,

,
,

, and
,

in which the meaning of the macroscopic cross sections have been previously described, v is the
neutron velocity, and fπ is the probability that if a neutron of direction  and energy  has a col-
lision of production type π, there will emerge from the collision a neutron in the direction interval

 about  with energy in dE about E. For fission events, fπ is normalized to . That is,

, (18)

and for (n,2n) production reactions, 

, (19)

and so forth for (n,3n), …, etc. reactions. (To simplify our nomenclature somewhat, we have used
a single integral symbol to represent multiple integrals over the differential variables listed in the
integrand. This simplification in nomenclature shall be used throughout the remainder of this
manuscript.)

Equation (17) is merely a statement of neutron conservation as applied to an infinitesimal
element of volume, direction, and energy. If it is integrated over all directions, it becomes a state-
ment of neutron conservation for a small element of volume and energy written in terms of the
total neutron flux, φ, and the neutron current, J .

, (20)

1
v
---

t∂
∂Ψ⋅ Ω+ Ψ∇⋅ ΣtΨ+ Σ'sΨ' Ω' E'dd∫ fπΣ'πΨ' Ω' E'dd∫ Q+ +=

Ψ Ψ r Ω E t, , ,( )=
Σt Σt r Ω E, ,( )=
Σ's Σ's r Ω' E', Ω E,→;( )=
fπ fπ r Ω' E', Ω E,→;( )=
Σ'π Σ'π r Ω' E', Ω E,→;( )=
Q Q r Ω E, t, ,( )=

Ω' E'

Ωd Ω νt

ff r Ω' E', Ω E,→;( )dΩdE∫ νt=

f2n r Ω' E', Ω E,→;( )dΩdE∫ 2=

1
v
---

t∂
∂φ⋅ J∇•+ Σtφ+ Σ'sφ' E'd∫ χfνtΣ'fφ' E'd∫ χ2n2Σ'2nφ' E'd∫ … Q+ + + +=
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where the total flux and the neutron current are defined as

,

,
and 

,
,
, 

,
, and
.

Integration of Eq. (20) over a finite region of volume and energy now yields a conserva-
tion equation for the entire neutron population in the region.

. (21)

From the definition of the total cross section [see Eq. (13)], we note

, (22)

where we again stress that the absorption cross section, , includes all reactions that are non-
scattering type. Hence, we can rewrite Eq. (21) as

, (23)

φ φ r E t, ,( ) ΨdΩ∫= =

J J r E t, ,( ) ΩΨdΩ∫= =

Σt Σt r E,( )=
Σ’s Σ’s r E’ E→;( )=
Σ’f Σ’f r E’ E→;( )=
χf χf E( )=
χ2n χ2n E( )=
Q Q r E t, ,( )=

1
v
---∫ t∂

∂φdVdE⋅ J dVdE∇•∫+ Σ∫ t
φ dVdE+ Σ’sφ’ E’ dVdEd∫ +=

χfνtΣ’fφ’ E’dVdEd∫ χ2n2Σ’2nφ’ E’dVdEd∫ … Q dVdE∫+ + +

Σ∫ t
φ dVdE Σ’sφ’ E’ dVdEd∫– Σa∫ φ dVdE=

Σa

td
dN P L S+–=
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where N is the total, unweighted neutron population,

, (24)

P represents the unweighted neutron production rate, 

, (25)

L represents the unweighted neutron lost rate due to leakage and absorption,

, (26)

and S is the unweighted fixed source rate.
 If the neutron production rate is greater than the neutron loss rate, the total neutron popu-

lation will increase with time and, once the shape factor has reached its asymptotic distribution,
will increase at an exponential rate.

. (27)

If we neglect the source term and we insert Eq. (27) into Eq. (23), we obtain the following time-
dependent equation,

. (28)

As a purely arbitrary choice, we divide both sides of Eq. (28) through by the loss rate.
This yields an equation of the form

, (29)

N φ
v
--- dVdE⋅∫=

P χfνtΣ’fφ’ E’dVdEd∫ χ2n2Σ’2nφ’ E’dVdEd∫ …+ +=

L J dVdE∇•∫ Σa∫ φ dVdE+=

N Noeαt=

αN P L–=

ατs κ 1–=
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where we define an instantaneous multiplication factor, κ , as

, (30)

and an unweighted system lifetime, , as

. (31)

The instantaneous multiplication factor, κ, is the total neutron production rate (from all
reactions that produce more than one neutron) per neutron lost from the system by leakage and
absorption. This particular multiplication factor is not the traditional k–eigenvalue used in reactor
physics;22 however, it is very similar. In the traditional k-eigenvalue formulation, the neutron pro-
duction terms associated with (n,2n), (n,3n), …, etc. are usually accounted for adding 2Σ2n , 3Σ3n ,
etc. to the elastic and inelastic scattering cross sections, Σs , so that the k-eigenvalue solution is
based solely on the production of fission neutrons. The k–eigenvalue, thus, satisfies the pseudo-
stationary transport equation written as

