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ESTIMATION AND INTERPRETATION OF kejj
CONFIDENCE INTERVALS IN MCNP

by

Todd J. Urbatsch=, R. Arthur Forster,
Richard E. Prael, and Richard J. Beckman

ABSTRACT

MCNP’S criticality methodology and some basic statis-
tics are reviewed. Confidence intervals are discussed, as well
as how to build them and their importance in the presenta-
tion of a Monte Carlo result. The combination of MCNP’S

three k,jj estimators is shown, theoretically and empirically,

by statistical studies and examples, to be the best k,jf es-

timator. The method of combining estimators is based on

a solid theoretical foundation, namelyl the Gauss-Markov

Theorem in regard to the least squares method. The con-

fidence intervals of the combined estimator are also shown

to have correct coverage rates for the examples considered.
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Reading This Report
We anticipate that the readers of this report will possess a broad spectrum of desires and
technical backgrounds. Therefore, we outline our perceived levels for reading this report.

Level 1.You desire only a briefing on how M CNP performs a criticality calculation and
which estimator you should use. Read the Introduction, Section 2: Monte Carlo Cal-
culation of k.jf for Confidence Intervals, Section 4: M CN P’s k~jj Estimators, and the
Conclusion.

Level 2. You want a briefing on how MCNP performs a criticality calculation, the basic
statistics behind the calculation, which estimator to use, and how to build a confidence
interval. Read the Introduction, Section 2: Monte Carlo Calculation of k,jj for Confi-
dence Intervals, Section 3: Basic Statistical Concepts in Statistical Inference, Section
4: MCNP’S k.jj Estimators, the part of Section 5 entitled Statistical Studies for the
Three-Combined Estimator, and the Summary and Conclusions.

Level 3. You are familiar with Monte Carlo criticality calculations and want to know about
the combined estimator in detail. Read from the Introduction to the Summary and
Conclusions, skipping Section 2, if desired. Additionally, you may want to take a good
look at the Appendices to gain some background on common distributions arising in
statistics, to gain insight on linear regression solved by both the least squares and
maximum likelihood methods, and to look at the propagation of variance bias in the
combined estimator.

I. INTRODUCTION

Throughout this report, we emphasize that MCNP does not produce a point estimate
of the system kejf. It provides a range of values that, with some specified confidence, will
include the true k~tj. In this report, a true value from a stochastic calculation is the precise
value for an infinite number of histories. To increase the probability that the range includes
the true k,jj, either more histories need to be run, or the range must be increased. This
range is called a confidence interval and goes hand-in-hand with any Monte Carlo result. We
will describe how to construct confidence intervals from the estimate of k,jj and its standard
deviation or, in general, any mean and standard deviation.

MCNP has three separate k,jj estimators: the collision, absorption, and track length
estimators. Each one has its own characteristic qualities that allow it to perform better for
different physical and computational situations. The best kejf estimator is the least squares
combination of them, or, more appropriately, the maximum likelihood combination with the
additional constraint of an underlying multivariate normal distribution. The Gauss-Markov
Theorem states that, for a known covariance matrix, the least squares combination has
the minimum variance among all estimators. ] ,.h.pter vz;2?,p.ge 14;3,page 198 M(JNP Combines its

three estimators using least squares, or maximum likelihood, but it uses a covariance matrix
estimated from the data. This results in an almost-optimum estimator that approaches the
optimum estimator with increasing cycles and is the best available estimator. We derive
the detailed method of combining the three estimators; the derivation is based heavily on a
paper by Max Halperin.4
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We examine the behavior of the combined estimator, both theoretically and empirically.
The most striking behavior of the combined estimator is that it sometimes lies outside the
range of highly and positively correlated individual estimators. This behavior is absolutely
correct and should cause no concern. The issue was taken up by the nuclear data community
in the form of “Peelle’s Pertinent Puzzle” and has brought about better understanding of

the application and behavior of the least squares method of combining data. The results
of a statistical simulation demonstrate the efficacy of combining three estimators that are
relatively highly correlated. We also perform statistical studies on MCNP results for a
homogeneous U-233/water mixture in both finite and infinite mediums, the Godiva reactor,
a simplified Jezebel reactor, and a two-component system. All the examples supply further
evidence of the superiority of the three-combined estimator.
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II. MONTE CARL,O CALCULATION OF k.fj FOR CONFIDENCE INTER-
VALS

MCNPTM is a general Monte Carlo code for neutron and radiation transport with a
specific option applicable to nuclear criticality: estimating the k=jj of a multiplying system.
Once k.jj is estimated, it is used with its estimated standard deviation to’ build a k,jt
confidence interval, as discussed in Section B.

A. /i,jj Defined

k,tj is generally thought of as the ratio of the number of neutrons in one generation to
the number in the previous generation in a system containing fissionable material. It is the
dominant eigenvalue of the neutron transport equation and is used to describe the state of
criticality of a fissionable system. Therefore, k,jj may also be thought of as the number by
which u must be divided to make the system exactly critical, where ti is the average number
of neutrons produced per fission. It can also be thought of as the ratio of neutron production
to neutron loss. If production equals loss, then kejj = 1 and the system is said to be critical.
If the production is less than the loss, k,jj <1, the system is subcritical, and, in the absence
of neutron sources, the number of neutrons decreases with each subsequent generation. If
the production is greater than the loss, k,jj > 1, the system is supercritical, and the number
of neutrons increases with each generation.

B. Monte Carlo Criticality Methodology

A Monte Carlo criticality calculation literally approximates the neutron generations by
discrete cycles, where each cycle is made up of simulated neutrons. The term “cycle” refers
to a computational approximation of a generation. Instead of simulating the actual number
of neutrons in a generation, say 108 to 1016, only computationally practical numbers are
simulated, on the order of hundreds or thousands. The simulated neutrons, one by one,
are transported through their lifetime, from birth to death. The simulated neutron lifetime
is termed a “history.” Both the number of cycles and histories per cycle are specified by
the user. Appropriate physical probability density functions are sampled to determine the

energy of the newly born neutron, what direction and how far it travels before its next colli-
sion, with which isotope it collides, whether it scatters or is absorbed, the number of fission
neutrons produced, if any, and so on. A key to the Monte Carlo criticality calculation is
the production of new fission neutrons. If, at a collision, a fission neutron is produced, it is
stored and becomes one of the starting fission neutrons for the next cycle. The fission produc-
tion is normalized so that the original number of starting fission neutrons is approximately
maintained for each cycle.

At every collision with a fissionable isotope, an appropriate contribution is made to the
collision and absorption estimators. For every distance traversed in a fissionable material, a
contribution is made to the track length estimator. At the end of a cycle, when all of the
fission neutron histories have been completed, the values of the estimators are three separate,
but correlated, estimates of k,jj for that cycle.

MCNP is a trademarkof the Regents of the Universityof California, Los Alamos National Laboratory.
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Before accumulating any k,jj or other tally data, enough cyclw must be performed so
that the fission neutrons are distributed according to the fundamental eigenmode of the
system. These cycles are called the inactive, or settling, cycles. Unlike a deterministic
calculation, a Monte Carlo criticality calculation doe-s not produce meaningful Ii,jj and tally
results until the spatial fission source distribution converges. Given that the dominance ratio
is the ratio of the second eigenvalue to the dominant eigenvalue, it is seen that for systems
with large dominance ratios, usually large systems, the higher order eigenmodes will persist,
and the calculation will require a large number of settling cycles. Good spatial sampling
is paramount to reaching, and maintaining, the fundamental eigenmode. Maintaining the
fundamental eigenmode may become difficult when you consider that the spatial distribution
of fission neutrons is correlated between cycles. If, at some cycle, there are statistically too
many neutrons in a region of the system, the large number will probably still remain at the

next cycle. The same argument applies to an undersa.mpled region of the system. The effects
of the cycle-to-cycle correlation are even more pronounced for systems with high dominance

ratios, because there is effectively less neutron communication between different regions of
the system.

Once the active cycles begin, the cycle k.jj estimates are accumulated. For each of the
three estimators, the cycle kej j estimates are averaged over all active cycles to give the best
estimate for that particular estimator. At any given active cycle, the average and standard
deviation for each individual estimator are presented as confidence intervals, a range that
should contain the true value of kejj with some given probability. MCNP presents the 6870,

95%, and 99% confidence intervals. The three individual estimates (collision, absorption, and
track length) are then optimally combined to give the best estimate of k. jj, which is also

presented as three confidence intervals. Users may also build their own confidence intervals
by using MCNP’S estimate and standard deviation and looking up Student’s t-percentile for
the desired confidence level and the number of degrees of freedom. The Student’s distribution
and the process of building a confidence interval are presented in Section 111.B.

MCNP checks to see that the cycle estimates for each estimator appear to be normally
distributed. If the estimates do not appear normally distributed, it may indicate that the
source has not converged. MCNP also produces estimates for batches of various numbers
of cycles. For example, a run with 100 active cycles could be batched into 50 batches of 2
cycles each or 25 batches of 4 cycles each, alt bough, for statistical p~lrposes, any batch data
considered should contain at least 30 batches. The purpose of the batching is to see that the
unhatched results do not differ significantly from the batched results. If they do differ, the
cycle-to-cycle correlation may be contributing to an underestima.tion of the variance.

To find the optimum number of inactive and active cycles, MCNI? presents the estimates
with different number of skipped cycles. At some number of inactive cycles, the variance of

the combined estimate is a minimum, due to the competition between source convergence
and having a statistically significant number of active cycles. These checks in M C!NP are
part of the new statistical package in version 4A.

When determining the number of neutron histories per cycle and the number of cycles to
run, there are some considerations to keep in mind. Assuming a certain limit on computer
resources, there will be a trade-off between these two values. A large number of histories
per cycle may give a cycle estimate with small inherent variance, but the effectively reduced
number of cycles will not allow for convergence of the source. Conversely, a large number of

6



cycles with a small number of histories per cycle, may allow the source to converge faster, but
the variance of the estimators will be higher.5 Poor spatial sampling is also a consideration
with few neutrons per cycle. Bias is another pitfall. Given that the entire phase space is
adequately sampled, the remaining bias in k~jj is that which is inversely proportional to the
number of histories per cycle. Also, Gelbard and Gu show6 that

(1)

where CTis the true standard deviation of k at the end of the problem, k is the true kcjj,
N is the number of cycles, and 6k is the bias. For example, if the relative error was 0.0025
and N is less than 800, then the bias will be less than a standard deviation, and therefore
negligible. Note that the bias itself is independent of N since 02 goes as 1/Af. Therefore, one

desires an adequate number of histories per cycle and a number of cycles that is statistically
large enough, but not too large such that the bias in the Ic,jj estimate becomes a significant
fraction of the final estimated standard deviation.
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III. BASIC STATISTICAL CONCEPTS IN STATISTICAL INFERENCE

The Monte Carlo method is computational experimentation. Data are collected and
statistically analyzed in an attempt to estimate true values associated with an underlying,

generally unknown, distribution. Using finite samples to acquire knowledge of a distribution
is called statistical inference,7 a practice that, for the Monte Carlo method, translates the

accumulated data into results. The data collected are called observable and, in Monte
Carlo, are samples of random variables because they originate from independent stochastic
processes. From the data, then, are estimated the sample mean and sample variance. For
Monte Carlo, the culmination of statistical inference is the determination of a confidence
interval, that is, a range that includes the true value with some specified confidence.

A. Random Variables and Probability Distributions

A random variable is associated with a probability distribution that describes the rela-

tive frequency of all possible values of the random variable.7 A common distribution is the
normal distribution, which is a distribution that many observations in nature seem to follow.
The persons responsible for identifying the Normal distribution and developing its proper
application are DeMoivre, Laplace, and Gauss (which is why it is also called the Gaussian
distribution),8 It takes the formg

Pn(z’, p, a) = --& exP [-;[~)’] . (2)

P. is the probability that a random sample would take the value z, where the sampling is
from a parent distribution with true mean p and true standard deviation cr. The normal
distribution is positive, bell-shaped, and symmetric about zero.

1. Expected Value

The expected value 10~~9’ 43 of z, denoted as E(x), is an informative and convenient
quantity of a random variable. For the case where the random variable x is discrete, and
the probability that z = a is p(a) for all discrete a, the expected value of r is

E(z) = ~ ap(a) . (3)
all a

When x is a continuous
expected value of x is

random variable with probability density distribution j(y), the

E(X) = J:__;yf(?J)&J . (’1)
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2. Sample Mean, Population Variance, and Variance of the Mean

The sample mean of n samples, z ~, from a probability density distribution

z= :$”1
t—

and the sample population variance,

S*(Z) =
+ Q’i- .7)’

1—

f(x),

(.5)

(6)

estimate the true mean and population variance of the underlying distribution and are cal-
culated with no conditions on the distribution, except that it has a finite variance. Thus,

E(z) = p (7)

E(S*(X)) = az(z) . (8)

The square root of the population variance is the population standard deviation and is a
measure of the spread of individual Zi’s sampled from the probability density distribution
~(z). The relation of the true variance of the mean to the true population variance,] 1’5

02(X)
(#(z) = — 7n

(9)

gives us the expression for the sample standard deviation of the mean,

., @l

The sample standard deviation of the mean is a measure of
several were calculated independently wit h n samples each. 5

3. The Central Limit Theorem

(lo)

the spread of many means, if

Since we are dealing with finite samples, our task of statistical inference is not, complete.
We need to build a confidence interval around the sample mean to give us an idea of how
well it estimates the true mean. To do this, we rely upon the distribution of the mean
being normal. For Monte Carlo applications, this reliance is justified by the Central Limit
Theorem, which states that the mean of a set of n independent random variables from
identical distributions with finite variance will be approximately normally distributed for
large n, regardless of the underlying distribution of the random variables. 7 The Central
Limit Theorem is the foundation for statistical inference from Monte Carlo calculations.

9



B. Building a Confidence Interval

Whenever the estimated mean, 5, of n samples of a random variable is presented along
with its standard deviation, s, one must be careful not to build a confidence interval casually

by saying that the true answer is in the range i +s. According to the Central Limit Theorem,
the distribution of the estimated mean approaches a normal distribution as n approaches 00.
For a finite number of non-normal samples, the distribution is not exactly normal. This non-
normal distribution is approximated by Student’s t distribution. Student’s f distribution,
like the normal distribution, is positive, somewhat bell-shaped, symmetric about zero, and
approaches the normal distribution as n + m. It is used to describe the random variable

t,7 where

%—p
t=—

s(z)
i—p

= s(r)/Ji “
(11)

If the x’s are normally distributed, the random variable t is distributed exactly M a Stu-
dent’s t distribution. Although the random variable t involves the unknown true value p,
the distribution of t does not rely upon knowledge of p. 12 Note that, if t contained the

true standard deviation, a(z), instead of the sample standard deviation, and the r’s were
sampled from a normal distribution, t would be normally distributed with mean zero and
unit variance.lJ’a9e 13’

The Student’s t distribution has a different distribution for each nl written as in-l, where
n— 1 is the number of degrees of freedom, as depicted in Fig. 1. The degrees of freedom
are the number of available independent measurements. Here, we lose one degree of freeclom
by using all the data to estimate the mean. Additionally, points on the abscissa of a graph
of the Student’s f distribution are called the percentiles of the dish-ibzdion and are written

as tn-l,l-$, where the second subscript is the confidence level. See Fig. 2. Here, we are
considering both sides of the symmetric distribution, so, for a given confidence level (1 – a),
we have the following equivalent statements:

● with probability cY/2, i is greater than in–l,l–:,

● with probability a/2, t is less than —tn_l,l_~,

● with probability 1 — Q, \t I is less than tn_l,l_% .

These probabilities are simply the area under the distribution curve. The distributions are
tabulated as the percentiles of the i distribution, tn-l,l-; , as a function of the degrees of

freedom and ~, or cr, or 1 – o.
The percentile of the Student’s t distribution, tn_l,l_$, serves as a multiplier of the

estimated standard deviation of the mean to produce a ( 1 – Q)1OO% confidence interval:



1 , t 1

@“o S“o zoo 1“0 0“0

Fig. 1. The Student’s t distribution for various degrees of freedom (D F).
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t-distribution with 10 df
.05 and .95 percentiles shaded

o

I

Y-

0

0
0

I I

-4 -2 0

Fig. 2. The Student’s f-percentile for a 1–a confidence
with n – 1 degrees of freedom (df).

2 4

level on a the Student’s t-distribution
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We say that, with (1 – a) 100% confidence, this interval includes the true mean, or, alterna-
tively, if the n samples were repeated several times, this interval would not include the true
mean a 1007o of the time.

D. L. Barr13 cautions us regarding the interpretation of the confidence interval. Actually,
a confidence interval is just one observation on a true random interval–j ust like an estimate
is one observation on an estimator.

c. Correlation Between Estimators

The preceding discussions have dealt with the characteristics of one variable. Now con-
sider two random variables, x and y, that are distributed according to a joint probabilityy
distribution j(x, y). The linear correlation coefficient, p=g, is defined as

(13)

where cr~~is the covariance between x and y. The correlation coefficient is approximated by

)XY7

(14)

(15)

where the sums are from 1 to n. Both the numerator and denominator in Eq. 15 have a
divisor equal to (n – 1), the degrees of freedom, that cancels out.

The correlation coefficient may be as low as – 1, meaning x and y are fully anticorrelated,
or as large as +1, meaning z and y are fully correlated, If x and y are independent, they
are not correlated and pzy = O. However, the converse is not necessarily true. l,page S7 The

degree of correlation tells only about the linear dependency of one variable on the other; it
gives an indication of the linear association between the variables. High correlation indicates
the ability to predict one variable’s variation with the variation of another. Aitkenl,P”9e 148
has an illustrative example depicting the fact that correlation does not imply dependence or
independence:

‘b! = acosx+bsinx

v = asinx-bcosz ,

We see that u and v are uncorrelated, but (nonlinearly) dependent, since

13



U2 = –v2+a2+b2 .

Whereas we use the correlation coefficient to determine variable association, we l~se
regression analysis to examine any causal relation (dependence of one variable on other
variables). 1lTPCZIJe224
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l-v. MCNP’S /c,jj ESTIMATORS

A. Estimators and Their Qualities

Consider a random variable, z, with an associated distribution with unknown mean, p.
Suppose n independent random samples, {q, x.2,... , z.}, are selected from the probability
density distribution of x. An estimator, X(xl, X2, . . . . Tn), is a specific function of the
random samples that statistically represents the true unknown mean. The particular value
of the estimator X is called an estimate. Often, the two terms are used interchangeably,
even though they are strictly different. In Monte Carlo, the estimator is the average of the
random samples. Desirable qualities of an estimator are that it, is

● unbiased,

● consistent, and

● efficient.

An estimator, X, is unbiased,10 if its expected value equals the true value, p,

E(x) = /!4

for all p. If a nonzero bias, b, exists, then

E(x) = /u+ b.

The concept of unbiasedness has its foundation in repeated experiments, each containing
multiple samples.

Consistency, on the other hand, applies to a single experiment, where the sample size, n,

becomes large. 10 An estimator, X, is consistent if it approaches, in the probabilistic sense,

the true value, p, as n gets large.

If, in a group of unbiased estimators, there exist~me estimator with minimum variance,
it is called the efficient estimator among the group.

In MCNP, we assume the k=f~ estimators are unbiased. They are consistent since the
variance of the estimates decreases as 1/n, where n is the uumber of cycles. 14 The three-
combined estimator is efficient since, by the Gauss-Markov Theorem, it has the smallest
variance among linear estimators. 1,chapterVl;z,page 14;3,page 198

B. k.jj Estimators in MCNP and Their Presentation

MCNP has three different estimators that it uses to estimate k,jj, the criticality of a
multiplying system. They are the collision, absorption, and track length estimators. The
absorption estimator takes two forms: analog absorption, or implicit absorption when im-

plicit capture, a common variance reduction technique, is employed.
Let us look at the mathematical expression of each estimator in MCNP. These equations

are taken directly from the MCNP manuall 5 and each is the estimate of /c,fj at a particular
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cycle. Averaging over all cycles gives the final estimate of ke~j for each of the three estimators.
The superscripts C, AA, IA, and TL indicate collision, analog absorption, implicit absorption,
and track length, respectively.

For collision,

where “ =
;=

f& =

N=

VVj =

collisions where fission is possible,
isotopes involved in the ith collision,

total microscopic cross section for nuclide k,
microscopic fission cross section for nuclide k,
average number of prompt or total neutrons
produced per fission by the collision isotope at the
incident energy,
atomic fraction for nuclide k,
nominal source size for cycle, and
weight of particle entering the collision.

For analog absorption,

where i is summed over each analog capture event in the kfh isotope, and

~/ik = microscopic absorption cross section, not including
fission (traditional nomenclature has absorption including fission).

For implicit absorption,

(16)

(17)

(18)

where i is summed over all collisions where fission is possible, and

is the frequency
acljusted at each

16

‘Tk

of analog capture at each collision, the quantity by which the weight is
collision.



For track length,

11 i k

(19)

where d = distance traversed by the neutron since the last event,
i= all neutron trajectories, and

P = atomic density in the cell.

Each of the three estimators provides an estimate of k,ff for each cycle. Averaging over
all cycles gives a mean and a standard deviation of the mean which allow for the building of
confidence intervals, as discussed in Section B of Chapter 111,

c. Behavior of MCNP’S k.jj Estimators

There are certain cases where one estimator may be expected to outperform another,
as evidenced by its smaller sample variance (relative efficiency). The determining factors
include the kind of material in the system, the number of materials in the system, size of
the regions, neutron energy, and the use of variance reduction. These factors also affect the
correlation between the three estimators.

Estimator superiority due to material effects is evident in the case of systems with a
dominant fissionable isotope that is a 1/v-absorber. In this case, both the numerator and
denominator of the analog absorption estimator, Eq. 17, will exhibit a 1/v behavior and tend
to cancel, thus producing a smaller overall variance than the other estimators.

For optically thin regions with few collisions, the track length estimator should aliow a
better sampling of the region and, hence, a smaller variance.

For larger regions, we expect the collision estimator to have a lower variance than the
track length estimator since the collision estimator is a point-wise value and, depending

on the particle weight, may exhibit less variation than the track length estimator. As the
total cross section gets increasingly large, the collision estimator approaches the track length
estimator,16 since the length between collisions becomes vanishingly small.

Note that for only one fissionable isotope and implicit capture, the collision and ab-
sorption estimators are exactly the same and it follows that they are perfectly positively
correlated. In this case, the information acquired from one estimator is not increased by
considering the other estimator.

Given that the correlation coefficient is the degree with which one can predict the varia-
tion in one variable due to the variation in another, it is dangerous and incorrect to infer any
sort of dependency between the variables from a correlation coefficient. But, it is difficult
to resist hypothesizing the cause of the magnitude and sign of the correlation coefficient,
at least for simple problems. We consider an infinite medium made up of a homogeneous
mixture of U-233 and water. In particular. we look at the effects of using either analog or
implicit capture on the correlation coefficients. For a specific MCNP run, we obtained the
correlation coefficients as found in Table 1.



TABLE I. Estimator Correlation for Implicit and Analog Capture

correlation coefficient
pairwise estimators analog implicit.

collision/absorption -0.0404 -0.8545
absorption/track length -0.0412 -0.8459

collision/track length 0.9958 0.9876

Table I shows that the collision and track length estimators are highly correlated for
both analog and implicit capture. However, the correlation between these two and the

absorption estimator is highly dependent upon the type of capture. For analog capture,
the scattering is such that the absorption appear nearly independent of the collisions and
track lengths. For implicit capture, they are highly anticorrelated. For implicit capture, the
collision and absorption estimators compete for the weight. When a large contribution is

made to the absorption estimator, the subsequent weight reduction leaves less contribution
to both the track length and collision estimators. Resonance regions would produce an
even more pronounced effect. This trade-off at the event level causes the anticorrelation.
Typically, the drastic behavior shown in Table I is not seen in realistic systems.

D. The Best Estimate of k,tj

In an attempt to get the best estimate of k=jj—to produce the smallest valid confidence
interval, the variances of the three individual estimates and their statistical relationships
to each other are utilized to the fullest. This superiority is found in the three-combined
estimator, which we discuss in the next section. It outperforms the individual estimators
in the sense that it almost always has the smallest interval, while using all the available
information.
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v. MCNP’S COMBINED k=}, ESTIMATOR

MCNP presents confidence intervals for the three separate kef~ estimators. MCNP also
calculates the simple pairwise average of the three individual estimates and the simple average
of all three estimates. In addition, the two-combined averages are calculated. The l~ig winner
though is the three-combined estimator in that it almost always produces intervals with the

shortest length. The two- and three- combined estimator are specific applications of linear
regression.

Regression analysis is a statistical study where the relationship between one dependent
7 For one independent vari-variable, y, and one or more independent variables is estimated.

able, we have y = j(z), which is called the regression of y cm Z.l The coefficients that
constitute ~ are called the regression parameters, which would be the slope and intercept of
a line. There are many ways to estimate the regression parameters, such as the least squares
method, the principle of maximum likelihood, and the method of moments. It is interesting
to note that the maximum likelihood principle with the assumption of normality produces
the same parameter estimation as the least squares method. Appendix B contains a detailed
derivation of the least squares parameter estimation, as well as a brief look at the maximum
likelihood principle to show that, indeed, both result in the same parameter estimation.

The authoritative reference on the combination of unbiased correlated estimates is a paper
by Max Halperin, ‘Almost Linearly-Optimum Combination of Unbiased Estimates.”4 The

paper is terse, so we will reproduce the derivation of the combined estimator in more detail
and specifically gear it toward application in M CNP. Thus, we will look only at Halperin’s

Case I, that of correlated estimators with unequal but unknown variances.

A. Derivation of the Combined Estimator (Annotation of Halperin’s Paper)

We begin with the multivariate distribution from which we obtain the multiva.riate sam-
ples x: {z*,J, . . ..z~.n; z~,~, z~, n;~,n; ..., xk,,l }, where n is the number of active k~jj cycles
and k is the number of est imators, where, in MCNP, k = 3.The average over n active cycles
yields a vector of estimators of length k, X = (Zl,. . . . ~~), where each element may have a
different variance and is correlated to the others. The expected value of each ii is the true
value of k=~j, u, and the variances and covariances make up a full covariance matrix, 17 ~.

Thus, the multivariate sample is, under Halperin’s assumption, normally distributed with

mean vector ue and variance Z, X N N(ue, Z), where the vector e is a vector of ones
and * iV(ue, Z) means “distributed normally with mean ue and variance X.” Note that
Halperin represents a vector as a row instead of a column.

Halperin first explores the maximum likelihood estimator and its variance, where we
see the multivariate extension of the maximum likelihood equations in Appendix B. Using
an “H” to indicate an equation in Halperin’s paper, note that Eq. H2.1 contains the true
expressions for the mean, u, and the covariance matrix. Equations H2.2 are obtained by
setting equal to zero the partial derivatives of L with respect to u, ~ii, and ai~, respectively.
The latter two equations give an estimate of the inverse covariance matrix as Halperin does
in Eq. H2.3. Equation H2.2a gives an estimate of the mean, but uses the unknown true
inverse covariance matrix; substitution of the estimated inverse covariance matrix allows the
estimation of u, ii, in Eq. H2.4. The asymptotic variance of u is denoted by a&:
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1
O:pt =

neI1-let”

This is the asymptotic variance because, as Halperin states, the maximum likelihood esti-
mator, ii, is “asymptotically normal and efficient.” An efficient estimator is the one, among

a set of estimators, that has the smallest variance. So, for small n., C& will not correctly
describe the true variance and an estimate of it cannot be used to build a confidence interval.

Halperin then proposes minimizing Eq. H2.6, the residual sum of squares, which is the
first step in the least squares method (see Appendix B), and would produce the same normal
equations as the maximum likelihood principle, where the normal equations are obtained by
maximizing the likelihood function. He additionally introduces a transformation to X =

(i~, o.., zk)

z’ = AE’ , (21)

where

1 0 ‘o” o
1 –1

A=
o

o“
–1

The transformed vector, z, is

21 =

Observe that E(zl) = u and E(zz) = “”” = E(z~) = O, since all A*estilnators are unbiased.
Halperin uses this transformation because it allows the building of confidence intervals with
Student’s t-percentiles. The covariance matrix becomes, under the transformation,2’~a9c 8

In accordance with the transformation, Halperin partitions the transformed covariance ma-
trix as shown in Eq. H2.1O, where Xzll is a (1x 1) matrix and SZZ2 is a (k–l) x (k–l) matrix.

He then looks at the difference between the logarithm of the density of {z1, ZZ, ..., z~} and
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the logarithm of the density of {.22, ..., z~}. The partial derivative of this quantity with

respect to u yields an estimate of u—Eq. H2. 13 and, subsequently, Eq. H2.14, where Z is
replaced by S,

ii = zl— S.12S;.27,

where 6’= (zz, . . . . z~)’

At this point, Halperin observes that the estimate of

(26)

u,ii,looks like an intercept in a

regression analysis, and considers the conditional distribution of
concluding that the zlj are independent and normally distributed
Eq. H2.13 and variance 3*P’9’69’’”0

The variance
paper as

zl~ given .Z2j> ~~j, . . . ! Zkjt

with mean Z1 as given by

(27)

of ti (given in Eq. H2.14) is given at the bottom of page 39 of Halperin’s

(28)

It is easily seen as a generalization of the variance of the estimated intercept in the simple
least squares case of one dependent variable and one independent variable (see Appendix
B). The generalization includes heterosceda.sticity (unequal variances) and correlation, all in
matrix form.

B. MCNP’S Combination of Two Estimates

The transformation of Z to z for two different estimates is given by (writing vectors as
columns )

z=& =
: W:)=(W. (29)

In this case, the regression is for Z1 on Z2, which has an expected value of zero.

For the case of two different estimates, Eq. 24 gives

(30)

21



where the true variances, aij, are estimated by bij:

The &ij’s are the sample population covariances between the n values of .ric and the n values
Of Zj~. When i = j, c?: is the estimated population variance of the n values of ~it. The
term S~j is called the sum of squares of deviations about the mean. and when divided by
the degrees of freedom, here n – 1, gives the unbiased estimate of a;. So, X contains the

elements cr~ and & contains the elements b:. The matrix S contains the elements s~j, the

sums of squares, thus giving the relation & = S/(n – 1).
The combined estimated mean L is given by Eq. 26. For two estimates, the matrix

partitions are scalars, thus

S*12 = S;l – .$;2,

and

S;.2 ( )
-1

= s;, + S;2 — 2s:2

For two estimates, using Eqs. 29, 32, and 33, Eq. 26 becomes

(33)

(34)

(35)

where Eq. 36 defines the weighting factors W1 and w2. Note that 62 ]nay be used in Ec!. 35

instead of S2, since the n – 1 factor cancels. Equation 34 is used to calculate the combined

estimator ZH for two different kcfj estimates in MCNP’S subroutine KCALC.
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On the bottom of page 39, Halperin states that under the condition of rnultivariate
normality, il is normally distributed and the variance is, substituting Eq. 27 into Eq. 28 (and
casting vectors in the usual column form),

(a? = 2.11 – ZZ12 2;;2 Z*21u )( )
;+a’sjw ,

where X and S are partitioned similarly,

(37)

& = !3,22 ,

and, again,

for k different estimators.
It is appropriate to mention now that the proper way to think about a sample variance,

82, is the sums of squares of deviations, s ‘, divided by the nul nber of degrees of freedom,
a!f, in the calculation ofs 2. The number of degrees of freedom is the number of independent
variables available in the calculation. Then the sample variance is an unbiased estimate of
the true variance, or, in other words, the expected value of the sample variance is the true
variance. 18,jor ,zamplc

()52
E(62) = E ~ =C72 . (39)

Having said this, we would estimate the first bracketed term in Eq. 37 by replacing the
!2’s by S’s and dividing by the degrees of freedom. For two estimators of n samples each,
the degrees of freedom available in the calculation of S is n – 2 because the calculation of S
includes two averages. The variance of the two-combined estimator becomes

-2 1

(

(s:l – sf2)2

)(
:+

(i, – 22)2
cr~=—

n – 2 ‘;l– s~l + s~2 – 2s~2 S:l + 42 — 2s;2 )

(s;1s;2 –

[

42) (s;1 + 42=
— 2s~2) + 72(Z1 — :~2)2

n(n – 2) 1(41+42–25;,)~“ (40)

In the second line of Eq. 40, notice that (il – ~2)2/(n — 2) is expected to go to zero as
l/n2, since the i’s are both expected to approach the true value a-s 1/fi. Therefore, the
second bracketed term should asymptotically approach 1/n, ancl the variance of the two-

combined estimate should asymptotically approach c& with a 1/n behavior. Equation 40
clearly shows that the variance of the combination is invariant. no matter which estimator is
selected as Z1.

In MCNP, Eqs. 34 and 40 are used in subroutine KCALC to calculate the pairwise
combined estimators and their standard deviations. First, the denominator in Eq. 34 is set
to variable T5:

23



t5=cv(i, i)+cv(j, j)-cv(i, j)-cv(i, j)

where the CV’S are the sij’s in this report and the pairwise permutations are i = 1,2,3 and

~ = 2,3,1. T5 is checked for relative size compared to the sum of the magnitude of the
variances and covariances. If it is too small, it is set to zero, and the combination will not
occur:

if(t5.1t .1. e-10* (abs(cv(i,l) )+abs(cv(j, j))+
1 abs(cv(i, j)))) t5=0.

The two-combined estimate and its relative error (which is later converted to a standard

deviation by multiplying by the two-combined estimate) are as follows

if(t5. ne. O.)zh(l)=za(i) -(za(i)-za(j ))*(cv(i, i)-
1 cv(i, j))/t5

if(t5. ne. O. .and. zh(i) .ne. 0.)eh(i)=f2*sqrt (abs

1 ((cv(i,i)*cv(j)-cv(i,j)**2)*(t5+fO*(za(i)-za(j ))**2)
2 /t5**2))/mc*zh(i)

where ZAare the individual estimators: collision, absorption, and track length fori= 1,2,3;
FO = MC = n; and F2 = n/(n– 2).

The estimated correlation coefficient has the usual definition between two estimators of

(41)

Equation 41 is used to calculate the correlation coefficient ZC in KCALC:

if(cv(i, i)*cv(j, j). @. O.)zc(i)=cv (i, j)/sqfi (abs(cv(i,l)
1 *cv(j, j))).

Since &~jmaybe positive ornegative, thevalues for~ijrange between-land 1. For~ij = –1,
~~j = &~i&~j}thus reducing a; to zero, as seen in E(1. 40. A ~ij value of unity is perfect positive
correlation. Perfect positive correlation when ii does not approximately equal ij should be

a reason for concern, since it indicates a bias in one or both of the estimators. Independent
estimators will result in a @ij = O (the converse inference is not necessarily true) and ~ij s —1
indicates nearly perfect negative correlation.
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c. The Equations for Three Combined Estimators

The variance matrix for three different estimators using the transformation in 13q. 21 is

After expansion of Eq. 26 with Eqs. 42,
estimated variances, d becomes

44,and 45, and replacing the true variances with

( )
&:l + 6A – 28;3 (il – tiz)

1+(~:1 +63 – 2&;2) (51 – 73) . (46)

Since d~j = ~~i, Eq. 46 can be rewritten, after lots of algebra, as



where

where t’ is the partial permutation of Z,j, k as listed below,

and

5J(= 9
(49)

/=1

= 8;1 &;2 + &:l +:3 + &;2&

+2 (bf2&~3 + &f33~3 + ~~3~f2
)

)( )‘2 (~~~~j~ + b~~3~.3+ 6~38f2 – ~~2 + ~~~ + ‘$ . (50)

Equations 47 and 48 are used to calculate the three-combined k,~j ZQ. The variable AL
in Subroutine KCALC is jt, except using the sums of squares of deviations instead of the
sample variances. Therefore, it is beneficial to define a new variable, g,, that involves S2
instead of C52:

9s = (n - I)’g. (51)

The estimated variance 5: is given by Eqs. 37 and 38 with Eqs. 43, 44, and 45 as

.2o~ = ((5:1 — (5:1 — &;z
)(

“ 2 E;.2 !;1 – !~~6;1 — a13
~11 — tT*~ ))

“(
: + (i~ —Z2 il—

‘3)s~2’03)

(52)



(:+(i, - i,)
x [( )S;l + 5:3 – 2s;3 [i~ – i*)

9

(— S;l + S;3 )(— S;2 — S;3 il – .73)]

+(5, – z,)
[( )S;l + 5:3 – S:2 – 5:3 (.72 – ii)

98

)+ (s:, + 5:2 – 2s;2 (21
)

–@] . (53)

Equation 53 simplifies to

(54)

where

3

S2 = ~ (s~j + ‘~k – 2s;k) F:, (56)
e=I

and the 1’s define the i, j, k as in Eq. 48. Equation 54 contains a mixture of 62’s a [Id S2’S. In
the spirit of properly interpreting a sample variance as a sum of scplares of deviations divided
by the degrees of freedom, Eq. 54 is converted to contain only sums of squares. Namely, g
is converted to g~ by Eq. 51, and S1 is converted to S~,l by the following conversion:

SS,I = Sl(n – 1)3. (58)

Equation 54 becomes

0: = %%-(’+”(s27’))
But, alas, this is a biased estimate since there are only n – 3 degrees of freedom instead of
n — 1. Making the replacement yields the correct unbiased estimate,

n(n-3)i(1+n(s2;:s3))0: = ‘s’l (59)

In MCNP, Eq. 47 is used to calculate the three-combined estimate, ZQ. However. the sums
of squares, CV, are used instead of the 6’s in calculating jt in Eq. 48 (called AL in MCNP),
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causing no change in the result since the degrees of freedom cancels. Equation 59 is used
to estimate the variance of the three-estimator combined estimate. In MCNP, the square
root of Eq. 59, the estimated standard deviation, is divided by ZQ and stored in EE as the
relative error (later converted to the standard deviation).

do 120 i=l,3

al~cv(j, j)*cv(k, k)-cv(j, j )*cv(i, k)-cv(k, k)*cv(i, j)+
1 cv(j ,k)*(cv(i, j)+cv(i, k)-cv(j,k))

.
a=a+al

.

zq=zq+al.*za(i)

120 continue
.

zq=zqla
ee=sqrt (abs(sl*(l .+f 0*(s2-s3-s3) /a)/(a*f O* (f O-3. )) ) )/zq

where Sl is S=,l, S2 = S2, S3 = &, ALis~e, Aisgs, and FOisn.

D. Simple Averages of the Individual Estimators

Merely for reference, the equations for the simple averages of the estimators and the
associated variances are also presented. The two- and three-estimator simple averages are
stored in ZG and ZP with estimated relative errors stored in EC and EP, respectively.
These simple averages do not take estimator variances or covariances into account, which
would mean additional weighting for the ii’s with higher variances. This inaccuracy is
reflected in the estimated variance, which is somewhat enlarged (compared to that of the
least squares combination) since it is effectively a weighted average of the individual variances
and covariances.

The general formula for the variance of the simple average of k estimates, each obtained
from n samples, is

&&%.t—- (60)

For the two-estimator case, the simple average is

xi + ~j
‘ij = 2

(61)

and its estimated variance is

(62)



For the three-estimator case, the simple average is

and its estimated variance is

(63)

E. Properties of the Two- and Three-Combined k,fj Estimator

In this section, we look at the properties of the combined Ic,jj estimator. First, we
look at Peelle’s Pertinent Puzzle, which shows that the combined estimates may lie outside
the range of the individual estimates. Second, to investigate variance properties, we briefly
review Halperin’s examination of the variance of the combined estimate and focus on the
Gauss-Markov Theorem for theoretical justification of the combined estimator’s superiority.
Third, we present statistical studies demonstrating the efficacy of the combined estimator
and how its confidence intervals demonstrate nominal coverage rates. Lastly, we show how
the combination of two estimators will behave in the limits of perfect correlation and equal
vari antes.

1. Peelle’s Pertinent Puzzle

Sometimes in MCNP, the three-estimator combined ket~ estimate lies outside the range
of the three individual estimates. This happens when the individual estimates are highly

15 “&,COnCertiIlg.”In thepositively correlated, and it may be, as the MCNP manual puts it,
nuclear data comrnunit y, this phenomenon was studied after the surfacing of what became
known as Peel/e ‘.sPertinent Puzzlel which is recounted and explained in Appendix C. Peelle’s
Pertinent Puzzle turned out to be an improper application of least squares, but. the nuclear
data community’s response to it has solidified the understanding of a combined estimate
falling outside the range of the individual estimates.