. (32)

When written in the above form, we note that the traditional k–eigenvalue corresponds to the
number of fission neutrons produced per neutron lost by leakage and absorption minus those that
are absorbed in (n,2n), (n,3n), ..., etc. multiplied by their respective multiplicity. Fortunately, in
most thermal reactors, the threshold energy required to produce (n,2n), (n,3n), …, etc. reactions is
well above the energy of most fission neutrons. Consequently, the absorption cross sections for
those particular reactions are negligible relative to the total absorption cross section; hence, κ and
k are nearly identical providing the k-eigenfunctions and the α-eigenfunctions are similar—which
may not always be the case. As shown by several authors, when the system is not in the vicinity of
delayed critical, the spectrum of the eigenfunctions obtained from an α-eigenvalue solution can
differ significantly from the spectrum obtained from a k-eigenvalue solution. Unlike thermal sys-
tems, the (n,2n), (n,3n), …, etc. reactions in fast systems can make a discernible contribution.
Using the Godiva system as a test case, Robert Little31 found that keff could be altered between
0.0024 and 0.0049 Δk depending on the exact method used to fold Σ2n and Σ3n into the cross sec-
tion set. 

(As an aside, if a new κ-eigenvalue problem is formulated in accordance with Eq. (30),

κ
χfνtΣ'fφ' E'dVdEd∫ χ2n2Σ'2nφ' E'dVdEd∫ …+ +

J dVdE∇•∫ Σa∫ φ dVdE+
---------------------------------------------------------------------------------------------------------------------=

τs

τs
N

J dVdE∇•∫ Σa∫ φ dVdE+
-----------------------------------------------------------------=

J dVdE∇•∫ Σa 2Σ2n …––( )φ dVdE∫+ 1
k
--- χfνtΣ’fφ’ E’dVdEd∫[ ]=
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the effective delayed-neutron fraction that appears in the point-kinetic model must also be modi-
fied in order to maintain consistency. The value of βi for each delayed neutron group must be low-
ered somewhat to account for the fact that not all neutrons produced in the system leave behind a
trail of fission fragments that can decay by delayed neutron. This can be easily accomplished by
defining a reduced delayed neutron fraction as  where F is given by

.)

Before proceeding, we would like to emphasis that the decision to subtract the integral of
the scattering reaction rate from the integral of the total reaction rate to obtain an integral absorp-
tion rate was purely arbitrary. Furthermore, the decision to divide through by the sum of the leak-
age rate and the absorption rate was also arbitrary. Had we chosen to retain the integral of the
scattering reaction rate on the right-hand side of Eq. (21) and divide through by the sum of the
leakage rate and the total reaction rate, we would obtain

, (33)

where
 

, (34)

and 

. (35)

Equation (34) is, by definition, the instantaneous value of the γ-eigenvalue defined by Ronen,25

which is referred to as the effective collision multiplication factor.30 From a physical standpoint, γ
represents the total neutron production rate (including the neutrons re-emitted following a scatter-
ing interaction) divided by the total interaction rate of neutrons within the system (including leak-
age). As with the k-eigenvalue, the γ-eigenvalue is just another measure of the state of a
multiplying system; when γ<1, the system is subcritical; when γ=1, the system is critical; and,
when γ>1, the system is supercritical. However, unlike the k-eigenvalue, γ is not zero when the
fission source is zero. Even though the numerical value of γ-eigenvalue differs from the k-eigen-
value at a particular system configuration, it is just as meaningful and just as useful in characteriz-

β’i βiF=

F
χfνtΣ’fφ’ E’dVdEd∫

χfνtΣ’fφ’ E’dVdEd∫ χ2n2Σ’2nφ’ E’dVdEd∫ …+ +
---------------------------------------------------------------------------------------------------------------------=

ατcoll γ 1–=

γ
Σ’sφ’ E’ dVdEd∫ χfνtΣ’fφ’ E’dVdEd∫ χ2n2Σ’2nφ’ E’dVdEd∫ …+ + +

J dVdE∇•∫ Σt∫ φ dVdE+
-------------------------------------------------------------------------------------------------------------------------------------------------------------------=

τcoll
N

J dVdE∇•∫ Σt∫ φ dVdE+
----------------------------------------------------------------=
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ing the state of a multiplying system. 
The collision lifetime, τcoll , defined by Eq. (35) represents the mean time per unit neutron

population between interactions of all types (leakage plus collision), whereas, the system lifetime
defined by Eq. (31) represents the mean time per unit neutron population between neutron losses
from the system due to leakage and absorption (i.e., non-scattering events). Obviously, the colli-
sion lifetime can be significantly smaller than the system lifetime since numerous scattering
events can occur prior to a neutron being removed from the system due to an absorption or leak-
age. Since the  in Eqs. (28) and (33) must be the same, it follows that

. (36)

In an analogous fashion, we could just as easily (and just as arbitrarily) move the integral
of the total reaction rate to the right-hand side of Eq. (21) and divide through by the integral of the
leakage rate. This would lead to

, (37)

where

, (38)

and

. (39)

Equation (38) is, by definition, the instantaneous value of the δ-eigenvalue,25-29 which is referred
to as the effective density factor.27,30 As with the k-eigenvalue and the γ-eigenvalue, the δ-eigen-
value is just another measure of the state of a multiplying system; when δ<1, the system is sub-
critical; when δ=1, the system is critical; and, when δ >1, the system is supercritical. Similar to
the γ-eigenvalue, δ is not zero when the fission rate is zero. And finally, the leakage lifetime, τl ,
defined by Eq. (39) represents the mean time per unit neutron population between leakage events. 

Because the vast majority of the nuclear industry uses the k-eigenvalue as their measure of
the degree of departure from a critical condition, we will confine the remainder of this manuscript
to defining various other reaction-rate lifetimes in terms of the system lifetime. 

α

τcoll
τs

---------- γ 1–
κ 1–
------------ γ 1–

k 1–
-----------≈=

ατl δ 1–=

δ
Σ’sφ’ E’ dVdEd∫ χfνtΣ’fφ’ E’dVdEd∫ … Σt∫ φ dVdE–+ +

J dVdE∇•∫
------------------------------------------------------------------------------------------------------------------------------------------=

τl
N
J dVdE∇•∫

-----------------------------=
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V. GENERAL DEFINITION OF A NEUTRON LIFETIME

From Eq. (31), we note that the unweighted system lifetime is the unweighted neutron
population divided by the rate at which neutrons are being lost from the system via leakage and
absorption. That is,

. (40)

In general, we can define any number of unweighted neutron lifetimes corresponding to
any arbitrary type of reaction as

, (41)

where Nj is the total neutron population in volume Vj , and Ii is an interaction rate or the sum of
several interaction rates representing a particular process. For example, we can rewrite Eq. (40) in
terms of a leakage lifetime, τl , and an absorption lifetime, τa , as

, (42)

where

, (43)

and

. (44)

From Eq. (42), we note that the reciprocal of the system lifetime is the sum of the recipro-
cals of the leakage lifetime and the absorption lifetime (i.e., the sum of the harmonics). 

. (45)

The leakage lifetime can be related more directly to the system lifetime by noting that the
ratio of the leakage rate to the total loss rate is, by definition, the probability of a leakage event,

N
τs
---- J dVdE∇•∫ Σa∫ φ dVdE+=

Nj
τi
----- Ii≡

N
τs
---- N

τl
---- N

τa
-----+=

N
τl
---- J dVdE∇•∫=

N
τa
----- Σa∫ φ dVdE=

1
τs
---- 1

τl
---- 1

τa
-----+=
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.

. (46)

Hence,

. (47)

In a similar fashion, the absorption lifetime can be related to the total system lifetime by
taking the ratio of the absorption rate to the total loss rate. This leads to,

, (48)

where  is the probability of a neutron absorption. Upon rearrangement, we obtain

. (49)

When Eqs. (47) and (49) are inserted back into Eq. (45), we obtain an equality since the sum of
the probabilities of leakage and absorption must, by definition, add to 1.0 [see Eqs. (46) and (48)].

We can also express the leakage lifetime and the absorption lifetime in terms of other con-
stituent lifetimes. For example, the absorption rate is comprised of numerous types of parasitic
captures and several types of neutron production reactions [see Eq. (15)]. Consequently, we can
write the sum of the various absorption reaction rates as

(50)

in which,

, (51)

pl

τs
τl
----

J dVdE∇•∫
J dVdE∇•∫ Σa∫ φ dVdE+

----------------------------------------------------------------- pl= =

τl
τs
pl
----=

τs
τa
-----

Σa∫ φ dVdE

J dVdE∇•∫ Σa∫ φ dVdE+
----------------------------------------------------------------- pa= =

pa

τa
τs
pa
-----=

N
τa
----- N

τf
---- N

τ2n
------- N

τ3n
------- … N

τγ
---- N

τp
----- N

τα
----- …+ + + + + + +=

N
τf
---- Σf∫ φ dVdE=
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and so forth. Each of these constituent lifetimes is related to the system lifetime as

, (52)

where

, (53)

and so forth. 
As before, we can state that the reciprocal of the absorption lifetime is the sum of the har-

monics of the various constituent lifetimes associated with absorption reactions.