To say that the true answer lies between the estimates from two highly correlated esti-
mators is risky. In fact, assuming X2 and xl are observations on two unbiased estimators of
the true value, and taking X2 > ZI (see Appendix D), if

then x’ lies below the range,19 or if

(65)

(66)
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then x’ lies above the range.
As an example, consider two distributions that are fully and positively correlated, such

that p= 1:

xl = y+d (67)

X2 = 2y+7d (68)
2

Cf, = fly (69)

tT:2 = 4CT; (70)

Cr;2= 20;, (71)

where the expected value of y is zero, and d is a constant.
Suppose for the moment that d is zero and we can artificially control y, while maintaining

its expectation value of zero. Let us say that y is a cosine function of sample number. Then
the graph of the sampled points, Z1 and Z2, is graphed in Fig. 3. Notice that. for any sample,

both ZI and X2 lie on the same side of the true solution, zero. The Least Squares Method
will produce, from Eq. 143 or Eq. 36, for each sample, a combined estimate of

x’ = 2X1 – .c~ (72)

= o. (73)

Perfectly Correlated Samples

Values

o !5 10 15 20
Sample Number

Fig. 3. Perfectly correlated data where the deviations are a cosine function of
sample number.
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So, every combined estimate gives the correct value of zero!
The previous example, while very illustrative, is hardly realistic. Let us look at

example where two samples are highly and positively, but not fully, correlated. Suppose

have two distributions,

xl -fv(o,l)
X2 - N(o,l)

an
we

where * N(O, 1) means that the distribution is normally distributed with mean O and vari-
ance 1. Now we construct two distributions based on xl and Z2:

~1 = ~] + 4ZZ - N(o, 17)
yz = X2 - fv(o, 1)

where the variances are calculated as follows:

and the covariance is

u:,,,, =

=

=

=

=

=

=

=

=

E((y~ – E(y, ))(yz – E(y*)))

E(yly2 – ylqy2) – Y2J3(Y1) + ~(Yl)~(Y2))

E(y*y2) – 2E(y~)E(y2) + E(y~)E(y2)

E(y~y~) – l!z(y~)E(y2)

J5(ZIZZ + 4Z;) – E(XI + 4XZ)~(~Z)

E(ZIXZ) + 4@) – J?3(~I)J?2(2’z)– 4~(rz)~(~z)

U2 + 4(U2 + 0:2) – U2 – 4’U2

40;2

4.

Here, we have used the fact that xl and X2 are independent and, in one variable,

02 = E(2 – U)*

= E(X2) – 2UE(X) + U2

= E(Z2) – U2

(74)

(75)

(76)
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which implies that 18,c~cP~cr4

E(Z2) = U2+ (72 . (77)

This gives us a correlation coefficient, p, of

= 4/Jr7

= 0.97014.

The weights on a linear least squares combination of these two variables are, from Eq. 36,

1–4
WI = = –0.3

17+1–s
17–4

W2 = =1.3 .
17+1–8

These equations produce a combined estimate of

In a simulation involving 500 samples, the values of yl, yz, and y’ are shown in Fig. 4.

Each vertical line connects the values of the two individual estimates. The dots represent the
combined estimate y’. Figure 4 clearly shows trends similar to our previous artificial example,

namely, that both estimates may lie on one side of the true value and the combined estimate
may lie outside the range of the individual estimates, closer to the true value. For 500
samples, the two individual estimates resided on the the same side of zero, the true answer,
91.6% of the time.

2. The Gauss-Markov Theorem and Halperin’s Examination of the Variance

Halperin analyzes the performance of the combined estimator by comparing it with one
of the individual estimators, Z1 = x1. Unfortunately, the assignment of an estimator to xl
is not discussed, so it could be any estimator. He compares the unconditional variances (see
Appendix F) and the confidence intervals, obtaining expressions ascertaining the superiority

of the combined estimator. These expressions appear to indicate that, for three estimators,
running more active cycles ensures the superiority oft he three-cornbi ned estimator. Halperin
is unable to make a definitive conclusion as to which estimator to use, saying it depends on
the true covariance matrix and the number (desirably large) of samples, or, in our case, the
number of active cycles. Due to the increased conlputational capabilities in the several years
since Halperin’s paper was written, the typical number of active cycles, usually much larger
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than thirty–maybe on the order of one or two hundred or more-would seem to eradicate the
fear of degradation in the performance of the combined estimator.

Providing a more solid theoretical foundation, we feel, is the Gauss-Markov Theorem,

which says that the linear least squares parameters have minimum variance-linearly, they
are the best possible-when the covariance matrix is known. l,chapter t’I;z,page 14;s,pagc 198 The

estimate of the intercept in the regression equation is a least squares parameter and is, in
fact, the combined kefj estimator. Using a covariance matrix that is estimated by the data
will not yield the absolutely mi~imum variance estimation of the least squares parameters,
but, as our studies show, the best available.

The following subsection shows empirically
individual variance with the smallest variance,
good coverage rates.

that the combined estimator outperforms the
while still providing confidence intervals with

3. Statistical Studies for the Three-Combined kejj Estimator

The purpose of this statistical study is two-fold. The first reason is to demonstrate the
superior performance of the combined estimator. The second reason is to clarify some of
the statistical qualities of a common test of MCNP’S variance. Specifically, the variance of
a Monte Carlo estimator is often checked by running several independent runs (each with a
different random number seed) and comparing the average of the standard deviations from
all the runs to the sample population standard deviation observed from the several estimates
themselves.

A statistical simulation was performed to study the performance of the three-estimator
combined estimator, especially under the condition of high correlation, and with an underly-
ing multivariate normal distribution where each estimator had an expected value of zero. To
study the performance of the combined estimator, its variance was examined. The covariance
matrix is

x=

The correlation coefficients are

(78)

PI 2 = 0.8944

P13 = 0.4364

P23 = 0.7807.

The next several figures show certain characteristics of the combined estimator for 100
samples. Each sample may be interpreted as an independent MCNP run. Figures 5, 6, and

7 show each individual estimator compared to one other and the combined estimate of those
two values. In all three cases, the combined estimate is near the true value of zero, with
less variance than either of the individual estimates and often outside the range of the two
values, The same observations are made for Fig. 8, where all three estimators are combined,
and that combination is plotted with the two extremes of the three individual values. Notice
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Fig. 8. The extreme valued individual estimates and the three-estimator combined estimate.

that the study was modified for Fig. 8—and Fig. 8 alone—so that it would appear more like
a set of actual k,jj’s. The variances and covariances in Eq. 78 were multiplied by (0.02)2
and the estimators were shifted so as to have expected values of 1.0. Of the 100 samples in
Fig. 8, the range of the individual estimates does not cross the true value of zero 64 times.
Of those 64, the three-estimator combined estimate lies closer to unity 54 times. The three-
estimator combined estimate, with expected value zero and the covariance matrix in Eq. 78,
is also plotted against the average of the three estimates and against the estimator with the
minimum variance, whichever one it is, in Figs. 9 and 10, respectively. Once again, it is
obvious to the naked eye that the combined estimator outperforms both of these estimates.

For 100 samples, the unconditional standard deviation of the combined estimator, using
the equations given in Halperin’s paper (see Appendix F) and the true covariance matrix, is

0.03046, where oOP~= 0.03015. The simulation consisted of 10,000 trials of 20 runs of 100
samples each. The number of runs, 20, was chosen because it is a number of independent
samples that a user would probably consider reasonable. The average of the estimated
standard deviation of the combined estimate, using the estimated covariance matrix, was
0.03038. The average standard deviation obtained from 10,000 standard deviations derived
from the population of the 20 samples themselves was 0.03005. This simulation, if it was a
set of MCNP runs, would seem to indicate that MCNP was overestimating the true standard
deviation.

There is, however, a flaw in this type of analysis. We know that the random variable ~,
where

S2
T = djz, (79)

is distributed as a X2 distribution with u!~degrees of freedom,10*12 where S2 was calculated
with df degrees of freedom. (See Appendix A.) Consider the reported sample standard devi-
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ations, or, more appropriately, the sample variances, of the combined estimators for multiple
MCNP runs. Since they are all independent of their associated estimators 1!~a9e148and ‘~a~ter4
and of each other, we see that they are distributed, as expressed in Eq. 79, according to a
X2 distribution with n – k = 100 – 3 = 97 degrees of freedom, where n is the number of
active cycles in the problem and k is the number of estimators involved in the combined
estimate. This assumes that the data–the A,jj estimates–are multivariate normal, which we
believe to be a good assumption based on individual estimator normality checks and the
good confidence interval coverage rates, as we will see later.

To investigate the effect of comparing values from two different X2 distributions, the

simulation compared two different values: cr2(Z I ), ..., 02 (Z20) distributed as a2~ and a~o

distributed as a2~. Thus, it was as if there were twenty independent MCNP runs, each with
100 active cycles. For the i~krun there is a mean, Zi, and an associated variance, ~2(~i). The

sample population variance observed from the twenty xi’s themselves is a~o. Both ~ and

~ have expected value one since the expected value of a X2 distribution with df degrees
19

of freedom is just Q!!.20 In 10,000 trials, the max(~2(~i)) was less than ajo 16.S% of the
time. This implies that, in our case, MCNP would evidently underestimate the apparent
variance almost 1770 of the time. This is a fairly significant percentage, and indicates that

however the two compared values stack up, the fact remains that they are from two different
distributions and not amenable to quantitative comparison. Figure 11 depicts distributions
of the two variances we have just compared. The averaging of the reported variances results

in a very peaked distribution.

If, as shown in Fig. 12, we look at the distribution of all 200000 reported variances,
instead of the distribution of ~he run-averaged reported variances, we see how cr~oand a2 (~i )

are indeed distributed as cr2~ and cr2~, respectively.

Therefore, to compare the average of the reported variances of the combined estimator
from twenty MCNP runs with the apparent sample population variance of the twenty esti-
mators themselves is not necessarily a valid comparison. The two values will have the same
expected value, but they come from two different distributions, so for them to be significantly

different is not unexpected.

These observations indicated that, to make a legitimate analysis, the number of indepen-
dent MCNP runs should be approximately equal to the number of cycles in each run. If 100
runs were performed per trial instead of 20, the apparent population variance, a&, would

be distributed as cr2#. Figure 13 shows that a2
thus allowing for a more legitimate comparison.

100 is more similariy distributed as a2(zi),

This is not meant to mislead anyone desiring to perform such a multiple run analysis.
To run 200 active cycles and 200 independent runs may prove impractical. To run 5 active
cycles and 5 independent runs is foolish. The proper way to perform this analysis, assuming
access to not necessarily large computing resources and a desire for meaningful results, is
to run a statistically significant number of active cycles, usually, say, 30 or more, and run
enough independent problems to statistically approach a distribution similar to the one for

each independent run. This suggest ion is somewhat vague, but it hinges on the assumption
that this type of analysis is usually performed to see that the reported standard deviation

is in reasonable agreement with the sample population standard deviation.
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4. Estimator Combination in the Limit of Perfect Positive Correlation

We are interested in the behavior of the combined estimator as the correlation coefficient
approaches unity, either positive or negative. The issue comes to mind of two estimates,
from two separate estimators, that both have small variances and are fully and positively
correlated, but are far apart. This issue is moot, since the individual estimators are assumed
unbiased, which means that for infinite samples they will both be equal to the true value.

For presentation purposes, we’ll consider the least squares combination of two estimates,
xl and Xz, which is given by Eq. 36,

Xt = WIX1+ wzrz, (80)

where, substituting the expression for the correlation coefficient from Eq, 13, the weights are

42 —pull CT22
W1 =

Cl;l + (7;2 —2pnl ]022
.

(81)

Since the denominator of the weights will vanish as the variances approach each other
and the correlation coefficient approaches unit y, we are led to investigate these limits jointly.
To facilitate study of the variances, we introduce the variable, o,

Restricting a such that a 6 [0,1]
correctly, r7~2varies from zero to a~l.

implies that a~l approaches a~2 from + co, or, more
The weights become

WI =

W2 =

Q’(~– P)

a2–2pcr+l
l–pa

cY2-2pcY+l”
(84)

From Appendix D, we see that the denominator is greater than zero. Figure 14 shows
the denominator of the weights, as given in Eq. 84, with various p from -1 limiting to 1,
and in the limit as cr goes to unity. We see that, for a correlation coefficient not near
unity, the denominator of the weights will not become too small. However, the denominator
will become arbitrarily small as the variances become equal and the correlation coefficient
approaches unity.

Concerning the weights, we first look at the limit as the correlation coefficient approaches
unity and the variances are not equal.
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0(0–1)
= (~-1)2

a’
=

a—l’

which will become negatively large for CYclose to unity. Also,

= (1-a)

(1 -a)’
1

=—
l–a’

(85)

(86)

which will become positively large for CYclose to unity. If, for the moment, we back out of
the alpha notation, we see from Eqs. 85 and 86, that, for perfect correlation and unequal
variances, the combined estimate is a “one-over-standard deviation” weighted value:

*51 —*Z2
d = 1 1“— ——

all 022

(W)

Compare this to the familiar “one-over-variance” weighting to which the combination reduces
for zero correlation. Here, though, the standard deviations provide the weighting and there
is a minus sign instead. Note that Eq. 87 is merely a limiting expression and would not be
any more advantageous to use than the regular expression for the combination, especially
since it is not applicable for equal variances (cr = 1).

Figure 15 shows the two least squares combination weights as a varies from zero to one,
and for values of p from -1 to near unity.

The limit of the weights as CYgoes to unity, for any correlation coefficient, is

lim WI = lim w’
a+ 1 a-+1

l–p

= l–2p+l
l–p

= 2(1 –p)
1—— —7
2

(88)

as shown in Fig. 15. Note that this equal weighting is only for exactly equal variances. It,
too, is just a limiting expression. At some value of CYslightly less than unity, the weights may
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be quite different than 1/2, especially for correlation coefficients near unity, as evidenced in
Fig. 15. In fact, for a correlation coefficient of unity, the curves depicting the weights, as
in Fig. 15, would be discontinuous. They would approach infinity (plus infinity for Wz and
negative infinity for W1) as CY~ 1 and would be 1/2 at a = 1.

As a goes to zero, WI ~ O and W2~ 1 as expected, since we want no part of an estimate
with infinite variance, i.e., Z1, or, equivalently, we want the estimator with no variance.

The same analysis may be performed for the variance of the two-combined estimates.
Introducing p and a into the equation for the variance of the combined estimator, Eq. 40
with the sums of squares replaced by variances, yields

Q’2(1–P2)
[

(n – 1)0;, 7?(21—Z2)2
C$ =

72(?2– 1) 1l–2pcl+cY2 +(l-2pcl+cY2)2 “
(89)

As CY~ O (a22 ~ 0), the variance of the combined estimate goes to zero, which is to say
that the combination would reproduce any estimate with zero variance. If the two estimates
are perfectly and negatively correlated, p = – 1 and the variance of the combination is zero
(meaning the combination reaps huge benefits).

Next, we look at the behavior of the variance as a ~ 1:

For a correlation coefficient of zero, L becomes

For a correlation coefficient approaching unity, L is

lii L = ~+ $ lii
(5* – iz)z

n. l–p “

(90)

(91)

(92)

(93)

(94)

We expect the Z’S to approach the true value as I/@, so we would expect the remaining
limit term to go as l/(n2(l – p)), which could go to infinity or zero, depending on the relative
values of n and p.

Any difference in ZI and i2 could possibly dominate the variance of the combined esti-
mator, making it quite large. This is an automatic flag that demonstrates the correctness
and robustness of the combination, since a large difference in Z1 and Z2 should translate into
a larger variance in the combination.
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w. MCNP EXAMPLES

Five systems were modeled with MCNP to observe the behavior of the combined k,~l
estimator. They are a sphere of a U-233 and water mixture with a water reflector, an
infinite medium problem with a slightly modified mixture of U-233 and water, the Godiva
reactor, a Jezebel reactor mock-up, and a two-component system consisting of the Godiva
and Jezebel mock-up reactors, separated by a distance. Representative MCNP input files
are in Appendix H.

A. U-233/Water Sphere

The first system was a sphere, 21.738 cm in diameter, made up of a U-233 metal/water
mixture, where the U-233 density was 0.100 kg/1, the ratio H/U-233 was 256.7S1, and the
reflector was 15.2 cm thick.21 The estimates for implicit capture, 2000 neutrons per cycle,
10 inactive cycles, and 100 active cycles are shown in Table II. Table 111 shows the results
for the same system except with analog capture.

Table III shows that analog capture only slightly decreases the correlation coefficient be-
tween the three estimators. As Table II shows, the three estimators are highly and positively
correlated, especially the collision and track length estimators. The three-combined estimate
has one of the smallest variances. In different independent runs, the combined estimate may

TABLE II. k,jf Estimates for the U-233/Water Sphere Using Implicit Capture

estimator kejj standard deviation correlation

collision 0.96798 0.00301 —

absorption 0.96263 0.00233
track length 0.96835 0.00314

collision/absorption 0.96379 0.00233 0.5744
absorption/track length 0.96369 0.00234 0.5642

collision/track length 0.96771 0.00301 0.9839
coil/abs/track length 0.96369 0.00233 —

TABLE 111. kejj Estimates for the U-233/Water Sphere Using Analog Capture

estimator kejj standard deviation correlation

collision 0.96230 0.00346
absorption 0.96500 0.00310

track length 0.96264 0.00359 —

collision/absorption 0.96398 0.00290 0.5558
absorption/track length 0.96418 0.00291 0.5354

collision/track length 0.96215 0.00347 0.9819
coil/abs/track length 0.96391 0.00291
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not have exactly the smallest variance because of finite samples, because the covariance ma-
trix is not known exactly, and because of the spread of all three individual estimates. Note,
too, that the combination of the highly correlated collision and track length estimators pro-

duced an estimate outside the range of the two on the side of the estimator with the smaller
variance. Figure 16 shows the three individual estimators (average of cycle estimates) and
the three-estimator combination over the 100 active cycles. The combined estimator follows
the absorption estimator very closely, lying on the side to which the other two estimators
are situated. This was the general trend for all independent runs of this problem.

This problem was repeated using different random number sequences to produce 100
independent runs. (This particular set of runs was performed by C.T. Rombough.21 ) Com-
paring the sample population standard deviation of the 100 values for each estimator to the
average of MCNP’s reported standard deviations, MCNP was generally observed to conser-
vatively estimate the population standard deviations, as shown in Table IV, where the first
data column is the average k,fj for 100 runs, the second column is the sample population
standard deviation for those k,~j ‘s, and the third column is the average of MCNP’S reported
standard deviations for the 100 runs. The combined estimator had the best performance
overall. Figure 17 shows the distribution of the three-combined estimates from the 100 in-
dependent runs. They were not significantly different from a normal distribution at the 95%
level. The solid line is a normal curve based on the average kejj from the 100 runs and the
average reported standard deviate. The histogram is the distribution of the 100 k.jj’s.

Of the 100 independent three-combined estimates, 70 percent of them covered the mean
at the 6870 confidence level, 95 percent of them covered the mean at the 95% confidence
level, and 100 percent of them covered the mean at the 99% confidence level, Figure 18
shows the the 6870 confidence intervals of each of the 100 independent runs compared to the

68% confidence interval of the mean of all 100 runs, which is the best estimate of the true
k,jj. Seventy of the 100 confidence intervals cross the mean. Of particular importance is the
fact that thirty of these confidence intervals do not cross the mean, which is expected. This
result means that the confidence interval obtained from one independent MCNP run may
not include the true value of k,j j. When criticality safety is an issue, a larger confidence
interval should be used, such as the 9970 confidence interval and perhaps another one larger
than that. The raw data21 are in Appendix G.

Initially, this problem was only repeated for 20 independent runs. The analysis seemed
to indicate that MCNP was underestimating the standard deviation. It turns out that 20
runs were not enough to make an adequate analysis. See the discussions in Section 3.

There is an interesting observation to make in this analysis. We have been comparing
standard deviations from a population of several runs to the average of the reported stan-
dard deviations from the several runs. For each estimator, then, we looked at the difference
between these two values. Instead, let us look at the differences in the variances. For each
of the individual estimators and the combined estimator, the magnitude of the variance
difference for the combined estimator is not larger than the variance difference for the in-
dividual estimator with the largest magnitude. This held for every multiple run analysis
we performed. The implication is that, if a bias did exist in the variance of one of the
three individual estimators, the bias in the variance of the combined estimator would not
exceed it, thus lending more credibility to the combined estimator. Appendix E examines
the propagation of bias in the combined estimator and its variance.
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TABLE IV. k.ij Estimates forthe U-233/Water Sphere and Their Associated Standard
Deviations for 100 Independent Runs

kefj coverage rates
estimator Zejj ~observed tica~ca~a,ed (~~) 6S% 95% 99%

collision 0.96516 0.00293 0.00321 (0.00020) 72 97 99
absorption 0.96474 0.00228 0.00227 (0.00016) 68 95 99

track length 0.96509 0.00302 0.00324 (0.00020) 71 97 99
collabsltrkl 0.96484 0.00216 0.00221 (0.00015) 70 95 100

B. U-233 /Water Mixture In An Infinite Medium

The second system is an infinite medium, made up of a U-233 metal/water mixture,
where the mixture density was 0.1 gin/cc and the ratio H/U-233 was 2220. The spatial dis-
tribution of the neutrons is not important in an infinite medium criticality calculation. For
2000 neutrons per cycle, 10 inactive cycles, 100 active cycles, and implicit capture, MCNP
gave the estimates of km an d its standard deviation as shown in Table V. The collision and
track length estimators are highly correlated because the medium is infinite and there is no
leakage. The combination of these two estimators yields an estimate slightly below their
range. Both of those estimators are highly negatively correlated with the absorption esti-
mator. A large contribution to the absorption estimator will result in a smaller contribution
to the other two estimators and vice versa, thus explaining the negative correlation. The
large negative correlation causes a large reduction in the variance when the estimators are
combined. Figure 19 shows a plot (also available from MCNP using the “z” option) of the
correlated data and the combination of them over the 100 active cycles. As the correlation
coefficients indicate, when the track length estimator is low, so is the collision estimator, and
when both of them are low, the absorption estimate is high.