, (54)

where

. (55)

Up to this point, we have dealt primarily with lifetimes that are associated with loss mech-
anisms—leakage and absorption. However, we can also define similar lifetimes associated with
the production of neutrons. We begin by defining the neutron production lifetime, , as

. (56)

The neutron production lifetime, , is an unweighted version of the neutron generation time
found in the one-region, point-kinetic model. It can be related to the unweighted system lifetime
by dividing Eq. (56) by Eq. (40) and recalling the definition of the κ-eigenvalue [see Eq. (30)].
Hence,

. (57)

τf
τs
pf
----=

pf

Σf∫ φ dVdE

J dVdE∇•∫ Σa∫ φ dVdE+
-----------------------------------------------------------------=

1
τa
----- 1

τf
---- 1

τ2n
------- 1

τ3n
------- … 1

τγ
---- 1

τp
----- 1

τα
----- …+ + + + + + +

pa
τs
-----= =

pa pf p2n p3n … pγ pp pα …+ + + + + + +=

τπ

N
τπ
----- χfνtΣ'fφ' E'dVdEd∫ χ2n2Σ'2nφ' E'dVdEd∫ …+ +=

τπ

τπ
τs
κ
----

τs
k
----≈=
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(The neutron generation time will be discussed more in a later section). We can also express the
neutron production lifetime in terms of the previously defined fission lifetime, , and the (n,2n)
lifetime, etc. 

. (58)

VI. ELASTIC AND INELASTIC SCATTERING LIFETIMES

So far, we have concentrated mainly on lifetimes associated with reactions that remove
and/or produce neutrons in multiplying and nonmultiplying systems. We have said very little
about the elastic and inelastic scattering lifetimes, which can be of great interest when analyzing
the multiple die-away modes that are frequently observed in nuclear well-logging measurements.
For example, in the standard pulsed-neutron, well-logging technique, a short burst of 14 Mev
neutrons is injected into a rock formation. The subsequent die-away of these neutrons is observed
indirectly by measuring photons produced by a wide variety of neutron-induced reactions that
occur in the formation. During the initial part of the die-away, the photon flux is dominated by
those photons produced by inelastic scatterings in the iron casing that typically lines the bore
hole. These photons die-away at a relatively fast rate and eventually disappear as the neutrons
moderate and drop below the threshold energy required for inelastic scattering to occur. At late
times, the photon flux is predominantly produced by photons created during the radiative capture
of those neutrons that survived long enough to become thermalized. We can define a time con-
stant associated with elastic and inelastic scattering in the same fashion as we did when we
defined a system lifetime. That is,

, (59)

and

. (60)

The elastic and inelastic scattering lifetimes are also of some interest in reactor physics.

τf

1
τπ
----- νt

τf
---- 2

τ2n
------- …+ +=

N
τn
----- Σ’nφ’ E’ dVdEd∫=

N
τn’
----- Σ’n’φ’ E’ dVdEd∫=
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The ratio of the total scattering rate to the loss rate is a direct measure of the average number of
scatterings that occur prior to a neutron being lost from the system. 

. (61)

This quantity can be used as a qualitative measure of the moderating power of various core mate-
rials.

VII. ALTERNATIVE FORMS OF THE UNWEIGHTED
 SYSTEM LIFETIME

In the previous sections, we presented a methodology for formulating neutron lifetimes
based on various reaction rates and, in all cases, we related those lifetimes to the system lifetime.
The system lifetime was chosen as our reference lifetime simply because it is the lifetime that is
associated with the instantaneous multiplication factor, κ, which is nearly identical to k in most
systems. We could have just as easily related all of the various lifetimes to the collision lifetime
[see Eq. (35)], which, as previously mentioned, is the lifetime associated with the γ-eigenvalue. 

Furthermore, we wrote all of the lifetime equations in terms of the total, unweighted neu-
tron population, N. However, when evaluating , it is much more convenient to express the total
neutron population N in terms of the neutron flux distribution in the system. This is accomplished
by noting that the spatial– and energy–dependent neutron density, n(r,E,t), is related to the total
neutron flux by . Hence, the total neutron population in volume V can
be obtained by integrating the neutron density over space and energy.

. (62)

Therefore, Eq. (31) can now be written as

. (63)

τscat
τs

----------
Σ'nφ' E' dVdEd∫ Σ'n’φ' E' dVdEd∫+

J dVdE∇•∫ Σa∫ φ dVdE+
-------------------------------------------------------------------------------------- C= =

τs

φ r E t, ,( ) vn r E t, ,( )=

N φ
v
--- V Edd⋅∫=

τs

φ
v
--- V Edd∫

J dVdE∇•∫ Σa∫ φ dVdE+
-----------------------------------------------------------------=



Definition of Neutron Lifetime 25  January 22. 1997

When written in this form,  can be readily evaluated using the flux solution generated by a
deterministic or Monte Carlo code.