Twenty independent runs were made of this problem in order to compare the observed
population standard deviation with the average of the reported standard deviations. The
data are listed in Table VI. The means of all four estimators are in excellent agreement.
There is also excellent agreement between the MCNP estimation and the population estima-
tion of the standard deviations. The population of combined kej j estimators is much more
compact than the individual estimators, showing that the combined error reduction from
N 0.0015 to * 0.0005 is real. Although we know that twenty runs is probably not enough for
this test, the observed standard deviation of the combined estimate is 0.00055, while the aver-
age of the reported standard deviation, at 0.00044, appears to underestimate it. The variance
difference for the combined estimator is no larger than that of any individual estimator. The
confidence intervals appear valid because the 68!Z0,9570, and 9970 confidence intervals cov-
ered the mean 75$70,95701 and 10O$ZOof the time. Run number 7 had some difficulties in that
the absorption and the track length estimators did not pass the normality check22’23 at the
99% confidence level. The absorption estimator passed the normality check only at the 99%
confidence level. One might expect this to happen about 1Yo of the time. The estimators
of all other problems passed at the 95% confidence level, except the absorption estimator in
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Fig. 18. 68% confidence levels of the three-combined estimator from 100 independent runs,
shown with the 6870 confidence interval of the average of the 100 runs.



TABLE V. km Estimates for U-233/Water Mixture in an Infinite Medium.

estimator km standard deviation correlation

collision 1.01332 0.00124
absorption 1.01628 0.00171

track length 1.01308 0.00123
collision/absorption 1.01455 0.00039 -0.8545

absorption/track length 1.01439 0.00040 -0.8459
collision/track length 1.01307 0.00124 0.9876
coil/abs/track length 1.01451 0.00040

run 9, which passed at 9970. Given the high positive and negative correlations, it is reasonable
that, if one estimator does not appear to have cycle values distributed normally, the others
will not either. Eliminating this run from the variance test yielded the results in Table VII,
showing that the combined estimator variance was probably not underestimated. Here, the
conglomerated data appeared sharper than normal since the 6870, 9570, and 9970 confidence
intervals covered the mean 79%, 100Y0, and 100% of the time. This demonstrates that the
user should consider the information provided by the cycle Ic.Jj normality checks.22’23

c. Godiva

MCNP modeled the Godiva reactor with 1000 neutrons per cycle, 10 inactive cycles, and
100 active cycles. Godiva is a highly enriched uranium bare sphere 8.741 cm in radius. For
implicit capture, the results are in Table VIII and for analog capture, the results are in
Table IX.

For implicit capture, the collision and absorption estimators are highly positively corre-
lated and both are fairly highly correlated to the track length estimator, For analog capture,

the absorption and track length estimators are almost uncorrelated, whereas the collision
and track length estimators are relatively highly positively correlated. These results appear
to be caused by a highly scattering medium. The variances are slightly smaller for implicit
capture and the kefj estimates agree.

One hundred independent runs were made using implicit capture, with the results in
Table X (the one hundred independent run results are in Appendix G). The coverage rates
were adequate, but not excellent for implicit capture. The quality of the coverage rates
would likely pose little problem in a criticality safety study because of the use of safety
margins. Another 100 runs were made, each with 500 active cycles. Batching the cycles into
50 batches of 10 cycles each resulted in much better coverage rates, as shown in Table XI,
The use of batch statistics is discussed more thoroughly in the Two-Component Systems
section.

One hundred independent runs were also performed using analog capture. Both implicit
and analog capture gave basically the same answer. Those results are in Table XI L
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U-233/water mixture in an infinite medium.
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TABLE VI. km Estimates for the U-233/water Mixture in an Infinite Medium and Their
Associated Standard Deviations and Coverage Rates for 20 Independent Runs.

Lff I I I I coverage rates-. .
estimator km ~observed dca,m,a,ed (~~) 68% 9.<% 99%

collision 1.01490 0.00136 0.00125 (0.00006) 65 100 100
absorption 1.01440 0.00158 0.00160 (0.00011)

track length 1.01491 0.00137 0.00126 (0.00007)
col/abs/trkl 1.01467 0.00048 0.00044 (0.00004)

70 95 100
65 100 100
75 95 100

TABLE VII. km Estimates for the U-233/Water Mixture in an Infinite Medium and Their
Associated Standard Deviations and Coverage Rates for 19 Independent Runs, Eliminating
the Non-Normal Run,

kej j

estimator & ~O&TV=d 6Ca/N,.,cd (~~)

collision 1.01479 0.00131 0.00125 (0.00006)
absorption 1.01441 0.00162 0.00161 (0.00011)

track length 1.01479 0.00131 0.00126 (0.00007)
col/abs/trkl 1.01462 0.00043 0.00044 (0.00004)

coverage rates
68% 95% 99%

68 100 100
68 95 100
63 100 100
79 100 100

TABLE VIII. k,jj Estimates for the Godiva Reactor with Implicit Capture

estimator kejj standard deviation correlation

collision 1.00100 0.00243
absorption 1.00078 0.00240 —

track length 0.99832 0.00199
collision/absorption 1.00076 0.00242 0.9908

absorption/track length 0.99891 0.00197 0.6572
collision/track length 0.99890 0.00198 0.6639
coil/abs/track length 0.99877 0.00198 —
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TABLE IX. k.jj Estimates for the Godiva Reactor with Analog Capture

estimator k,jj standard deviation correlation

collision 0.99924 0.00316 —

absorption
track length

collision/absorption
absorption/track length

collision/track length
coil/abs /track length

0.99837
0.99821
0.99889
0.99827
0.99851
0.99822

0.00361
0.00287
0.00274
0.00235
0.00282
0.00237

—

0.3122
0.0907
0.7657

—

TABLE X. k,ff Estimates for the Godiva Reactor and Their Associated Standard Deviat-
ions and Coverage Rates for 100 Independent Runs, Using Implicit Capture.

k.jj coverage rates
estimator &ejj ~observed 6ca/cu/=,ed (~~) 68% 95% 99%

collision 0.99695 0.00270 0.00234 (0.00018) 64 90 98
absorption 0.99699 0,00272 0.00234 (0.00017) 61 90 98

track length 0.99717 0.00236 0.00190 (0.00014) 57 86 97

col/abs/trkl 0.99717 0.00238 0.00188 (0.00014) 59 87 95

TABLE XI. kejj Estimates for the Godiva Reactor and Their Associated Standard Devi-
ations and Coverage Rates for 100 Independent Runs, Using Implicit Capture, 500 Active
Cycles, and 50 Batches of 10 Cycles each.

kej j coverage rates
estimator kejj ~ob~~TVed ti~&U[Q,~d(~~) 68% 95% 99%

collision 0.99771 0.00099 0.00115 (0.00010) 75 98 99
absorption 0.99772 0.00101 0.00114 (0.00017) 75 97 99

track length 0.99781 0.00092 0.00096 (0.00010) 66 95 100
col/abs/trkl 0.99779 0.00092 0.00097 (0.00009) 71 95 100
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TABLE XII. k, f f Estimates for the Godiva Reactor and Their Associated Standard Devi-–.-
ations and Coverage Rates for 100 Independent Runs, Using Analog Capture.

kef j coverage rates

estimator kejf Uobserved ac=,cu,=,e~ (c-r~) 68% 95% 99%

collision 0.99783 0.00329 0.00322 (0.00019) 63 95 99
absorption 0.99793 0.00385 0.00381 (0.00030) 69 95 99

track length 0.99787 0.00295 0.00280 (0.00020) 70 94 99
col/abs/trkl 0.99768 0.00216 0.00215 (0.00017) 76 90 100

D. Simplified Jezebel

Jezebel is a spherical reactor, about 6.385 cm in radius, made up of delta-phase Pu (4.5
at.Yo Pu-240, 1.02 wt.% Ga) at a density of 15.61 g/cm3. MCNP was used to estimate the
criticality of an idealized pure Pu-239 model of Jezebel with 2000 neutrons per cycle for 10
inactive cycles and 50 active cycles. The results using implicit capture are in Table XIII.
With one isotope and implicit capture, the collision and absorption estimators are exactly
the same, so no new information is gained by having both of them. Therefore, there is
effectively only one combination of two estimators.

Table XIV shows the kejj estimates for the Jezebel model with analog capture. The
track length and absorption estimators are just slightly anticorrelated, probably because of
the absence of competition for weight contribution between the two estimators as in implicit
capture. The two estimators combine with a reduced standard deviation. The large gain in
the reduction of the standard deviation is carried over to the three-combined estimate. The
results of the two types of capture agree. Fifty independent MCNP runs were each made for
implicit and analog capture. The results are shown in Tables XV and XVI, respectively.

E. Two-Component Systems

It has been shown that a system with a dominance ratio close to unity could produce
an underestimation (bias) of the estimated standard deviation of k=jj .24’25 The dominance
ratio is the ratio of the second largest eigenvalue to the largest eigenvalue. The largest
eigenvalue is k, j j. The general consensus among people in the field seems to be that this
underestimation could be as large as a factor of two. Some studies have shown this, although

24 A straight power iteration method, asthe dependence on dominance ratio was not clear.
used in a Monte Carlo criticality calculation, may converge very slowly for a system with a
high dominance ratio, since the higher order eigenmodes will not die out quickly from cycle
to cycle. Such a calculation will have a high cycle-to-cycle correlation of the k=jj values and
the estimated k,jj standard deviation calculated by MCNP could be smaller than the actual
standard deviation. Such a bias would result in inadequate confidence interval coverage
rates.

The effect of variance bias on the three-combined estimator is discussed and demonstrated
in Appendix E. Specifically, if the biases (viewed as either additive or multiplicative) in the
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TABLE XIII. k,jj Estimates for the Jezebel Model with Implicit Capture

estimator k,jj standard deviation correlation

collision 1.01403 0.00289 —

absorption 1.01403 0.00289 —.

track length 1.01084 0.00185 —

collision/absorption 1.01403 0.00289 1.0000
absorption/track length 1.01118 0.00188 0.5180

collision/track length 1.01118 0.00188 0.5180
coil/abs/track length 1.01118 0.00188 —

TABLE XIV. k,j j Estimates for the Jezebel Model with Analog Capture

estimator kejf standard deviation correlation

collision 1.01224 0.00383 —

absorption 1.01525 0.00490
track length 1.01233 0.002.58 —

collision/absorption 1.01328 0.00338 0.2298
absorption/track length 1.01304 0.00219 -0.1206

collision/track length 1.01232 0.00260 0.6158
coil/abs)track length I 1.01312 I 0.00218 —

TABLE XV. kejj Estimates for the Jezebel Reactor Mock-up and Their Associated Stan-
dard Deviations and Coverage Rates for 50 Independent Runs, Using Implicit Capture.

r
kejf coverage rates

estimator kejj ~O&rV~d ac=,cu,c,e~(a@) 68% 95% 99%

collision 1.01304 0.00284 0.00279 (0.00033) 66 96 100
absorption 1.01304 0.00284 0.00279 (0.00033) 66 96 100

track length 1.01298 0.00231 0.00187 (0.00022)” 56 86 96

col/abs/trkl 1.01302 0.00221 0.00184 (0.00022) 60 90 98
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TABLE XVI. k,jj Estimat= forthe Jezebel Reactor Mock-up and Their Associated Stan-
dard Deviations and Coverage Rates for 50 Independent Runs, Using Analog Capture.

I k.{{ I I I coverage rates
-J J

estimator ke,j ~observed 6c=/cu/a,ed (~~ ) 68% 9i% 99%

collision 1.01279 0.00321 0.00335 (0.00037) 72 98 100

absorption 1.01198 0.00351 0.00465 (0.00045) 84 100 100

track length 1.01308 0.00277 0.00261 (0.00025) 64 92 100

col/abs/trkl 1.01275 0.00195 0.00209 (0.00026) 72 100 100

individual estimator variances are the same, the three-combined estimator will not be affected
(the biases will cancel out), but the variance of the three-combined estimator will retain the

individual estimator variance bias. If the biases in the variances of the three individual
estimators are not the same, an inaccuracy in the three-combined kejj estimator may result,
depending on the relative size of the variances.

Two types of systems that have large dominance ratios are large thermal reactors and
multiple-component lattice-type systems. The latter are prevalently found in criticality
safety considerations, such as the handling and storage of nuclear waste. In the interest of
criticality safety, we looked at a two-component system consisting of an idealized Jezebel
reactor and a Godiva reactor, 80 cm center to center. A fission matrix patch to MCNP26 was
used to estimate the dominance ratio at 0.985. A dominance ratio of 0.985 is not particularly
high, but the Jezebel/Godiva system seemed to display more of a variance underestimation
than a Jezebel/Jezebel system whose dominance ratio was 0.994. We infer, then, that ease
and accuracy of calculation is not only a direct function of dominance ratio, but also system
geometry and material.

To investigate the bias in the standard deviation, one hundred independent MCNP runs
were made for the Jezebel/Godiva system, using 5000 histories per cycle, 20 inactive cy-
cles, and 800 active cycles. The results of one of the runs are shown in Table XVII. The
observed standard deviation, ~ob,er.ed, is the population standard deviation observed in the
100 keif values themselves from the 100 runs. This will be considered the best estimate of
the true standard deviation of keff. The uncertainty in ~Ob.,rVedis estimated by the variance
of the variance (see the MCNP manual). The standard deviation calculated by MCNP is

~calculated. We assume that ~ob,,rv,d, distributed as a ~z with *1OO degrees of freedom, and
~cal..l=~cd, distributed as a X2 with N800 degrees of freedom, are, for comparison purposes,
distributed similarly. Given 820 cycles per run, the output of the 100 runs seemed to indicate
that twenty inactive cycles was adequate to effectively achieve the fundamental mode, The
input. deck is found in Appendix H, and the entire ke.j data is found in Appendix G. For
100 MCNP runs, the results are shown in Table XVIII. There is an underestimation in the
standard deviations for this example, but nowhere near a factor of two. The ~m~a~a~cdfor
the three-combined kefj is 0.00030 with a population uncertainty of 0.00001. The OOb=e,VCdis
0.()()038, meaning that aai.ufa~,~ underestimates OOb,e,vcdby about 25%. The standard devi-
ations in the collision and absorption estimators are underestimated by almost 3070 and the
track length estimator standard deviations by about 2070. This difference in underestimate ion
between the individual estimator’s standard deviation does not appear to adversely affect the
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TABLE XVII. k,fj Estimates for the Two-Component System, Godiva. and Jezebel

Mock-up.

k,jj estimator type keif standard deviation correlation

collision 1.01230 0.00043
absorption 1.01231 0.00043 —

track length 1.01252 0.00030
coUision/absorption 1.01230 0.00043 0.9991

absorption/track length 1.01248 0.00030 0.4893
collision/ track length 1.01248 0.00030 0.4914
coil/abs/track length 1.01249 0.00030 —

TABLE XVIII. ketf Estimates for the Two-Component System, Godiva and Jezebel Reactor
Mock-up and Their Associated Standard Deviations and Coverage Rates for 100 Independent
Runs.

kejj coverage rates
estimator kejf flO&TV~d ~Ca/w/=,,d (~~ ) 68% 95% 99%

collision 1.01249 0.00055 0.00040 (0.00002) 52 86 94
absorption 1.01249 0.00055 0.00041 (0.00002) 51 86 94

track length 1.01252 0.00037 0.00030 (0.00000) 57 90 98
col/abs/trkl 1.01252 0.00038 0.00030 (0.00001) 54 88 98

three-combined estimator itself, mainly because it is weighted much more to the track length
estimator. In this problem, the correlation coefficient between the collision and absorption
estimators is about 0.999, and the correlation coefficient between the track length estimator
and the other two is about 0.48. The coverage rates for the three-combined k~jj estimator
at the 68’%0,95?Z0,and 99$%0confidence levels were 54, 88, and 98 percent.

One way to detect and assess a correlation between k,jj cycles is to combine several kejj
cycles into one new k~jj batch cycle. For example, if the S00 active kejj cycles were batched
into 40 batch cycles of 20 kcjj cycles each, the batches would have a smaller batch-to-batch

. .
correlation, glvmg an Improved eshmate of ~Ob~~rV~d.MCNP provides this batch information.
For 40 batches of 20 cycles each, the data from Table XIX were observed.

The OO&TV,dfor batch sizes of one cycle and 20 cycles for the combined estimator are the
same. The average aca/CU/at~~is in excellent agreement with ~ob,,,v~d. Bat thing resulted in
a marked improvement in coverage rates. Forty batches with twenty cycles each produced
confidence intervals at the 6870, 9570, and 9970 confidence levels that covered the mean 70,
95, and 99 percent of the time.

The average calculated standard deviation increases with increasing batch size.
Figure 20 shows that, for increasing batch size, the average of the 100 calculated standard
deviations, 6C=(CU~a~,d,approaches the population standard deviation observed from the 100
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TABLE XIX. k,jj Estimates for the Two-Component system, Godiva and Jezebel Reactor
Mock-up and Their Associated Standard Deviations and Coverage Rates for 100 Independent
Runs, Where the 800 Active Cycles Have Been Batched Into 40 Batches of 20 Cycles Each.

kejj coverage rates

estimator iejj ~Ob~e~~~d 6Ca,CU/=,ed(a~) 68% 9.5% 99%

collision 1.01249 0.00055 0.00050 (0.00007) 63 93 97
absorption 1.01249 0.00055 0.00050 (0.00007) 62 94 97

track length 1.01252 0.00037 0.00039 (0.00005) 71 97 100
col/abs/trkl 1.01252 0.00039 0.00040 (0.00005) 70 95 99

three-combined k~jj values, a.~~~,u~~.The individual estimators and their standard deviations

had the same behavior. Note, though, that with larger correlated k,jj batch sizes there are
fewer batch values of k, jj and, therefore, the variation, or spread, in the estimated batch
OC=fCUf=t.dbecomes larger, as verified in Fig. 20. The smaller biases in acalcula~cdlead to an
improvement in the three-combined k.jj estimator.

This example clearly demonstrates that batched data in MCNP can be used to examine
cycle-to-cycle correlation effects on crcaf~~at~~. If these effects exist, the user can use the
confidence intervals from a larger batch size. Additionally, 30 of the 100 runs had warning
messages, mostly indicating that the ratio of the combined estimator from the first half of
the problem to that of the second half was too large. This drifting effect can be visualized in
the distributions, from 100 independent MCNP runs, of the three-combined k.jj estimator
at 30, 100, and 800 active cycles, as shown in Fig. 21. The user can utilize both the batch
data and warning messages to detect problems with spatial convergence, which may indicate
a system with a large dominance ratio. If this appears to be a problem, the various MCNP
k,jf tables and plots in the output should be examined for any drifting behavior in the k.jj
estimates. If necessary, the user can make independent MCNP runs.

The dominance ratio of the modeled system need not be equal to that of the physical
system itself. If, by symmetry, the odd eigenmodes can be eliminated, the dominance ratio
can be reduced. This may result in an easier and more precise calculation. For these reasons,
it is a recommended procedure for criticality y calculations. An example is the Jezebel/Jezebel
system, mentioned above, whose dominance ratio is 0.994. By putting a reflecting plane
perpendicularly between the spheres, the second eigenmode, which is odd, is eliminated in
the calculation, and the dominance ratio is reduced to 0.418.
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Batching Effects on k,jj Standard Deviation
1.4 I 1 I I I
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Fig. 20. For 800 active cycles and 100 independent runs, MCNP’S batch data shows an
underestimation in the calculated standard deviation for too few cycles per batch. The error
bars represent the observed variation in ~C.lCUl.&.dat the one sigma level.
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Fig. 21. The drifting of the three-combined estimator as seen in its distribution from 100

independent MCNP runs at 30, 100, and 800 active cyc.les.
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VII. SUMMARY AND CONCLUSIONS

The process that MCNP employs in a criticality calculation has been presented, along
with some basic statistics regarding the analysis of MCNP’S three Ic.jf estimators: collision,
absorption, and track length. Of utmost importance is the realization that MCNP does

not give a single value for the estimate of k.jj. MCNP produces a range of values that

should contain the true value with some specified confidence. The term confidence interual
is given to this range. To increase the probability that a confidence interval includes the
true value, either more cycles need to be run or the size of the interval must be increased.
When criticality safety and human safety are at stake, high percentage confidence intervals
are desired to increase the probability y that the true value is in the intervals.

MCNP’S best estimator for k,jj has been theoretically and empirically shown to be the
three-combined estimator. The combination of the three estimators is performed essentially
by the least squares method, taking into account observed covariances, and is based mainly
on a paper by M. Halperin. 4 MCNP’S coding has been verified to be correct. The Halperin

method produces the estimate with the least variance, as specified by the G auss-Markov
Theorem.l@a@er ‘1;2’P=9’14;31Page19s This method assumes that the covariance mat rix of the
estimators is known. In MCNP (as in Halperin’s paper), the covariance matrix is estimated
from the data, therefore the three-combined estimator is the “almost” optimum estimator,
yet, in practice, it is still the best estimator.

The behavior of the combined estimate has been described and demonstrated. The corre-
lation between estimators plays a large role in the combined estimator; negative correlation
results in a much reduced variance in the combined estimator, whereas a high positive cor-
relation may result in a combined estimate outside the range of the estimates from the
individual estimators. In a statistical simulation, the combined estimate outperformed both
the simple average of the individual estimators and the individual estimator with the smallest
variance.

For multiple independent runs, the coverage rates of the k,jj confidence intervals were
verified for several real systems. The confidence intervals nominally covered the mean the
appropriate percentage of time for problems with low dominance ratios. For high dominance
ratio problems, the estimated kejf standard deviations may be underestimated, resulting
in inadequate coverage rates. The three-combined k,jj estimator remains minimally af-
fected when the relative underestimation in the individual kejf standard deviation is about
the same. MCNP provides batched k.jf cycle data that assist the user in detecting and
alleviating an underestimation in standard deviations that is caused by the cycle-to-cycle
correlations typically found in high dominance ratio problems. MCNP’s warning messages
also alert the user to non-normal data or a drift in the fundamental eigenmode.

For an adequate number of cycles, usually much greater than thirty (see manual for
MCNP version 4A), the three-combined k=jf estimator is MC!NP’S best estimate for building
k,jj confidence intervals.

.-
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VIII. APPENDIX A: COMMON DISTRIBUTIONS

I
The normal distribution and Student’s t-distribution were described in Section III.

Whereas a distribution such as the normal distribution describes the sums of samples of
random variables, the X2-distribution describes the sums of the squares of samples of random
variables where the underlying data are independent and normally distributed. Particularly,
for the sample variance, S2, calculated with n – 1 degrees of freedom, estimating the true
variance, a2, the random variable

(n – 1)s2

U2
(95)

is called “chi-squared” (X2) and is distributed as a ~2-distribution with n – 1 degrees of
freedom. Figure 22 shows the X2 distribution for 1, 3, and 10 degrees of freedom. The
expected value of X2 is the number of degrees of freedom, here n – 1.10IPaWlm

The F-distribution describes the distribution of a random variable of the form

C1/dl

c*/d2’
(96)

where C’l has a X2-distribution with dl degrees of freedom and C2 has an independent ~2-
distribution with d2 degrees of freedom. With the X2-distribution identified, we see that the
F-distribution, with (nl – 1) and (n2 – 1) degrees of freedom, describes the random variable

(w)

where the underlying data in each of sets 1 and 2 are independent and normally distributed.
Since the expected value of the X2-statistic is the degrees of freedom, the F-statistic, Equa-
tion 96, has an expected value of unity.

Both the X2-distribution and F’-distribution are non-symmetric and rightwardly skewed
from zero to co. As the degrees of freedom, d, approach infinity, @ approaches a normal
distribution with mean ~’ and unit variance. 11

Hotelling’s Z’z-distribution is a multivariate extension of Student’s t distribut ion .3@’9c123
Suppose we haven mutually independent vectors, xi of length p and that each is distributed
normally with mean @ and covariance matrix X. Then the sanlple mear) and variance are

x= :$-’i (98)
t=l

s= + Z(xk - x)(x, - x)’ (99)
t=]

1 where x and S are of dimension (n x 1) and (n x n), respectively, IIotelling’s Z’2-statistic
for some known C)Ois
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T;,n-p = ?z(xk – q’s-yxk – Q)

and reduces to the Student’s t-statistic for the univariate case, p = 1.

The statistic U,3,P”9c 123

u=(a (Y)
is distributed as FP,~_P(A) where A is the noncentrality parameter,2~page 418

(loo)

(101)

A = 72(C3– (30)’x-’(e – e.). (102)

If@ = @., then U is distributed as a central F-distribution. This means that the expected
value of U is one. Therefore, the expected value of Hotelling’s T-statistic is

II(T2) = ‘(n – l). (103)
n—p
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(106)
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Ix. APPENDIX B: REGRESSION ANALYSIS

Univariate Regression Analysis is a statistical study where the relationship between one
dependent variable and one or more independent variables is estimated.7 The functional de-
scribing the relation between the dependent and independent variables is called a regression.
For one independent variable, we have y = j(z), which is called the regression of y on X1
and the coefficients that constitute j are called the regression parameters.

There are many ways to estimate the regression parameters, such as the Least Squares
Method, the Principle of Maximum Likelihood, and the Method of Moments. It is stunning
that the Maximum Likelihood Principle with assumption of normality produces the same
parameter estimation as the Least Squares Method. Given that, we will concentrate on the
Least Squares Method and briefly examine the Maximum Likelihood Principle.

A. Least Squares Method

Legendre proposed in 1805 that the best value gleaned from observations would have
the least value of the sum of squared deviations of the observations. 1 This is the Least
Squares principle. The goal of the Least Squares Method is to produce the best fit to a set of
scattered data points. By “best fit” we mean that the deviations of the data points from the
fit are a minimum. From the method, then, we obtain the least squares parameters, which,
for the equation of a line, are the slope and intercept. The least squares method can be
derived in many ways (several of the books in the references contain this information). We
are interested in the least squares method applied to the univariate linear regression mode13

Yi = (lo+ UIZil + U2Xi2 + -- “ + ak–1~i,k–1 + ei (104)

where the x‘s and y are observable scalar variables for i = 1,. , ., n, the a’s are unknown
coefficients, and the e’s are random errors. Equation 104 is a univariate model since there is
only one dependent variable y that is observed n times. When the univariate model has sev-
eral independent variables, z, it is sometimes called a multi-linear regression model. If there
are several dependent variables, it is called a multivariable linear regression. Equation 104
is quite amenable to matrix form:

Y = X~+e

where

e is the (n x 1) vector of errors,
/3 is the (k x 1) vector of unknown coefficients ail
y is the (n x 1) vector of dependent variables, and
X is the (n x k) regressor matrix:

(105)

x=



Several assumptions are employed in the least squares method.3

● y is a vector of independent observations on a random variable, which is observed with
no error in measurement.

● X is a matrix of known independent constants.

● e is a vector of unobservable that take into account measurement errors and possibly
model errors.

● the covariance matrix of e, 2, is represented as a21. In other words, the errors are
uncorrelated and homoscedastic (they all have the same variance, U2).

● E(e) = O. It is not necessary for the errors to be multivariate normally distributed

in order to obtain least squares solutions. It is necessary, though, in order to obtain

confidence intervals for the solutions.

● E(y) = X@, or, in other words, there is a true linear relationship between the depen-

dent and independent variables.

● var(y) = var(e) = X.

Lest pandemonium erupt amongst the Monte Carlo practitioners, we must put to bed
any alarm stemming from these stated assumptions. Yes, these assumptions may seem
to preclude the combination of Monte Carlo eigenvalue estimators which are stochastic in
nature, but if X does not depend upon @ or S (the regression parameters), stochasticity in
X will not affect the least squares solution. 3 If y is also stochastic, the problem becomes very
complicated, so reliance is made upon the assumption that the meassurernent errors pale in
comparison to those of the linear model.3 We will soon see that we can also modify any data
where the errors are correlated and heteroscedastic in order to meet the assumptions listed
above.

Let us derive the least squares solutions for the simple model with one dependent variable
and one independent variable:

Ytr.e = a. + alx. (107)

The observations yi on y~,ve are then

y~ = (to + (21X; + el, (108)

whose parameters, a. and al, will be estimated by the least squares estimates, Lo and 61, so
that y may be predicted by the fitted equation

j = ho+blx. (109)

Obtaining b. and bl follows from minimizing the sums of the squares of the errors, Q,
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i=l

n

= X(Y1 - YtrJ2
i= 1

n

with respect to a. and al. We find

(3Q

%=
‘25(Y: – (2O – U~Zi) = O,

i=1

8Q

G= ‘zfJ(yi–@–U12’i)T.:= 01
i=l

(110)

(111)

(112)

from which we determine the estimates b. and bl as

b. = j! – blz,

Equations 111 are called the norm-d equations. We shall also estimate the variance of the
least squares parameter estimates, b. and bl. For bl, the r’s act as coefficients on the y’s, so
if the variance of y is a’, the variance of bl is

The variance of & is found as27

We estimate cr2

(115)

by the sum of squares of deviations of the observed vi from the mean Z.
divided by the degrees of freedom:

“. –.77
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‘.2 = E(Yi - ~)z
CT

n—2 “
(116)

To proceed to the point of building confidence intervals, we need to make the assumption
that the errors ei-the deviations of the observations about the regression line-are normally
distributed with mean zero and variance a 2. We may use 62 “lx] the variance expressions for
ho and bl, Eqs. 115 and 114, and thusly build 100(1 – a) Yoconfidence intervals for each:

[

+

bO + tn-2,1-:
& ~ x:

1 (11s)
n ~(Xi – 5)2 “

Here, t,,_2,1_9 is the Student’s t distribution for n – 2 degrees of freedom at the 100(1 – a)%
confidence level.

Now that the regression parameters are estimated, a predicted value of y, ~~, for some
specific x~ is

and the variance of ~k is, since J and bl are uncorrelated,3

2
‘Iik

= var(~) + (Zk – fi)2var(b1

cT2
[
:+

(xk – 2)2
= 1~(Zi–i)’‘

which is estimated by replacing 02 by 62.

(119)

(120)

Now, that we’ve seen the least squares solution for one dependent and one independent
variable, let us look at the multi-linear model, where there are two or more independent
variables,

Ytrue = Xp. (12])

Written for the observations y on yt,u, it becomes

y = X~+e, (122)
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,.
whose parameter vector, /?, will be estimated by /3, so that the fitted equation is

f = Xp,

As in the simple case, we want to minimize the sums of squares of the errors,

Q = (Y - Ytrue)’(Y - Ytnm)>

= (y- Xp)’(y- m),
with respect to /?, whereupon we find3

–2x’(y – Xp) = o,

which implies that the estimate of @ is

j = (x’x)-*x’y, (126)

assuming that (X’X)-l exists. Again, Eq. 126 represents the normal equations. The Gauss-

Markov Theorem says that ~ is an unbiased estimator of the parameter vector @ for the

(123)

(124)

(125)

linear least squares method, and that it has minimum variance among all linear parameter
estimators. I,chapter V J;2,pnge 14;3,page 198

The true variance, a2, is estimated, in an unbiased fashion,

-2=
tr +(Y - M’(Y - x%

which may be used to estimate the variance in ~,

WZr(p)= (X’x)-w,

as

%
= (x’x)-%,

(127)

(128)

(129)

The predicted value, ~k, for a certain Xk, and its variance are calculated as follows:27

fk
t)ar(jk)

with a2 appropriately replaced with its

= Xjp = pxk (130)
= x:(x’x)-lx@~, (131)

estimate, 62.
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Jmt as in the simple cas~, confidence intervals may be built for any element of the
estimated parameter vector, /3.

The issue of correlation remains. The least squares method has the assumption of un-
correlated errors such that covariance matrix of e is written as 021, but, if the errors are
correlated, the matrix is written as a2X, where D is a full matrix, and the assumption is
violated. Most unfortunately, the Gauss- Markov Theorem no longer applies, and the esti-
mators, ~, may not have the minimum variance among all estimators. Fear not, though, for
this is almost painlessly remedied by multiplying the model (y, X, e) by 2-112. This remedy
results in what is termed the generalized least squares method:3

~ = (X’x-’x)-’z’ly,y, (132)

(133)

var(~) = cr2(X’2-lX)-1. (134)

A joint confidence region for all the parameters is found from,27’Pa@ 79

&(y’z’-*y – y’x-*x(x’x-lx)-lx’xly )Fk,n-k,,_.. (135)

The least squares method assumes a linear relationship between the independent vari-
ables and the dependent variable.28 If this is not a reasonable assumption, we have two
choices: 7*ww’242 change the model, say, to nonlinear least squares, or transform the vari-
ables such that a linear relationship does exist. The latter option requires that the model
be intrinsically linear and may require some additional knowledge of the variables under
st udy.27

The combination of estimators, as MCNP does, is a specific application of the least
squares method and has no unique approach. One approach is to just consider observations
on a true value. Then Eq. 122 becomes simply, in elemental form

Yi = UO+ei, i= l,...,n, (136)

where the true value a. will be estimated by b. for the n observations, Vi. For a full (n x n)
covariance matrix for the e’s, or equivalently, the y’s, the least squares estimate b. is found
from Eq. 132. There is one parameter and n observations, so the regressor matrix X is an
(n x 1) matrix of ones. Here we see that, instead of independent variables, X contains design,
or specified, parameters.

We now derive the combination least squares equations for two estimators, xl and r2,
treated as observations on a true value x. The covariance matrix is

(137)

the regressor matrix is
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()x=+,

the vector of the two estimators is

(138)

()xl
Y =

Z2 ‘

and the inverse covariance matrix is

(139)

Notice that CY2has been absorbed into X. Equation 132 stipulates the combination of
the estimators:

(142)

(143)

and the estimated variance of bo, from Eq. 134, is

(144)

B. The Principle of Maximum Likelihood

The Principle of Maximum Likelihood says that, given a set of hypotheses that could
have produced an observed result, the one that most likely caused it is selected as the correct
one. 8

The likelihood function is dependent upon the true value and represents the probability
of getting the observed value. We will briefly look at how the maximum likelihood estimators
of the regression parameters are obtained29 for the simple case of one dependent and one
independent variable. 10 Given the linear regression model
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(14.5)

and {yl, i=l, . . ..n} are

Ytrue = ao + (LIZ,

observations on ytrU~, we have

Y1 = ao+alzi+eil (146)

where ei are errors, assumed to be normally distributed with mean zero and variance 02
(this is equivalent to assuming yi to be distributed with mean y,,U, and variance cr2). When
a. ancl al are estimated by b. and bl we

i

The method of maximum likelihood
rameters. The density function of the yi

are able to predict y for a specific x~,

= b. + blx.

proceeds as follows
is

(147)

to estimate the regression pa-

The

Pi =
{

_(W – aO – a1z1)2
& exP

}
2.2 “

ikelihood function is defined as

{
I!ipi= fi+&exp _(yi - “;;”IJI)2
i=l i=l }

{

(vi – a. – a1z1)2
= -&ezP -x

}2& “

It is easier to work with the logarithm of the likelihood, L,

(148)

(149)

(150)

Replacing the parameters a. and al with their estimates, b. and bl, and setting equal to zero
the partial derivative of L with respect to each, gives the following equations:

(3L

%=
‘2~(y~ –ao – alZi) = O, (151)

i=l

(3L
‘2~(yi – ao – a*2’i)Zi = O.

ZG = ;=l
(152)

These are the normal equations! It is utterly remarkable (or just somewhat remarkable, if
you’re jaded by the numerous phenomena in mathematics) that the principle of maximum
likelihood, with the assumption of normality, produces the normal equations, just as those
coming from the least squares method.
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x. APPENDIXC: PEELLE’S PERTINENT PUZZLE

A. Introduction

In October 1987, R.W. Peelle put out an informal memorandum20@ ‘CcO’’n~c~that docu-
mented his strange results obtained from combining two correlated measurements from two
foil activation experiments. The experiment consisted of two independent activations of the
same foil in an attempt to determine the activation cross section, z, which is the ratio of the
activation to the mass of the foil; z = a/m. The activations were al = 1.0 and a2 = 1.5 and
the mass of the foil was 1.0. The variance of each quantity was to be the sum of two parts
that had standard error relative to the quantity, an independent 10% and a fully positively
correlated 20Y0. This would presumably correspond to a 1070 uncertainty in the activations
and a 2070 uncertainty in the foil mass. This, then, is Peelle’s problem. It is desired to
obtain one final answer from these data.

B. Combining Correlated Data

Given Peelle’s data, what is the proper way to proceed? Peelle proceeded by calculating
an activation cross section for each activation, Z1 = al /rn and X2 = a2/nz, calculating a full
variance- covariance matrix, and applying t he least squares method to z 1 and X2 to get the
best estimate x’ =< xl, zz >, where < y, z > denotes the least squares combination of y and
~.20

xl = 1.0 (153)

X2 = 1.5 (154)

var(zl) = [(0.1 )(Z,)]2 + [(0.2 )( OV,)]2 = 0.01 + 0.04 = 0.05 (155)

var(sz) = [(0.1 )(z2)]2 + [(0.2 )(z2)]2 = 0.0225 + 0.09 = 0.1125 (156)

Cov(zl, Z2) = [(0.2 )(z1)][(0.2)(.r.2)] = (0.2)(0.3)= 0.06 (157)

The resulting z’, from Eqs. 143 and 144, is 0.882 + 0.218, which, surprisingly enough,
lies outside the range of ZI and X2. This is incorrect, not necessarily because of its outlying
position, but because of the data preparation before applying least squares .30 The fact that
the equations for the variances of Z1 and Zz look very similar, yet give different results, is a
clue to the incorrect preparation of the data and, therefore, the incorrect application of the
least squares method. To estimate one quantity, the same experiment was performed twice,
each using the same equipment and the same materials. Therefore the variances should be
the same for both measurements and the covariance should not depend on the size of either
one of the measurements alone. 30

The correct way of combining these data, for this problem, is to combine the indepen-
dently measured activations with least squares, then use the mass to obtain an activation
cross section31 and regular propagation of errors to estimate the standard deviation, thus
the combined average is

<al, az> a’
Xf = =—

m m
(1.58)
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where a’ is the least squares
uncorrelated, the combination
in

combination of al and a2. Since they are independent and
is simply an inverse variance weighting scheme, which results

(z’= 1.154 + 0.083. (159)

Then, using standard propagation of errors with no correlation between a’ and rrz,g we
find,

X’ = 1.154 + 0.245. (160)

This, then, is believed to be the correct solution to Peelle’s Pertinent Puzzle. Zhao
and Perey 32 explained that Peelle’s incorrect result came from trying to combine derived
quantities, where the derived quantities were nonlinear functions of the observed quantities.
They showed that, when fitting derived data, an iterative procedure-necessary since the
covariance matrix is known only approximately–would converge to the correct solution, that
of fitting the observed data. Perelj Wagschal, and Yeivin 19 show that nonlinearity is not an

issue, merely the observation that the mass of the foil in Peelle’s experiment is an explicit
quantity, since it causes the correlation. They point out that before applying least squares,
one must know the cause of the correlations in the problem. If the cause is unknown, then
the only way to proceed is as Peelle did in his experiment. A general statement from the
nuclear data community on the applicability of the least squares method is apparently yet
to come.31’lg

Chiba33 came to similar conclusions by giving a criterion where the least squares solution
was invariant before and after a transformation of the data vector that doesn’t reduce its
dimension. Chiba begins with the correct least squares solution, as above, and transforms
the data differently to show the invariance of the solution. When Chiba transformed the
data improperly, the solution Peelle had originally obtained was produced.