The system lifetime defined in Eq. (63) is expressed in terms of the total loss rate due to
leakage and absorption. It can also be written in terms of the total neutron production rate and the
effective multiplication factor, κ. Recall from Section IV, we arbitrarily chose to divide Eq. (28)
through by the loss rate, L. This produced an equation of the form

, (64)

from which we defined N/L as τs and P/L as κ [see Eq. (29)]. However, we could just as easily
have chosen to divide Eq. (28) through by the neutron production rate, P. This would lead to

, (65)

which is equivalent to

. (66)

By comparison with Eq. (29), we note that the system lifetime, τs , can also be expressed as

. (67)

Note that when the production rates associated with (n,2n), (n,3n), etc. are small, κ
becomes almost identical to k and Eq. (67) reduces to

. (68)

Furthermore, under steady-state conditions such as subcritical source equilibrium, we can

τs

αN
L
---- P

L
--- 1–=

αN
P
---- 1 L

P
---–=

α N
P
----⎝ ⎠
⎛ ⎞ κ κ 1–=

τs

κ φ
v
--- dVdE∫

χfνtΣ’fφ’ E’dVdEd∫ χ2n2Σ’2nφ’ E’dVdEd∫ …+ +
---------------------------------------------------------------------------------------------------------------------=

τs

keff
φ
v
--- dVdE∫

χfνtΣ’fφ’ E’dVdEd∫
----------------------------------------------=
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also write the system lifetime as a function of the neutron production rate since the total loss rate
must be equal to the total production rate. Hence, 

. (69)

where s is an intrinsic source and Jin is an influx of neutrons from an external source.
Using Eqs. (63) and (68), we can now derive a couple well–known expressions for the

neutron lifetime in multiplying and nonmultiplying mediums. If we assume one energy group of
neutrons and an infinite medium (i.e., no leakage), then Eq. (63) reduces to

, (70)

where

, (71)

and

. (72)

Making these same assumptions in Eq. (68) leads to

, (73)

where we have neglected all nonfission neutron production terms in the denominator.

τs

φ
v
--- dVdE∫

νtΣfφ dVdE∫ 2Σ2nφ dVdE∫ ...+ + Jin dVdE∇•∫ s dVdE∫+ +
----------------------------------------------------------------------------------------------------------------------------------------------------------=

τs
1

vΣa

---------=

Σa
Σa∫ φ dVdE

φ dVdE∫
-----------------------------=

v
φ dVdE∫
φ
v
--- dVdE∫

-----------------------=

τs
keff

v νtΣf( )
------------------=



Definition of Neutron Lifetime 27  January 22. 1997

VIII. ADJOINT-WEIGHTED SYSTEM LIFETIMES

In multiplying systems, the importance of an individual neutron is a function of its posi-
tion, energy, and the direction it is traveling. This stems from the fact that a neutron born in the
center of a multiplying system is less likely to leak from the system than a neutron born at the
edge of the system and, thus, has a greater chance of being absorbed in a fission reaction that can
further propagate a fission chain. When coupled with the fact that a neutron born in the center of
the system lives longer, on an average, than a neutron born at the outer edge, the lifetime that best
characterizes the dynamic behavior of a multiplying system must take into account the impor-
tance of each neutron in the system. The adjoint flux is a measure of this importance.

To derive an expression for the adjoint-weighted system lifetime, we first define the angu-
lar adjoint flux as the function that satisfies the following equation. 

, (74)

where

,
,

, and
. 

If we multiply Eq. (20) by  and we integrate over angle, energy, and space, we obtain
an equation of the form

, (75)

where  is the total, adjoint-weighted neutron population, defined as

, (76)

 represents the adjoint-weighted neutron production rate, defined as

Ω– Φ+ r Ω E, ,( )∇⋅ ΣtΦ
+ r Ω E, ,( )+ =

Σ’sΦ
+ r Ω’ E’, ,( ) Ω’ E’dd∫ fπΣ’πΦ

+ r Ω’ E’, ,( ) Ω’ E’dd∫+

Σt Σt r Ω E, ,( )=
Σ’s Σ’s r Ω E, Ω’ E’,→;( )=
fπ fπ r Ω E, Ω’ E’,→;( )=
Σ’π Σ’π r Ω E, Ω’ E’,→;( )=

Φ+

td
dN+

P+ L+– S++=

N+

N+ Φ+Ψ
v

------------ dΩdVdE∫=

P+



Definition of Neutron Lifetime 28  January 22. 1997

(77)

 represents the adjoint-weighted lost rate due to leakage and absorption, defined as

, (78)

and  is the adjoint-weighted source rate.
As before, if  is not equal to  and the shape factor has reached its asymptotic distri-

bution, the total, adjoint-weighted neutron population will increase (or decrease) at an exponen-
tial rate.