Chiba also showed that truncation of the data, thus reducing its dimension, was a trans-
formation that produced different least squares solutions than those before the transfor-
mation. Peelle’s two-dimensioned problem with nonzero covariances should indicate the
presence of another quantity causing the correlation and that the problem is really of at
least three dimensions. However, as noted earlier, this requires explicit knowledge of the
cause of the correlation. If this knowledge is not available, then the extra dimension will
remain unavailable.

c. Summary

In summary, the method of least squares is very powerful and, as with anything powerful,
should be used carefully, as shown by the response to Peelle’s Pertinent Puzzle. We’ve seen
that the covariance of an observation cannot depend upon the value of that observation. If
the cause of correlation is explicitly known, it must also be modeled to obtain the correct
results. To do otherwise is a truncation of parameter space, and the least squares solution is
not invariant under such an operation, and therefore, incorrect. When the cause of correlation
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is not explicitly known, the full parameter space is assumed, and the least squares method
is applied with little reservation. Any time the combined estimate falls outside the range
of highly and positively correlated individual estimates, surprise and suspicion should be
displaced by understanding and appreciation.

83



XI. APPENDIX D: DETAILED OBSERVATIONS OF THE TWO-ESTIMATOR
COMBINED ESTIMATE

Given the two-combined estimator

i= Wlxl + 2U2X2

where the weights are, from Eq. 36,

wl =

W2 =

we see that they sum to unity, and their denominator is positive, since

W2(Z2 – Zl) < 0

(w, – 1)X., + W2X2 < 0

Wlzl + W2T2 < Z1

2 < Zl,

where 3 is the two-estimator combined estimate. Similarly
then WI <0 and W2 >0, and

Wl(zl —X2) > 0

W1Z1+(W2 – 1)X2 > 0

Wlxl + W2X2 > X2

i > X2,

where, again, ~ is the two-estimator combined estimate.

if X2 > .T1 and c#2 < fY~2< a~l.

Also, given that the denominator of the weights is positive. then the covariance is less
than the average of the variances:
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Of course, this limit is less restrictive than that obtained from the expression of the correla-
tion coefficient:

(163)
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XII. APPENDIX E: BIAS IN LEAST SQUARES

A negligible amount of bias, b~ exists in the Monte Carlo k-effective estimator. It is
negligible since it is a function of M– *, where M is the number of histories per cycle,34 and
will be less than a true standard deviation, a, per the following equation: 6

C7
(164)

where N is the number of cycles and k is the true eigenvalue. Gelbard and GU6 found that
the observed bias was insensitive to the dominance ratio, but Gelbard and Prae124 found the
variances, as commonly calculated, were sensitive to the dominance ratio. They found that
increasing the batch size–groups of more than one cycle–decreased the bias in the variance.

In what follows, we empirically see that the estimated variance of the combined estimator
will, at worst, preserve the bias in an individual estimator variance, but not magnify it.

A. Bias in the Estimator

If, for a two estimator case, with both estimates having the same expected value (unbi-
ased), the variances are equal and they are perfect ly correlated, the Least Squares method
will produce a singular matrix and break down. There is no need to fret, because, in this
case, the estimators are exactly the same and you may confidently select either one of them.
If, on the other hand, both fully correlated estimators had the same variance, but different
values, then the Least Squares method will still break down, but without additional informa-
tion, you cannot justify selecting one estimate over the other. Actually, for a combination of
two estimators, this situation will reduce to the average of the two estimates but with infinite
variance. This latter situation would seem to indicate a bias in one of the estimators. In
general, bias in the estimated least squares parameters is due to both bias in the independent
values and incorrectness of the model.27’Pa9e ‘1

Having a bias in one of the estimators invalidates a major assumption behind our ap-
plication of the least squares method. This is easily visualized by considering Halperin’s
transformation,4 which, for a two estimator case, transforms the unbiased variables rl and
~2to.z1=z1andz2=z1 —X2. Any linear transformation will not destroy the multivariate
normal qualities of a distribution. 2~Pi9e417 The expected value of ZI is the true answer and
the expected value of 22 is zero. If we plot the distributions, where ZI is the ordinate and
22 is the abscissa, we will find the points clustered around the ordinate axis, at a value near
ZI, Linear regression-least squares-will best fit the data to a line and estimate the best
combination of the two values, Z1 and X2, as the y-intercept. If one of the estimates was
biased, then the expected value of 22 would not be zero, but some co~~stant equal to + the
bias, Our handy plot would now have data points clustered, not around the ordinate axis,
but around ZZequal to a constant. Finding a y-intercept would prove rather difficult, since
both the slope and intercept of the linear best fit could be up to either plus or minus infinity.

If both estimators were biased equally, then this numerical-and graphical-problem would
not exist, and least squares would produce the best biased estimate. Without further infor-
mation, the true unbiased value is unobtainable in this case. So, for our application of the
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least squares method with Halperin’s transformation, the assumption of unbiased estimators
translates to the assumption that all the estimators have the same expected value. That
is not a very appealing relaxation of the assumptions, though, from the standpoint of a
desirable estimator.

B. Bias in the Variances and Covariances

We first look at the matrix equations for the combination of estimators and determine
the effect of a variance-covariance bias on them. For a bias matrix, B, we have the following
relations, where the hat indicates a biased value and the subscript 2 indicates Halperin’s
t ransformation:4

2 = !2+B (165)

~z = A$A’. (166)

Substituting Eqs. 166 into the equation for the combined estimator, Eq. H2.14 in Halperin’s
paper, the bias on the combined estimate is found, in terms of unbiased quantities, as

(~zIzQ;\ +B.I,(Q;;, - %)) (z,,...,z,,’, (167)

where the numeric subscripts indicate the matrix partitioning as in Halperin’s paper,

Q;’ = A’X-*B(B + B2-*B)-’BZ-1A, (168)

and

The bias in the estimated variance of the combined estimator, in terms of unbiased
quantities, is

— rw;pt(n – l)dQ~..d’

+ [Bzlz – X.12 X;;213.21 + Z12Q;;2(% + 33221)

– Bz12(~l:2 – Q~.2)(~z21 + Bz21 )]

x [ 1: +@;2d’–(n– l)dQ~.2d’ . (170)

Biases, bij, in the individual covariances, a~j, yield, for the t we-estimator combined esti-
mate, a bias of

(171)
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where

D = G;l + C& – 2c&

B = bll + bzz – 2blt,

s~ = U?;— 427

r~ = bii – b12.

There will be no bias in the two-combined estimate if

. bij = O, for all i,j,

● bij’s are all equal, or

● bij = a;, for all i,j.

The bias in the asymptotic part of the estimated variance of the two-estimator combined
estimate is

bll –
Dr1(2s1 – rl) – Bs;

D(D + B) “
(176)

We can computationally examine the effect of a variance bias on the least squares solution

(172)

(173)

(174)

(175)

for the two estimator combined case. This case was programmed up for the example in theI

“Peelle’s Pertinent Puzzle” section:

xl - N(O, 1)

X2 N N(O, 1)

and the linear least squares weights for the two estimator case are (i # ~)

From the section on I-Ialperin’s paper, the expression for the variance of the combined esti-
mator, ~~, is
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Here, too, we see by inspection that if both variances and the covariance have the same
bias, the weights, and hence the combined estimator, will remain unaffected. The variance of
the combined estimator will, however, be affected. Both of these statements hold if the bias
is viewed as a multiplicative bias instead of an additive bias—at least for the combination
of two estimators.

Table XX shows, for one hundred samples, these bias effects.
As seen in Table XX, the combined mean is, referenced to zero bias, unaffected if all the

biases are the same, whereas the standard deviation of the combined mean is not unaffected.
A lone bias in the larger variance will weight the estimator with the smaller variance, thus
having a relatively small effect on the combined mean. A lone bias in the smaller variance
will weight the estimator with the larger variance and will have a. more dramatic effect on
the combined mean. If a bias, commensurate with the lone bias on one of the variances, is
present in the covariance, these effects are even more drastic in both the combined mean
and standard deviation.

TABLE XX. Bias Effects on the Two-Estimator Combined Estimate

absolute bias in I combined estimate
(7;1 2 2

~22 cl 2 mean standard deviation

o 0 0 .().o~ 0.00
-1 -1 -1 -().()2 0.12
1 1 1 -OOOQ 0.12
1 0 1 0.29 0.11
0 1 1 0.0.5 0.10
0 1 0 0.23 0.04
11010 0.04 0.01
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XIII. APPENDIX F: UNCONDITIONAL VARIANCE OF THE COMBINED
ESTIMATOR IN HALPERIN’S PAPER

The variance of the combined estimator, as presented on the bottom of page 39 of
Halperin’s paper,4 is a conditional variance in that it is based on the conditional distri-
bution of {zlj } given {z2j) . . . . Zkj }. The expected value of a conditional expression is the
unconditional expression, so Halperin looks at the expected value of the variance. First, note
the expression for Hotelling’s T2-statistic (see Appendix A):

T;,n_P = ?z(x~ – Clo)’s-l(xk – @o), (177)

where there are n vectors x~, each of length p. Comparing Eq. 177 with the second term in
the brackets of the variance, we see the following relation,

&@~ = %,.-(M)

rz(n -1) ‘
(178)

where we note that !?i~l is a (k — 1) x (k – 1) matrix containing only sums of squares, thus
explaining the (k – 1) and (n – 1) terms. The expected value of Hotelling’s T2-statistic is
p(n – 1)/(n – p), so that the expected value of the conditional variance, the unconditional
variance, is

[

k–l
CT:pt1 + 1?z-k+l “

As Halperin points out, this gives the speed of convergence to a&~. (The speed of conver-
gence for the conditional variance is known only to a desired confidence level since it relies
upon Hotelling’s T-statistic, which is a random variable. ) For our case. of three est imaters
and, say, 100 active cycles, the unconditional variance would be about 1.02a~Pt.
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XN. APPENDIX G: DATA

Contents

1. Results for 100 independent Godiva runs with implicit capture.

2. Results for 100 independent Godiva runs with analog capture.

3. Results of 100 independent MCNP runs as performed by Mr. Charles T. Rombough
of CTR Technical Services, Inc., Arlington, Texas.

4. Results for 100 independent MCNP runs for the Jezebel/Godiva system

(a) 800 batches of 1 Icetj cycle each

(b) 40 batches of 20 k.tj cycles each

Results for 100 independent Godiva runs with implicit capture:

Godiva: Implicit Absorption

run k(;ol) std k(abd std k(trk h) e.td kCc/a/t) std
---

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

18

17

18

19

20

21

22

23

24

2s

26

27

28

29

30

31

32

33

34

36

36

37

38

39

40

---------------
1.00100 0. 0Q240

0.99590 0.00220

0.99210 0.00230

0.89250 0.00210

0.93860 0.00220

0.99760 0.00260

0.98870 0.00240

1.00170 0.00220

0.99370 0.00250

0.99820 0.00240

0.99S60 0.00240

1.00120 0.00240

0.99630 0.00210

0.98860 0.00230

0. 99s70 0.00260

0. 99W3 0.00230

1.00250 0.00230

0.99450 0.00260

0.99680 0.00290

0.99840 0.00220
0.98720 0.00280

0.99880 0.00210
0.98820 0.00230

0.93430 0.00210

0.99610 0.00220

0.99830 0.00230

0.99920 0.00220
0. 99s40 0.00220

0.99880 0.00260

0.99860 0.00270

0.99560 0.00230

0.99620 0.00210

i .00120 0.00220

0 .9S410 0.00240

1.00264 0.00240

0.99660 0.00240

0.99680 0.00230

0.99470 0.00230

0.99190 0.00240

0.99520 0.00240

------- --------
1.00080 0.00240

0.99680 0.00220

0 .8S220 0.00230

0.99320 0.00210

0.88650 0.00230

0 .8S760 0.00260

0.99890 0.00240

1.00180 0.00220

0.88370 0.00260

0. 8S670 0.00240

0.98620 0.00240

i .00060 0.00240

0. 99s20 0.00220

0.98680 0.00230

0. S9560 0.00260

0. 994S0 0.00240

1.00300 0.00230

0.83430 0. IXJ250

0.99600 0.00290

0.99630 0.00220
0. S9640 0.00260

0.99920 0.00210
0.39830 0.00230

0.88380 0.00210

0.99510 0.00220

0.99610 0. IX1240

0.99930 0.00220
0. 99s40 0.00220

0.99890 0.00250

0.89890 0.00270

0.98540 0.00240

0.99670 0.00210

1.00130 0.00210

0.99480 0.00230

1.00270 0.00230

0.99730 0.00240

0.99670 0.00230

0.89460 0.00230

0.98200 0.00250

0.99570 0.00240

------------- --
0.98830 0.00200

0.99830 0.00200

0.992900.00200

0.99320 0.00180

0.99640 0.00160

0.997600.00190

0 .9S860 0.00190

0.99940 0.00180

0.99630 0.00200

0.99570 0.00190

0.99730 0.00190

0 .99S10 0.00160

1.00070 0.00190

0.998000.00190

0.99580 0.00230

0 .99s10 0.00200

0.98890 0.00190

0.99310 0.00190

0.98800 0.00210

0.98880 0.00200

1.00010 0.00190

0.99950 0.00200

0.98690 0.00220

0.99320 0.00160

0.99580 0.00170

0.99880 0.00200

0.99860 0.00180

0.99560 0.00170

0.99660 0.00200

0.98830 0.00210

0.99700 0.00190

0.98690 0.00180

0.99890 0.00190

0.99730 0.00190

0.99960 0.00190

0.99800 0.00190

1.00070 0.00180

0.99670 0.00190
0.99350 0.00170

0.99290 0.00190

---------------
0.99877 0.00188

0.99743 0. 0018s

0.93289 0.00195

0.89285 0. C4M75

0.98643 0.00159

0.89766 0.00194

0.99870 0.00192

1.00023 0.00176

0.99s08 o.c@197

0.99578 0.00193

0.99738 0. CK1189

0.99907 0. 001s2

0.99974 0.00175

0.99774 0.00189

0.99567 0.00228

0 .99s49 0.00202

1.00095 0.00194

0.99327 0.00189

0.99791 0.00215

0.99863 0.00189

0.99986 0.00189

0.88959 0.00183

0.99740 0.00209

0.99332 0.00178

0.s9570 0.00164

0.986fM 0.00198

0.99870 0 .04M81

0.98583 0.00166

0.98678 0.00204

0.99840 0.00215

0.99672 0.00188

0.99661 0.00176

1.00044 0.00176

0.89769 0.00181

0. S9984 0.00192

0.99756 0.00191

0<98994 0.00179

0.99616 0.00192
0.99331 0.00175

0.99337 0.00196
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41

42

43
44

46

46

47
48

49

60

51

62

63

54

56

66

67

58

69

80

61

62

63
64
65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

67

88
69

90

91

92

93

94

95
96

97

98

99

100

0 .998SS 0.002S7

0.99759 0.00226

0.99483 0.00217
0.98679 0.00226

0.93927 0.00238

0.99874 0.00234

0.99924 0.00246
0.99778 0.00270

0.99389 0.00248

0.99436 0.00221

0.99208 0.00238

0.98942 0.00211

0.99750 0.00231

0.99371 0.00208

0.99682 0.00210

0.99470 0.00200

0 .998S2 0.00221

0.98825 0.00269

0 .9968S 0.00256

1.00364 0.00245

0.99676 0.00228

0.99184 0.00261

0.991SS 0.002S9
0.98849 0.00231
0.99763 0.00260

0.98402 0.00241

0.99882 0.00249

0.98802 0.00238

1.00033 0.00266

0.99766 0.00249

0.99603 0.00202

1.00548 0.00217

0.99279 0.00238

0.99440 0.00221

0.98618 0.00226

0.99465 0.00222

0.98877 0.00224

0 .99S66 0.00231

0.99741 0.00261

0.98836 0.00282

0 .989s4 0.00208

0.99424 0.00208
0.99822 0.00216

1.00116 0.00233
0.98617 0.00239

1.00103 0.00238

0.99717 0.00242

0.99743 0.00238
0.99713 0.00206

0.99387 0.00239

0.98910 0.00220

0.99865 0.00226

0.98878 0.00226

0.98881 0.00249

0.98861 0.00221

0.99286 0.00227

0.99780 0.00219

0.99864 0.00244

0.99380 0.00242

0.99391 0.00229

0.98851 0.00260
0.88708 0.00224

0.99S16 0.00221

0.98694 0.00229

0.93920 0. IM240
0.9880S 0.W235

0.98922 0.00262
0.98786 0.00268

0.89430 0.00248

0.99388 0.00223

0.99257 0.00237

0.99983 0 .IX1209

O .997S9 O. IM230

0.88389 0.00207

0.99887 0.00216

0.88469 0.00202

0.98855 0.00224

0.89646 0.00263

0.88646 0.002S5

1.00370 0.00244

0.88845 0.00229

0.99189 0.00267

0.89153 0.00268

0.88772 0.M231
0.99766 0. IM257

0.98388 0.00237
0.88900 0.00248

0.89800 0.00234

1.00070 0.00249

0.99800 0.00242

0.88598 0. IX3202

i .00555 0.00220

0.88291 0.00240

0.88339 0.00221

0.99608 0.0022S

0.99506 0.00221

0.98665 0. &3226

0.99499 0.00227

0.88704 0.00252

0.88833 0.00280

0.98990 0.00208

0.98429 0.00217
0,98632 0.00217

1.00129 0.00230

0.88629 0.00231

1.00137 0.00236

0.98886 0.00251

0.99766 0.00244
0.88733 0.00208

0.98381 0.00241

0.98920 0.00220

0.99869 0.00223

0.88698 0.00225

0.98707 0.00253

0.98827 0.00222

0 .883S2 0.00229

0.99772 0.00227

0.98897 0.00241

0.99416 0. C0241

0.38383 0.00228

0.99834 0 .0019S

1.00011 0.00179

0.99594 0.00161
0.99491 0.00184

0.99859 0.00167

0.99880 0.00206

0.99850 0.00174

0.99999 0.00213

0.99467 0.00214

0.99428 0.00178

0.99639 0.00191

0.99823 0.00190

0.99776 0.00191

0.99364 0.00177

0.99770 0.00187

0.99410 0.00186

0.98669 0.00177

0.99832 0.00189

0.99653 0.00199

1.00280 0.00199

0.99976 0.00168

0.99237 0.00213

0.99400 0.00196
0.98660 0.00199

0.98899 0.00201

0 .99s07 0.00174

1.00030 0.00188

0.99858 0.00186

1.00214 0.00206

0.99667 0.00210

0.98426 0.00174

1.00153 0.00173

0.99303 0.00192

0.99683 0.00196

0.99381 0.00210

0.99722 0.00176

0.88817 0.00199

0.98667 0.00190

0.99790 0.00200

0.99832 0.00201

0.99734 0.00223

0.98880 0.00170

1.00032 0.00173

1.00238 0.00190

0.98893 0.00205

0.98844 0.00176

0.99718 0.00190

0.99781 0.00180
0.99798 0.00185

0.99177 0.00185

0.99590 0.00191

0.88797 0.00189

0.98698 0.00160

0.99539 0.00178

0.99814 0.00179

0.99429 0.00194

0.98817 0.00176

0.99768 0.00212

0.99561 0.00204

0.99S10 0.00176

0.99838 0.00186

0.88916 0.00178

0.88571 0.00163

0.88633 0.00184

0.98865 0.00187

0.89882 0. 0Q203

0.9984S 0.00176

0.89991 0.00208

0.89465 0. IN215

0.89404 0.00173

0.88612 0.00188

0.98876 0.00186

0.89772 0.00187

0.99365 0.00172

0.39735 0.00177

0.88426 0.00165

0.98712 0.00174

0.89834 0.00191

0.88677 0.00204

1.00300 0.00197

0.88934 0.00171

0.99232 0.00212

0.88400 0.00138
0.83704 0.00200
0.99707 0.00202

0.99463 0.00173

1.00034 0.00188

0.9892S 0.00184

1.00264 0.00203

0.99656 0.00207

0.99481 0.00169

1.00247 0.00171

0.88301 0.00190

0.89382 0. @3194

0.99462 0.00206

0.88674 0.00174

0.89844 0.00197

0.89611 0.00168

0.89765 0 .002M

0.99831 0.00202

0.99895 0.00198

0.88740 0.001645
1.00ooo 0. C0173

1.00228 0.00166

0.99683 0.00194

0.88960 0.00177

0.99744 0.00190

0.99784 0.00189
0.8876O 0. IM176

0.99213 0.00181

0.88688 0.00183

0.88817 0.0Q164

0.99711 0. CX1166

0.88563 0.tX2180

0.99803 0.W179

0.98362 0.00194

0.8979S 0.00169

0.88833 0. C0208

0.38640 0. C0202

0.8850S 0.00178
--------------- --------------- --------------- ---------------

mean 0. 9969S 0.00234 0.89699 0.00234 0.99717 0.00190 0,98717 0.00188

sigma 0.00270 0.00018 0.00272 0.00017 0.00236 0.00014 0.00238 0.00014
diffmcnce

in Tarianca -0. 1816E-05 -0. 1899E-05 -0. 1932E-05 -0. 2140E-05
diffaronca

in stnd dev -O .3605E-03 -0. 3761E-03 -0. 4639E-03 -0. 5025E-03
tha xasnlts of tha u teat for normality applied to the collision, absorption,
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track-lemgth, and combined kaff =aluos are:
the k( collision) Talnas appear normally distributed at the 95 percent confidence level

the k (absorpt ion) ralues appear normally distributed at the 9S percent confidence level

the k(trk length) mlues appear noraaL.Ly distributed at the 95 percent confidence level

the k(co/abs/trl) valuem appear normally dist ribnt ed at the 95 percent confidence level