. (79)

If we neglect the source term and we insert Eq. (79) into Eq. (75), we obtain an equation of the
form,

. (80)

Again, by arbitrary choice, we divide both sides of Eq. (80) through by the loss rate. This
yields,

, (81)

where κ+ is given by

, (82)

and the adjoint-weighted system lifetime is defined as

P+ Φ+χfνtΣ’fΨ’ dΩ E’dVdEd∫ Φ+χ2n2Σ’2nΨ’ dΩ E’dVdEd∫ …+ +=

L+

L+ Φ+ J dΩdVdE∇•∫ Φ+Σa∫ Ψ dΩdVdE+=

S+

P+ L+

N+ No
+eα

+t=

α+N+ P+ L+–=

α+τs
+ κ+ 1–=

κ+ Φ+χfνtΣ’fΨ’ dΩ E’dVdEd∫ Φ+χ2n2Σ’2nΨ’ dΩ E’dVdEd∫ …+ +

Φ+ J dΩdVdE∇•∫ Φ+Σa∫ Ψ dΩdVdE+
------------------------------------------------------------------------------------------------------------------------------------------------------------=
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, (83)

Alternatively, we can just as easily divide Eq. (80) through by the adjoint-weighted pro-
duction rate to obtain the equivalent definition of the adjoint-weighted system lifetime written in
terms of the adjoint-weighted neutron production rate and the effective multiplication factor, κ+.

, (84)

Note that when the (n,2n), (n,3n), ..., etc. production sources are negligible, Eq. (84)
reduces to the very familiar transport expression for the adjoint-weighted system lifetime,

. (85)

Using the same arguments presented in Section V, we can now define an adjoint-weighted
absorption lifetime as

. (86)

By taking the ratio of Eq. (83) to Eq. (86), we obtain

, (87)

τs
+

Φ+Ψ
v

------------ dΩdVdE∫
Φ+ J dΩdVdE∇•∫ Φ+Σa∫ Ψ dΩdVdE+

---------------------------------------------------------------------------------------------------=

τs
+

κ+ Φ+Ψ
v

------------ dΩdVdE∫
Φ+χfνtΣ’fΨ’ dΩ E’dVdEd∫ Φ+χ2n2Σ’2nΨ’ dΩ E’dVdEd∫ …+ +

------------------------------------------------------------------------------------------------------------------------------------------------------------=

τs
+

keff
Φ+Ψ

v
------------ dΩdVdE∫

Φ+χfνtΣ’fΨ’ dΩ E’dVdEd∫
------------------------------------------------------------------=

N+

τa
+

------ Φ+Σa∫ Ψ dΩdVdE=

τa
+ τs

+

pa
-----=



Definition of Neutron Lifetime 30  January 22. 1997

where Pa is the adjoint-weighted absorption probability.

. (88)

Following the methodology, we can define an adjoint-weighted leakage lifetime as

, (89)

where pl is the adjoint-weighted leakage probability. And, as before, the reciprocal of the adjoint-
weighted system lifetime is the harmonic sum of the constituent lifetimes. That is,

. (90)

IX. GENERATION TIME

Using the definitions presented in the previous sections, we can rewrite the time-depen-
dent transport equation (integrated over angle, energy, and space) in the simple form,

. (91)

The first term on the right-hand side of Eq. (91) represents the rate at which neutrons are pro-
duced by fission, (n,2n), (n,3n), ..., reactions, etc.; the second term represents the rate at which
neutrons appear in the system due to intrinsic/external neutron sources; and the third term repre-
sents the rate at which neutrons are being lost from the system due to leakage and absorption.

Even though Eq. (91) balances adjoint-weighted neutrons, it does not explicitly account
for the time-dependent rate at which delayed neutrons appear in the system following a fission. To
properly account for delayed neutrons, we need to rewrite Eq. (91) as a system of coupled, differ-
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ential equations.

, (92)

and

for i=1,m (93)

where Ci
+ is the adjoint-weighted precursor concentration, λi is the decay constant of the ith pre-

cursor group, m is the number of delayed neutron groups, and  is the reduced, adjoint-weighted
delayed neutron fraction of the ith precursor group. The first term on the right-hand side of
Eq. (92) represents the number of prompt neutrons produced per unit time; the second term repre-
sents the rate at which delayed neutrons from all precursor groups are appearing in the system; the
third term is the adjoint-weighted source rate; and, the fourth term is the total adjoint-weighted
loss rate. Similarly, the first term on the right-hand side of Eq. (93) represents the rate at which
delayed neutrons in the ith delayed neutron group are produced by fission, and the second term
represents the rate at which delayed neutrons are born due to precursor decay. 

We can rewrite Eq. (92) as,

. (94)

If we define reactivity, ρ, as

, (95)

and an adjoint-weighted neutron generation time, , as

, (96)

then Eqs. (92) and (93) can be rewritten as

, (97)
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and

for i=1,m. (98)

This system of equations is the one-region, point kinetic model based on the instantaneous
multiplication factor κ rather than keff . Note that when the (n,2n), (n,3n), ..., etc. reactions within a
particular system are negligible, then , , and ρ = (keff – 1)/keff ; hence, Eqs. (97)
and (98) collapse back to the traditional one-region, point kinetic model.

The one-region, point kinetic model is usually written in terms of reactivity, ρ, and the
adjoint-weighted neutron generation time rather than the effective multiplication factor and the
adjoint-weighted system lifetime. This stems from the fact that in the vicinity of delayed critical,

 is nearly constant, whereas,  varies as , where  is the system lifetime at delayed
critical. Hence, by writing the point kinetic model in terms of ρ and , the dynamic behavior of
the system can sometimes be described using the same set of coupled differential equations with
the quite reasonable assumption that the coefficients are constant in the vicinity of delayed criti-
cal.

Using Eq. (84) and the definition of the adjoint-weighted system lifetime, we note that Λr

corresponds to 

, (99)

or, as,

. (100)

As with the adjoint-weighted system lifetime, if the (n,2n), (n,3n), ..., reactions are negli-
gible, then Eq. (100) reduces to the very familiar transport equation for the neutron generation
time,
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. (101)

The physical interpretation of  is best seen by rewriting Eq. (100) as,

. (102)

From this equation we note that  is the mean time between the appearance of a production
neutron (per unit neutron population), whereas, the adjoint-weighted system lifetime is the mean
time between the loss of a neutron due to leakage or absorption. When the effective multiplication
factor is less than one, neutrons are being lost at a rate that is faster than the rate at which they are
being produced; consequently, the neutron generation time will be larger than the neutron system
lifetime. When the multiplication factor is greater than one, the opposite is true; and, at delayed
critical, the generation time and the system lifetime must be equal since neutrons are being pro-
duced and lost at the same rate.

X. LIFETIME ALGORITHMS IN MONTE CARLO CODES

In the previous sections, we presented a set of equations that define a wide variety of
unweighted and adjoint-weighted system lifetimes and/or neutron generation times written in
terms of the angular–, energy–, and spatially–dependent neutron and adjoint fluxes. To evaluate
these equations, one must obviously know these fluxes. For simple geometries, these fluxes can
be estimated using a deterministic code which provides a rather complete description of the fluxes
throughout the system. A Monte Carlo code does not include such fine detail but instead provides
integral values for various reaction rates within the system from which an estimate of the
unweighted system lifetime can be determined. Using more advanced time-dependent Monte
Carlo techniques, one can even determine the adjoint-weighted system lifetime. Furthermore,
Monte Carlo codes are not confined to simple geometries. Hence, it is worthwhile to understand
the lifetime algorithms used in Monte Carlo codes so that the meaning of the lifetime values can
be properly interpreted. In this section, we describe two different lifetime algorithms that are
commonly used in Monte Carlo codes that yield estimates of the unweighted system lifetime—
the last-event estimator and the collision estimator.

Last-Event Estimator
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The last-event estimator tracks each neutron until it is lost from the system due to either
absorption or leakage. Other collision events, such as elastic and inelastic scatterings, that occur
prior to absorption or leakage do not add to the absorption or leakage score—only the last event is
counted (i.e., the absorption or the leakage). Two tallies are maintained in this method; the first
tally contains the life span of those neutrons that were absorbed and the second tally contains the
life span of those neutrons that leaked.The average absorption life span, , is calculated as

, (103)

where Tn is the total length of time from birth to absorption and Na is the total number of particles
that were absorbed.The average leakage life span, , is calculated as

, (104)

where Nl is the total number of particles that leaked from the system.
Based on these two average life spans and the fraction of neutrons involved in each type

of event, the average, unweighted system lifetime is estimated by

, (105)

where  is the total fraction of neutrons that are lost in an absorption reaction, and  is the frac-
tion of neutrons that leak from the system. The fractions and  are related to Na and Nl as

, (106)

and

. (107)

These definitions are equivalent to the expressions previously given in Eqs. (46) and (48).
From a physical standpoint, the average neutron life span for a particular process repre-
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sents the average life expectancy (i.e., time from birth to death) for a neutron to have a reaction of
a particular type, whereas, the system lifetime is a measure of the mean time per unit neutron
population between loss events. 

Collision Estimator

In the collision-estimator method, neutron histories are not terminated following absorp-
tion. Each neutron is tracked until it either leaks out of the system, or drops below a predeter-
mined weight cutoff value. The neutron lifetime is determined by summing the time required to
reach the ith collision point, weighted by the probability of reaching that collision point. In this
fashion, each collision point contributes some information to the average lifetime estimate. To
demonstrate this estimator, consider the following example. 

Assume that a neutron is born at some random location somewhere in the system and, dur-
ing a random walk, has three collisions prior to leaking (see Figure 1). Let’s further assume that
the time from birth to the first collision is 1 µs, and that the time between the first, second, and
third collisions is also 1 µs. After the 3rd collision, we assume it takes another 1 µs for the neutron
to reach a leakage surface. At each collision point, the probability of absorption, Pa=Σa /Σt , is
60% and the probability of scattering, Ps=Σs /Σt , is 40%. The average lifetime corresponding to
this particular neutron history would be

Birth 1st Collision 2nd Collision 3rd Collision Leakage

1 µs 1 µs1 µs1 µs

Fig. 1. Synoptic Diagram for Collision-Estimator Example.