For 100 wilnea of the collision estimator

with average 0.996951 the data were:

confidence level Z of the time
----------------- -------- -----

0.660 64.0000

0.950 90. Oom

0.990 98.0000

Largest deviation - 3.93047

For 100 values of the absorption estimator

with average 0.996991 the data were:

confidanc.e level ‘& of the time
----------------- -------------

0.660 61.0000
0.950 90.0000

0.990 98,0000

Largest daviatim x 3.69029

For 100 values of the trk length est imatm

with average 0.997174 tha data were:

confidence level x of the time
----------------- -------------

0.660 57.0000

0.950 86 .Oow

0.880 97.0000

Largest deviatim - 2.92111

For 100 values of the 3-ccmbined aatimator

with average 0.997166 the data were:

confidence level x of the time
----------------- -------------

0.660 59.0000

0.950 87.0000

0.990 95.0000

Largaat deviation = 3.l@366
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run
---

1

2
3

4

6

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34
3s

36

37

38

39

40

41
42

43

44

45

46

47

46

49

60

61

52

53

54

56
56

67

68

69

60

61

94

k(col) std
---------------

0.98920 0.00320

1.00160 0.00330

0.99460 0.00300

0.99580 0.00330

0.98060 0.00340

0.93630 0.00320
0.99410 0.00300

0.98730 0.00330

0.99470 0.00300

0.99360 0.00330

0.99710 0.00310

0.99930 0.00340

0.99880 0.00330

0.98660 0.00300

0.99380 0.00300

1.00020 0.00330

0.99450 0.00340

1.00320 0.00340

0.98660 0.00310

0.99310 0.00320

0.99210 0.00360

0.98640 0.00340

0.98680 0.00310
1.00460 0.00280

1.00120 0.00330

0.99780 0.00360

0.98830 0.00340

1.00020 0.00310

0.99780 0.00320

0.99700 0.00310

0.99710 0.00300

0.W660 0.00300

1.00370 0.00310

0.98840 0.00340

0. 99s60 0.00320

0.99730 0.00320

0 .9 W5CK30.00340

0.99480 0.00320

0.99960 0.00340

1.00130 0.00320

1.00208 0.00337
0.99881 0.00329

0.99818 0.00296

0.98S29 0.00344

1.000S6 O. 0032S

1.00149 0.00364

1 .002XI 0.00289

0.98888 0.00346

0.99704 0.00319

1.00006 0.00313

0.99707 0.00304

1.00311 0.00304

1.00156 0.00279

1.00134 0.00319

0.99368 0.00306
0.98815 0.00310

1.00118 0.00310

1.00016 0.00329

0.98613 0.00334

0. 9SS21 0.00346

0.99539 0.00332

k(aba) mtd
---------------

0.99640 0.00360

1.00060 0.00380

0.89120 0.00370

0.88270 0.00460

0.88300 0.00370

0.89920 0.00340

1.00340 0.00400

1.00030 0.00360

0.88230 0. W41O

1.00034 0.00370

0.88220 0.00360

0.88830 0.00360

0.88130 o. Cm360

1. Cx3260 0.00400

0.98910 0.00420

0.89860 0.00320

0.98460 0.00360

0.88680 0.00370

1.00210 0.00370

1.00390 0.00360

0.38850 0.00410

0.99400 0.00360

1.00190 0.00330
0.88710 0.00410

0.99110 0.00380

0.99330 0.00320

0.88620 0.00320

0.99690 0.00360

0.89640 0.00420

0.98820 0.00370

0.99860 0.00390

0.88610 0.00370

0.99990 0.00420

0.99360 0.00380
0.96660 0.00370

0.88650 0.00410

0.88710 0.00380

0.98710 0.00410

0.88770 0.00320

0.39720 0.00360

1.00203 0.00416
0. 88S33 0.00366

0.99446 0. W364

0.89621 0.00366

1. 0003S 0.00472

0.98670 0.00373

0.88748 0.00378

0.88916 0.00353

1.00544 0. Cm362

0.89293 0. &3398

1.IMI18 0.00436

i .CQ419 0.00369

1.t%3136 O. W427

0.88424 0.00403

0.89769 0.00432
0.88919 0.00322

0.88662 0.00392

0.09813 0.00396

0.99261 0.00373

0.99979 0.00401

0.88821 0.00406

k(trk ln) .atd
---------------

0.99820 0.00290

1.00210 0.00270
0.99790 0.00270

0.99380 0.00270
0.99100 0.00270

0.98600 0.00260
0.99120 0.00270

0.99420 0.00260

0.99840 0.00260

0.99380 0.00290

0.99520 0.00270
0.99820 0.00270

1.00040 0.00280

0.98610 0.00290

0.99660 0.00260

0.98670 0.00290
0.99560 0.00300

1.00200 0.00270
0.99600 0.00260

0.99420 0.00320
0.99390 0.00310

0.99730 0.00300

0.99880 0.00260

1.00080 0.00260

1.00130 0.00290

0.99980 0.00320

0.99740 0.00310

1.00020 0.00270

0.99870 0.00290

0.99820 0.00270

0.99770 0.00280

0.98660 0.00270

1.00040 0.00250

1.00220 0.00300

1.00190 0.00290

0.99840 0.00280

0.99440 0.00260

1.00260 0.00290

1.00040 0.00270

0.99860 0.00250

0.98921 0.00276
0.99777 0.00264

1.00013 0.00279

0.99779 0.00286

1.00249 0.00263

1.00265 0.00294

1.00412 0.00261

1.00283 0.00266

0.99472 0.00278

1.00046 0.00279

0.99805 0.00264

i .00016 0.00254

0 .9%85 0.00267

0.98865 0.00297

0.98666 0.00292

0.98605 0.00270

0.98937 0.00271

0.99875 0.00299

0.99818 0.00266

0.98415 0.00341

0.99812 0.00273

k(c/a/t) at d
---------------

0.89822 0.00237

1.00172 0.00224
0.88655 0.00201

0.83289 0.00224
0.88187 0.00233

0.98728 0.00186
0.99513 0.00224

0.99591 0.00218

0.88738 0.00194

0.88677 0. CM3219

0.99369 0.00164

0.88793 0 .CN194

0.88689 0.00188

0.88852 0.00208

0.88688 0.00222

0.88834 0.00201

0.99550 0.00219

0.88820 0.00225

0.88821 0.00200

0.89891 0.00209

0.99645 0.00246

0.89595 0 .IM220

1.00056 0.00166
0.88960 0.00232

0.88702 0.00220

0.8866S 0.00224

0.99641 0.00198

0.88851 0. IM198

0. 9980S 0.00243

0.99453 0.00211

0.99848 0.00218

0.88631 0.00226

0.88963 0.00223

0.99916 0.00237

0.88706 0.00225

0.99805 0.00213

0.88496 0.00203

1.00288 0.00245

0.88937 0.00201

0.99741 0.00200

0.99939 0.00201
0.88647 0.00208

0.89801 0.00198

0.89699 0.00223

1.002390.00228

0.88687 0.00226

1.00192 0.00206

1.00232 0.00211

0.83681 0.00207

0.99774 0.00221

0.89922 0.00227

1.00117 0. CK1206

0.88600 0.00210

0.88729 0.00226

0.98760 0.00207

0.88693 0.00168

0.99784 0.00211

0.99824 0. W247

0.98646 0.00239

0.88639 0. Cx3250

0.89889 0.00217

Results for 100 independent Godiva runs with analog capture:

Godiva: Analog Absorption



62
63
64
66
66
67
66
69
70
71
72
73
74
75
76
77
76
79
80
81
62
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

0.99628 0.00329
0.99S24 0.00314
1.00139 0.00322
1.00090 0.00316
1.00311 0.00343
1.00041 0.00303
0.99804 0.00317
0.99260 0.00311
0.98654 0.00317
1.00197 0.00389
0.99722 0.00336
0.98657 0.00318
0.99667 0.00306
0.99692 0.00312
0.99122 0.00274
0.99566 0.00297
0.99406 0.00326
0.98627 0.00326
0.99834 0.00353
0.99949 0.00313
0.99528 0.00305
0.99778 0.00320
0.99766 0.00349
0.99306 0.00349
1. 000s4 0.00336
0.99266 0.00312
0.99762 0.00328
0.99248 0.00309
1.00274 0.00317
1.00640 0.00367
1.00113 0.00329
0.99902 0.00346
0.98491 0.00309
0.98624 0.00338
1.00123 0.00325
0.99566 0.00307
0.99365 0.00290
0.99126 0.00325
0.99886 0.00286
---------------

maan 0.99783 0.0,0322
sigma 0.00329 0.00019

difference
in wsrianca. -0. 4438E-06
difference

in stnd dev -0. 6817E-04

0.99969 0,00394
0. 99S85 0.00371
1.00218 0.00380
0.98747 0.00399
1 .C0045 0,00317
0.89662 0.00364
0.89909 0.00363
1.00202 0.00366
0.98867 0.00347
0.98768 0.00423
0.99346 0.00420
0.99649 0.00332
1. CX31340.00398
0.99899 0.00380
1.00163 0.00411
0.98986 0,00399
1.C@050 0.00366
0.99869 0.00341
1.00602 0.00363
0.99711 0.00401
0.99132 0. 003S1
0.99610 0.00391
0.89189 0.00399
0.99499 0. W366
1.00116 0.00398
0.88466 0.00369
1.00108 0. WX381
0.99854 0.00409
0.88262 0.00360
0.98966 0. W422
0.99443 0.00360
0.99765 0.00348
0.88660 0. CSX26
0.99620 0.00358
1.00461 0.00403
0.98914 0.0Q395
0.99797 0. C0352
0.99698 0.00356
0.89636 0.00365
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0.89739 0.00361
0.00365 0.00030

-O .3788E-CMi

-0.494 SE-04

0.99766 0.00266
0 .9S26 0.00266
0.98951 0.00300
0.98951 0.00267
1.00178 0.00283
0.98931 0.00269
0.99806 0.00309
0.99378 0.00257
0 .99S51 0.00286
0.99618 0.00298
0.99717 0.00276
1.OCQ1O0.00285
0.98656 0.00283
0.99536 0.00265
0.99664 0.00239
0.99926 0.00292
0.99240 0.00287
0.99642 0.00289
0.99512 0.00279
0.98620 0.00310
0.99596 0 .002S8
0.99691 0.00293
0.99899 0.00317
0.99746 0.00318
1.00013 0.00279
0.99210 0.00307
0.99653 0.00256
0,98992 0.00252
1.00209 0.00305
1.00484 0.00316
1.00079 0.00304
0.99896 0.00300
0.99614 0.00277
0.99644 0.00316
1.00167 0.00264
0 .8%60 0.00293
0.99170 0.00260
0.98610 0.00260
0.99703 0.00260
---------------

0.99787 0.00280
0.00296 0.00020

-0.86243-06

-0. 1498E-03

0.99629 0.00193
0.99629 0.00207
1.00043 0.00221
0. 998S9 0.00222
1.00086 0.00188
0.38866 0.00203
0.38848 0.00232
0.99700 0.00199
0.89709 0.00210
0.88676 0.00225
0.99581 0.00217
0.88864 0.00207
0.98847 0.00190
0.99668 0.00186
0.99826 0.00201
0.99571 0.00217
0 .99S4S 0.00209
0.88807 0.00218
0.89861 0.00215
0.99764 0.00223
0.89436 0.00214
0.39809 0.00221
0.88697 0.00260
0.99800 0.00244
1.00042 0.0021S
0.88321 0.00226
0.89797 0.00199
0.99206 0.00227
0.88684 0.00211
1.00163 0.00246
0.89787 0.00218
0.93830 0.00223
0.89661 0.00218
0.89776 0.00221
1.00273 0.00196
0.99812 0.00180
0.99371 0.00207
0.89976 0.00212
0.99642 0.00164
---------------

0.89768 0 .0021S
0.00216 0.00017

-0. 5341E-07

-0. 1241E-04

the results of the w test for noxmality applied to the collision, absorption.. .
track-length , and combined keff ?elues are:

. .

the k( collision) m.lues appear normally distributed at the 96 percent confidence level
the k(absorption) valuee appear normally distributed at the 95 percent confidence level
the k(trk length) walnes appear normally distributed at the 95 percent confidence level
the k(co/abs/trl) valuea appear normally distributed at the 99 percent confidence lew.1,
but not at 95 percent

For 100 values of the collision estimator
with average 0.897832 the data were:
confidence level % of the time
----------------- -------------

0.680 63.0000
0. 9s0 96 .00CM)
0.880 99.0000

Largest deviation = 2.87964

For 100 values of the absorption estimator
with average 0.997393 the data were:



confidence 10WC1 % of the time
----------------- -------------

0.680 69.0000
0.950 9s .0000
0.990 99.0000

Largest daviation = 2.91694

For 100 Taluas of the trk length estimator
with average 0.997886 the data were:
confidence le=al % Of the time
----------------- -------------

0.680 70.0000
0.950 94.0000
0.990 99.00CX3

Largest deviation = 3.15413

For 100 values of the 3-combined estimator
with ●reraga 0.997676 the data wera:
confidence leval X of the time
----------------- -------------

0.680 76.0000
0. 9s0 90.0000
0.890 100.0000

Largaat daviation = 2. S7763
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These are the results of 100 independent MCNP runs M performed by Mr. Charles T.
Rombough of CTR Technical Services, Inc., Arlington, Texas, and relayed to Art Forster in
a letter dated July 8, 1993.21 (Used with permission, 19 August 1993).

Charles T. Rombongh>a Data

run

.-.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
2s
26
27
26
29
30
31
32
33
34
35
36
37
36
39
40
41
42
43
44
46
46
47
48
49
50
51
52
63
54
55
S6
57
58

k(col) std
---------------

0.96031 0.00322
0.96709 0.00336
0.96145 0.00296
0.96536 0.00304
0.96071 0.00338
0.96266 0.00303
0.97016 0.00341
0.96466 0.00321
0.96219 0.00327
0.96959 0.00366
0.97141 0.00311
0.96081 0.00333
0.96375 0.00304
0.98091 0.00314
0.96717 0.00337
0.96913 0.00307
0.96479 0.00341
0.96674 0.00346
0.96375 0.00312
0.96077 0.00301
0. 9S842 0.00266
0.96761 0.00324
0.96071 0.00339
0.96613 0.00334
0.96692 0.00340
0.96765 0.00317
0.96476 0.00317
0.96359 0.00303
0.96332 0. OCMN
0.96634 0.00286
0.96661 0.00339
0.96630 0.00336
0.96371 0.00327
0.96605 0.00301
0.98761 0.00293
0.97510 0.00312
0.96471 0.00312
0.96459 0. 0030?
0.96482 0.00299
0.96227 0.00336
0.96773 0.00340
0. 984S7 0.00356
0.96722 0.00349
0.96085 0.00329
0.98273 0.00278
0.963S6 0.00316
0.97043 0.00280
0. 9678? 0.00306
0.96526 0.00295
0.96112 0.00302
0.96958 0.00343
0.96966 0.00322
0.96371 0.00298
0.96408 0.00336
0.96587 0.00324
0.98641 0.00321
0.96589 0.00304

k(abs) atd
---------------

0.96685 0.00230
0.97110 0.MZ33
0.96278 0.00231
0.96580 0.00240
0 .%326 0.00209
0.96324 0.00220
0.98679 0.00262
0.96016 0.00238
0.86804 0.00229
0.96703 0.00226
0.96734 0.00227
0.86047 0.00244
0.86364 0.00214
0.96551 0.00214
0.88824 0.00261
0.96730 0.00249
0.97061 0.00240
0.%612 0.00242
0.86263 0.00234
0.96141 0.00244
0.96139 0.00202
0.96437 0.00220
0.86209 0.00224
0.%319 0.00230
0.%469 0.00198
0.96664 0.00215
0.86748 0.00214
0.96471 0.00258
0.86583 0 .W233
0.96731 0.00210
0.96606 0.00236
0.96298 0.00247
0.98562 0.00217
0.%530 0.00256
0.96361 0.00209
0.96823 0.00247
0.86203 0.00230
0. S6332 0.00225
0.95973 0.00201
0.86369 0.00203
0.86488 0.00245
0.96283 0.00226
0.96613 0.00227
0.96392 0.00237
0.96397 0.00227
0.86260 0.00237
0.86720 0.00241
0.86722 0 .W21O
0.86264 0.00231
0.96437 0.00232
0.86447 0.00261
0.86779 0.00211
0.86362 0.00216
0.96210 0.00239
O.MIIO 0.00206
0.%279 0.00217
0.96797 0.00249

k(trk h) std
---------------

0.96928 0.00331
0.96626 0.00342
0.96211 0.00306
0 .966S9 0.00288
0.96045 0.00340
0.96258 0.00307
0.96916 0.00348
0.96397 0.00335
0.96212 0.00330
0.96631 0.00370
0.97266 0.00306
0.960580.00339
0.96345 0,00322
0.95961 0.00328
0.96668 0.00342
0.96649 0.00312
0.96422 0 .0033S
0.96938 0.00354
0.98308 0.00313
0.96153 0.00300
0.96766 0.00269
0.96793 0.00330
0.96111 0.00341
0.96615 0.00340
0.96735 0.00338
0.96642 0.00319
0.96493 0.00313
0.96397 0.00309
0.96342 0.00302
0.96669 0.00301
0.96562 0.00334
0.96643 0.00347
0.96365 0.00327
0.96618 0.00309
0.96683 0.00296
0.97423 0.00307
0.96464 0.00320
0.96444 0.00312
0.96502 0.00311
0.96239 0.00347
0.96633 0.00336
0.96441 0.00361
0.96746 0.00364
0.96124 0.00319
0.96250 0.00281
0.96334 0.00328
0.97081 0.00289
0.96600 0.00325
0.96668 0.00294
0.96043 0.00311
0.96979 0.00345
0.96922 0.00326
0.96316 0.00310
0.96506 0.00336
0.96637 0.00327
0.96546 0.00330
0.96693 0.00302

k(c/a/t) std
-----------z ---

0.S6513 0.00228
0.97007 0.00233
0.9621S 0.00216
0.96633 0.00222
0 .S8291 0.00209
0.96301 0.00211
0.86773 0.00263
0.96145 0.00230
0.%530 0. fX)226
0.86646 0.00231
0.88881 0.00217
0. S6060 0.00239
0.96390 0.00203
0.96506 0.00221
0.88792 0.00256
0.86814 0.00227
0. S6912 0.00235
0.96685 0.00238
0.86261 0.00226
0.86162 0.00230
0.96106 0. IM204
0.96471 0.00222
0.96200 0.00224
0.96365 0.00228
0.%524 0.00191
0.96696 0.00212
0. S6717 0.00213
0.96414 0.00244
0.96533 0.00226
0.96727 0.00203
0.96591 0.00226
0.96369 0.00242
0.%528 0.00212
0.86558 0.00234
0.98464 0.00206
0. %981 0.00243
0.96269 0.00220
0.86366 0.00212
0.86038 0.00202
0.86387 0. 0020S
0.965S8 0.00240
0.96299 0.00226
0.96646 0.00220
0.96374 0.00220
0.96346 0.00211
0.96297 0.00219
0 .%849 0.00221
0.86726 0.00198
0.96359 0.00217
0.96328 0.00214
0.86577 0.00254
0.86760 0.00204
0.86429 0.00191
0.96279 0.00240
0.96211 0.00203
0.96322 0.00214
0.96791 0.00234

0.96425 0.00291 0.96374 0. W189 0.96436 0.00283 0,96387 0.00186
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69
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
76
76
77
78
79
80
81
82
83
84
86
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