Pa = 0.6 Pa = 0.6 Pa = 0.6

Ps = 0.4 Ps = 0.4 Ps = 0.4
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.

The first term on the right-hand side of the above expression corresponds to the time elapsed
since birth (i.e., 1 µs) multiplied by the probability of being absorbed on the first collision. The
second term corresponds to the time elapsed since birth (i.e., 2 µs) multiplied by the probability of
being scattered on the first collision and then being absorbed on the second collision. The three
term corresponds to the time elapsed since birth (i.e., 3 µs) multiplied by the probability of being
scattered on the first and second collision and then being absorbed on the third collision. And
finally, the last term corresponds to the time elapsed since birth (i.e., 4 ms) multiplied by the prob-
ability of being scattered on the first, second, and third collisions and then leaking from the sys-
tem.

We can generalize this lifetime calculation based on N total neutron histories.f For the nth

neutron history, the probability of an absorption at the ith collision point, , corresponds to

, (108)

where  is the macroscopic absorption cross section corresponding to the energy of the incident
neutron, and  is the total macroscopic cross section corresponding to the energy of the incident
neutron. The number of neutrons not absorbed is, of course, the scattering probability, , which
is defined as

, (109)

where  is the macroscopic scattering cross section corresponding to the energy of the incident
neutron. The probabilities  and  do not correspond to the previously defined probabilities
pa and pl . The latter quantities, pa and pl, are relative to the total loss rate, whereas,  and 
are relative to the collision interaction rate.

The average lifetime corresponding to the nth neutron history is obtained from the follow-
ing finite series.

f. The following derivation was a collaboration between G. D. Spriggs (LANL) and Lester M. Petrie (ORNL).
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, (110)

where  is the time from birth to the first collision,  is the time from the first collision to
the second collision, and so forth, and Jn is the total number of collisions the particle had before
leaking from the system. 

For convenience, we define

,

,

,

, (111)

and

,

,

,

. (112)

Using these definitions, Equation (110) reduces to

, (113)
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which, in summation form, can be written as

. (114)

For N neutron histories, the average system lifetime is calculated by

, (115)

or

. (116)

We cannot present a formal proof that demonstrates that Eqs. (105) and (116) are equiva-
lent to the unweighted system lifetime defined by Eq. (31). However, this is easily demonstrated
by comparing results from a deterministic code and a Monte Carlo code. These results will be
presented in a subsequent manuscript. Notwithstanding this formal proof, we can demonstrate
that both Eqs. (105) and (116) reduce to the definition of the infinite-medium lifetime.

If we assume an infinite system, then the number of neutrons that leak will be zero.
Hence, pl = 0 and pa = 1.0 in Eq. (105). Therefore, τs is identically equal to . A neutron travel-
ing at the average velocity  will travel an average distance of da in the average time . By defi-
nition, da is equal to 1/Sa. So, τs is equal to

. (117)

Similarly, Equation (116) reduces to Eq. (117) if we assume no leakage (i.e.,  for
each nth history) and further assume
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where . 
By assuming that the times between collisions are all identically equal to the average,

,

then we can write . Hence, Eq. (116) reduces to

. (118)

In the limit, the last term inside of the summation goes to zero and the infinite series converges to

. (119)

Consequently, Eq. (118) becomes

, (120)

where, by definition,

. (121)

We also note that the average time between collision is equal to the average distance trav-
eled between collisions, , divided by the average velocity of the system neutrons.

. (122)
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Since the average distance traveled between collisions is identically equal to 1/Σt , then it follows
that

. (123)

We mentioned earlier that the adjoint-weighted system lifetime can be ascertained using
time-dependent Monte Carlo techniques. This will be discussed in more detail in a subsequent
manuscript.

XI. CONCLUSIONS

In this work, a set of equations derived from the transport equation have been presented
that define unweighted and adjoint-weighted lifetimes characterizing various reaction rates. We
showed that a lifetime τi , defined in the general form,

,

represents the mean time per unit neutron population between interactions of the ith kind.
We have also shown that the α-eigenvalue corresponding to the asymptotic solution of the

transport equation can be written in the general form,

,

where x corresponds to the instantaneous value of the x-eigenvalue. When x corresponds to κ, τx

corresponds to the system lifetime; when x corresponds to γ, τx corresponds to the collision life-
time; and so forth. Since it is more customary to work with k-eigenvalues in reactor physics appli-
cations and criticality safety, we have concentrated on defining the system lifetime—which
represents the mean time per unit neutron population between loss events resulting from absorp-
tion and leakage. In addition, we demonstrated how other lifetimes can be formulated in terms of
the system lifetime.

And finally, we have described two different lifetime estimators used in Monte Carlo
codes. The last-event estimator is based on the determination of the absorption and leakage life
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spans. A neutron life span represents the mean time from birth-to-event, whereas, a neutron life-
time represents the mean time per unit neutron population from event-to-event.
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