0.96889 0 .0031X
0.96293 0.00323
0.96679 0.00326
0.96244 0.00298
0.96135 0.00334
0.96261 0.00316
0.96342 0.00303
0.95964 0.00321
0.96281 0.00372
0.96450 0.00328
0.96441 0.00284
0.96923 0.00322
0.96520 0.00355
0.96547 0.00302
0.96586 0.00320
0.96868 0.00291
0.98327 0.00362
0.96300 0.00331
0.96502 0.00311
0.96763 0.00321
0.96204 0.00337
0.96821 0.00301
0.96504 0.00316
0.96343 0.00334
0.96508 0.00344
0.06262 0.00331
0.96382 0.00307
0 .96S78 0.00341
0.96877 0.00321
0.96677 0.00322
0.96613 0.00329
0. 9692S 0.00321
0.96820 0.00326
0.96626 0.00327
0.96832 0.00339
0.96765 0.00373
0.96251 0.00317
0.96416 0.00362
0.96762 0.00309
0.86016 0.00320
0.96856 0.00294
0.96470 0.00308

0.86361 0.00243
0.38358 0. CM3228
0.86665 0. C0216
0.96464 0.00220
0.96016 0.00212
0.36460 0.00220
0.36627 0.03236
0.96236 0. CU3206
0.96163 0.00204
0.86211 0. CK)239
0.96439 0.00233
0.865S1 0.00223
0.86561 0.00233
0.98482 0.00201
0.86711 0.00234
0.88183 0.00233
0.96695 0.00228
0.96471 0.00241
0.36551 0.00242
0 .%508 0.00228
0.96420 0.00223
0.96629 0.00221
0.86502 0.00242
0.98296 0.00206
0.86521 0.00262
0.98403 0.00223
0.96533 0.00241
0.96611 0.00223
0.96934 0.00208
0.96311 0.00223
0.36614 0.0016S
0.96261 0.00227
0.96653 0.00221
0.865s9 0.00221
0.96289 0.00233
0.36636 0.00245
0.96426 0.00218
0.96804 0.00227
0.96113 0.00217
0.96463 0.00238
0.96906 0.00228
0.36527 0.00233

0 .9690S 0.00316
0.96368 0.00326
0.96715 0.00331
0.96136 0.00295
0.96106 0.00334
0.96247 0.00322
0.96278 0.00305
0.95952 0.00325
0.96198 0.00371
0.96309 0.00328
0.96564 0.00290
0.96926 0.00328
0.96469 0.00359
0.96493 0.00307
0.96518 0.00329
0.96903 0.00292
0.96348 0.00368
0.96260 0.00333
0.96527 0.00308
0.96766 0.00320
0.96165 0.00342
0.96570 0.00299
0.96638 0.00313
0.96388 0.00334
0.98476 0.00346
0.96308 0.00331
0.96333 0.00310
0.96694 0 .W342
0.96853 0.00326
0.96712 0.00317
0.96545 0.00339
0.96903 0.00332
0.96834 0.00327
0 .96S62 0.00330
0.96599 0.00342
0.96671 0.00367
0.96225 0.00312
0.96359 0.00362
0.96767 0.00320
0.96111 0.00325
0.96871 0.00303
0.96470 0.00306

0.96s17 0.00230
0.96359 0.00224
0.98S83 0. IM213
0.98373 o.&3210
0.96016 0.00209
0.88429 0.00219
0.36s12 0.00220
0.96178 0.00198
0.86164 0.00208
0.8620S 0.00234
0.96401 0.00221
0.86617 0.00221
0.98s62 0.00233
0.%494 0.00198
0. %673 0.00231
0.96428 0. IM214
0.96665 0.00231
0.86419 0.00236
0.96556 0.00230
0.98554 0. IX1226
0.96387 0.00219
0.96590 o. C0211
0.98535 0.00231
0.98301 0.00208
0.86493 0.00253
0.98394 0.00216
0.96470 0.00233
0.86603 0.00224
0.96923 0.00202
0.96390 0.00221
0.86628 0.00187
0.96392 0 .IN225
0.96677 0.00218
0.365380.00208
0.96311 0.00236
0. 96S35 0.00239
0.96394 0.00217
0.96752 0.00229
0.96183 0.00225
0.98409 0.00240
0.96892 0.00215
0.96511 0.00214

.-------------- --------------- --------------- ---------------
mean 0.96516 0.00321 0.96474 0.00227 0.96509 0.00324 0.86484 0.00221

Si~~ 0.00293 0.00020 0.00228 0.00016 0.00302 0.01M20 0.00216 0.0001S
difference

in variance 0. 1700E-05 -0.3118E-07 0. 1398E-05 0.2178E-06
difference

in stnd claw O.2769E-03 -0. 6845E-OS 0. 2233E-03 O.4978E-04

tha results of the w test for normality applied to the collision, abscmption,
track-length, and combined keff valuas are:

the k( collision) walnes appear normally distributed at tha 95 percent confidence level
the k(abaorption) values appear normally diatribnted at the 95 percent confidence lawel
the k(trk length) values appaar normally diatribnted at the 9S percent confidence lewel
the k(co/abs/trl) valuea appear normally diatribntad at the 95 percent confidence lewel

For 100 valnaa of the collision eetimator
with average O.9851S6 the data mere:

confidence level % of the time
--------- -------- -------------

0.680 72.0000
0.950 97.0000
0.890 99.0000

Largest deviation = 3.18701
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For 100 values of the absorption estimator
with average 0.964740 tha data uare:

coafidenca level ~ of the time
----------------- -------------

0.680 68.0000
0.950 95.0000
0.990 99 .oo@l

Largeat deviation = 2.72984

For 100 m.lues of the trk length estimator
with average 0.965088 the data were:
confidence level % of the time
-------- --------- -------------

0.680 71.0000
0.960 97.0000
0.890 99.0000

Largeat deviation . 2.97790

For 100 values of the 3-combined estimator
with average 0.964840 the data were:
confidence level % of the time
----------------- ------. ------

0.680 70.0000
0.950 95.0000
0.990 100.0000

Largest deviat ic.n = 2.24474
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100 runs Godiva/Jezebel: 800 batches, 1 eye/batch

run
---

1
2

3

4
6

6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4s
46
47
46
49
50
61
62
53
64
65
S6
67
58
59
60
61
62
63

100

k(col) std
---------------

1.01210 0.00040
1.01250 0.00040
1.01290 0.00040
1.01170 0.00040
1.01230 0.00040
1.01250 0.00040
1.01260 o.o@340
1.01290 0.0C4X0
1.01150 0.0CQ40
1.01230 0.0CQ40
1.01260 0.00040
1.01280 0.00040
1.01200 0.00040
1.01210 O.OWMO
1.01330 0.00040
1.01180 0.00040
1.01250 0.00040
1.01190 0.00040
1.01240 0.00040
1.01230 0.00040
1.01220 0.00040
1.01280 0.00040
1.01200 0.00040
1.01330 0.00040
1.01310 0.00040
1.01230 0.00040
1.01280 0.00040
1.01260 O.OCKMO
1.01260 0.0W40
1.01280 0.00340
1.01170 o.oC040
1.01360 0.0W40
1.01360 0.00040
1.01200 o.oCnxo
1.01280 0.0C040
1.01300 o.oC040
1.01270 0.00040
1.01310 0.00040
1.01230 0.00040
1.01210 0.00040
1.01310 0.00040
1.01210 0.00040
1.01160 0.00040
1.01230 0.00040
1.01290 0.0W40
1.01270 0.00040
1.01280 0.00040
1.01300 0.0W40
1.01320 0.00040
1.01200 0.00040
1.01230 0.0CX350
1.01310 0.00040
1.01200 0.00040
1.01310 0.00040
1.01280 0.00040
1.01230 0.00040
1.01350 0.00040
1.01220 0.00040
1.01270 0.00040
1.01200 0.00040
1.01240 0.00040
1.01240 0.0W40
1.01230 0.00040

k(abs) std
---------------

1.01210 0.00040
1.01250 0.&3040
1.01290 0.00040
1.01170 0.00040
1.01230 0.00040
1.01260 0.00040
1.01260 0.&)040
1.01290 0. CQ050
1.01150 0.00040
1.01230 0. CKI040
1.01290 0.00340
1.01260 0.00040
1.01200 0.W040
1.01210 0. CQ040
1.01330 0.00040
1.01180 0.00040
1.012s0 o.mo40
1.01190 0.00040
1.01240 0.00040
1.01230 0.00040
1.01210 0.00040
1.01280 0. C@040
1.01200 0.00040
1.01330 0.00040
1.01310 0. IX)040
1.01230 0.00040
1.01280 0.00040
1.01260 0.00040
1.012s0 0.0W40
1.01290 0.00040
1.01170 0.00040
1.01360 0.00040
1.01360 0. CX3040
1.01200 0.00040
1.01270 0.00040
1.01300 0.00040
1.01270 0.00040
1.01300 0.00040
1.01230 0. CK)040
1.01210 0. LM040
1.01310 0.00040
1.01210 o.@xMo
1.01160 0. CO040
1.01230 0.00040
1.01290 0.W040
1.01270 0.CW40
1.01260 0.00040
1.01300 0.00040
1.01320 0.00040
1.01200 0. CQ040
1.01230 0. IXOSO
1.01310 0.00040
1.01200 o.@N40
1.01310 0.00040
1.01290 0.00040
1.01230 0.00040
1 .013s0 0.00040
1.01220 0.00040
1.01270 0.00040
1.01190 0.00040
1.01240 0.00040
1.01240 0.00040
1.01220 0.00040

k(trk ln) st d
---------------

1.01270 0.00030
1.01230 0.00030
1.01310 0.00030
1.01230 0.00030
1.01220 0.00030
1.01230 0.00030
1.01280 0.00030
1.01230 0.00030
1.01200 0.00030
1.01260 0.00030
1.01270 0.00030
1.01290 0.00030
1 .012s0 0.00030
1.01280 0.00030
1.01270 0.00030
1.01210 0.00030
1 .012s0 o .o@330
1.01230 0.00030
1.01260 0.00030
1.01290 0.00030
1.01220 0.00030
1 .012s0 0.0W30
i .01210 0.00030
1.01290 0 .0C030
1.01310 0.00030
1.01220 o.oC030
1.01270 0 .0~30
1.01300 0.00030
1.01240 0.00030
1.01270 0.00030
1.01180 0.00030
1.01310 0.00030
1.01300 0.00030
1.01270 0.00030
1.01290 0.00030
1.01270 0.00030
1.01270 0.00030
1.01250 0 .0(030
1.01240 0.00030
1.01240 0.00030
1.01270 0.00030
1.01230 0 .0C@30
1.01190 0.00030
1.01200 0.00030
1.01270 0.00030
1.01280 0 .00Q30
1.01260 0.00030
1.01280 0.00030
1.01270 0.00030
1.01250 0.00030
1.01270 0.00030
1.01300 0.00030
1.01240 0.00030
1.01290 0.00030
1.01240 0.00030
1.01200 0.00030
1.01280 0.00030
1.01300 0.00030
1.01230 0 .01M30
1.01270 0.00030
1.01230 0.00030
1.01270 0.00030
1.01220 0.00030

k(c/a/t) std
---------------

1.01258 0.00031
1.01236 0.00030
1.01303 0.00030
1.01217 0.00030
1.01225 0.00IXW
1.01232 0.00029
1.01277 0.00030
1.01240 0.00030
1.01193 0.00032
1.01249 0.0C030
1.01274 0.00030
1.01264 0.00031
1.01240 0.00029
1.01271 0.00030
1.01266 0.00029
1.01203 0.00029
1.01263 0.00029
1.01220 0.00030
1.01259 0.00029
1.01279 0.00030
1.01217 0.00030
1.012S4 0.00029
1.01206 0.00030
1.01297 0.00029
1.01310 0.00029
1.01223 0.00029
1.01273 0.00030
1.01233 0.00030
1.01242 0.00029
1.01274 0.00031
1.01182 0.00028
1.01321 0.00029
1.0130s 0.00030
1.01266 0.00029
1.01293 0.00030
1.01278 0.00029
1.01271 0.00029
1.01262 0.00028
1.01237 0.00029
1.01233 0.00029
1.01276 0.00029
1.01230 0.00030
1.01189 0.00029
1.01211 0.00030
1.01273 0.00029
1.01279 0. CQ030
1.01262 0.00030
1.0128S 0.00029
1.01281 0.00030
1.01237 0.00029
1.01263 0.00031
1.01303 0.00031
1.01233 0.00030
1.01293 0.00029
1.01249 0.00028
1.01210 0.00030
1.01284 0.00029
1.01267 0.00030
1.01238 0.00031
1.01254 0.00031
1.01234 0.@3029
1.0126S 0.00031
1.01219 0.00029



64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
8S
66
87
88
89
90
91
92
93
94
95
96
97
98
99

100

1.01360 0.00040
1.01290 0.00040
1.01240 0.00040
1.01340 0.00040
1.01220 o.o@Mo
1.01200 0.00040
1.01180 0.00040
1.01400 0.00040
1.01190 0.00040
1.01270 0.00050
1.01230 0.00040
1.01240 0.00040
1.01160 0.00040
1.01150 0.00040
1. 012s0 0.00040
1.01210 0.00040
1.01240 0.00040
1.01240 0.00040
1.01310 0.00050
1.01220 0.00040
1.01220 o.otnMo
1.01280 0.00040
1.01320 0. 0CQ40
1.01140 0.00040
1.01270 0.00040
I.ollm O.o@Mo
1.01280 0.00040
1.01300 0.00040
1.01310 0. 0W40
i .01250 0.00040
1.01110 0.00040
1.01220 0.00040
1.01200 0.00040
1.011800.00040
1.01220 0.00040
1.01260 0.00040
1.01260 0.00060
---------------

mean 1.01249 0.00040
sigma o .0005s 0.00002

std of std 0.00008
difference

in variance -0. 1362E-06
difference

in stnd de- -0. t429E-03

1.01360 0.00040
1.01290 O.WMO
1.01240 0.00040
1.01340 0.00040
1.01220 0.00040
1-01200 0.00040
1.01190 0.00040
1.01400 0.00040
1.01190 0.00040
1.01270 0.00050
1.01230 0.00040
1.01240 0.00040
1.01160 0.00040
1.01150 0.00040
1.01240 0.00040
1.01210 0.00040
1.01240 0.00040
1.01240 0.00040
1.01310 0. moso
1.01220 0.00040
1.01220 0.00040
1.01290 0. IM040
1.01320 0.00040
1.01140 0.00040
1.01280 0.00040
1.01170 0 .000s0
1.01280 0. CXW40
1.01300 0.00040
1.01310 o. C@040
1.01260 0.00040
1.01110 0.00040
1.01220 0.00040
1.01200 0.00040
1.01180 0.00040
1.012100.00040
1.01260 0.00040
1.01280 0. fXI060
---------------

1.01249 0.00041
O.woss 0.00002
0.00009

‘O. 1396E-06

-0, 1458E-03

i .01340 0.00030
1.01280 0.00030
1.01260 0.00030
1.01310 0.00030
1.01190 0 .0W30
1.01280 0.00030
1.01200 0.00030
1.01270 0.00030
1.01250 0.00030
1.01220 0.00030
1.01230 0.00030
1.01230 0 .0W30
i .01190 0.00030
1.01190 0.00030
i .01290 0.00030
1.01260 0.00030
1.01240 0.00030
1.012100.00030
1.01270 0.00030
1.01220 0.00030
1.01210 0.00030
1.01310 0.00030
1.01300 0.00030
1.01230 0.00030
1.01260 0.00030
1.01210 0.00030
1.01230 0.0@330
1.01320 0.00030
1.01320 0.00030
1.01260 0.0W30
1.01160 0.00030
1.01230 0.00030
1.01190 0.00030
1.01220 0.00030
1.012400.00030
i .01230 0.00030
1.01310 0.00030
---------------

1.01252 0.00030
0.00037 0. Owoo
0.00023

-0. 4725E-07

-o .7047E-04

1.01347 0.00029
1.01283 0. @3031
1.01254 0 .W031
1.01317 0.00031
1.01200 0.00030
1.01288 0.00030
1.01202 0.00029
1.01295 0.00030
1.01234 0.00031
1.0122s 0.00030
1.01235 0.00029
1.01231 0.00030
1.01181 0.00029
1.01181 0.00030
1.01279 0.00030
1.01251 0.00030
1.01244 0.00029
1.01216 0.00030
1.01278 0.00030
1.01218 0.00028
1.01213 0. CQ031
1.01304 0.00029
1.01302 0.00029
1.01215 0.00030
1.01263 0.00030
1.01204 0.00030
1.01243 0.00029
1.01320 0.00032
1.01316 0.00028
1.01259 0.00030
1.01152 0.00030
1.01226 0.00030
1.01191 0.00030
1.01215 0.00030
1.012300.00030
1.01233 0.00029
1.01307 0.00029
---------------

1.01252 0.00030
0.00038 0.00001
0.00001

-0. 5603E-07

-0. 6277E-04

the rem.lts of the w test for normality applied to the collision, absorption,
track-length, and combined keff values are:

the k ( collision) values appear rmrmslly distributed at the
the k (abaorpt ion) values appear normaU y distributed at the
the k(trk length) values appear normally distributed at the
the k(co/abs/trl) mlues appear normally distribntad at the

For 100 values of the collision estimator with average
confidence le?el x of the time
----------------- -------------

0.880 52.0000
0, 9s0 86.0000
0.880 94.0000

Largest deviation = 3.77268

For 100 values of the absorption estimator with average
confidence level % of the time
------- ---------- -------------

0.660 51.0000
0.950 86.0000
0.880 94.0000

95 percent confidence level
95 percent confidence level
95 percent confidence level
96 percent confidence level

1.01249 the data were:

1.01249 the data were:
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Largest daviation = 3.78519

For 100 values of the trk length estimator with avarage 1.012S2 the data were:
confidenc. 10VC1 % of the time
----------------- -------------

0.660 57.0000
0.9s0 90.0000
0.890 98.0000

Largest deviation = 3.06315

For 100 values of the 3-combined estimator with average 1.01252 the data were:
confidence level % of the t im.
----------------- -------------

0.680 54.0000
0.950 88. Oow
0.990 98.0000

Largest daviation = 3.34064

102



100 runs Godiva/Jezebel: 40 batches, 20 eye/batch

run

1
2

3

4

6

6

7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
36
36
37
38
39
40
41
42
43
44
46
46
47
48
49
50
51
62
53
64
56
56
57
68
69
60
61
62
63

k(col) std
---------------

1.01210 0.00050
1.012s0 0.000s0
1.01280 0.0C060
1.01170 0.00060
1.01230 0.00040
1.01250 0 .000S0
1.01260 0.00080
1.01280 0.00050
1.01160 0.00080
1.01230 0.00060
1.01280 0 .0C@50
1.01280 0.00050
1. 0121M 0.00040
1.01210 0.00080
1.01330 0.00080
1.01180 0.000s0
1.01260 0.00050
1.01180 0.00050
1.01240 0.00040
1.01234 0.00050
1.01220 0.00060
1.01260 0.00060
1.01200 0.00050
1.01330 0.00060
1.01310 0.00040
1.01230 0.00050
1.01280 0.00050
1.01260 0.00040
1.01260 0.00050
1.01280 0.00060
1.01170 0.000s0
1.01360 0.00060
1.01380 0.00040
1.01200 0.00030
1.01280 0.000s0
1.01300 0.00050
1.01270 0.0@350
1.01310 0.00040
1.01230 0.00060
1.01210 0.00050
1.01310 0.00050
1.01210 0.00040
1.01160 0.00060
1.01230 0.00040
1.01280 0.0(X)80
1.01270 0.00050
1.01280 0.00080
1.01300 0 .Omso
1.01320 0.00040
1.01200 0.00050
1.012342 0.00080
1.01310 0.00060
1.o12@l 0.00050
1.01310 0.00060
1.01290 0.00040
1.01230 0.00050
1 .013s0 0.00050
1.01220 0.0&360
1.01270 0.00050
1.01200 0.00050
1.01240 0. OC@SO
1.01240 0.00050
1.01230 0.00040

k(abs) mtd
---------------

1.01210 0.00050
1.01260 0.00050
1.01290 0.00060
1.01170 0.00060
1.01230 0.00040
1.01260 0. C0050
1.01260 0.00080
1.01290 0.00050
1.01150 0. KX360
1.01230 0.00080
1.01290 0.00050
1.01260 0.00050
1.01200 0.00040
1.01210 0.00060
1.01330 0.00080
1.01180 0 .000S0
1.01260 0.00050
1.01190 0.00050
1.01240 0.00040
1.01230 0.00050
1.01210 0.00080
1.01280 0.00060
1.01200 0. 000s0
1.01330 0.00060
1.01310 o. Ln3040
1.01230 0.00050
1.01280 0. 000S0
1.01260 0.00040
1.01260 0.00060
1.01290 0.00050
1.01170 0.00050
1.01360 0.00060
1.01360 0.00040
1.01200 0. mo30
1.01270 0. W050
1.01300 0.00050
1.01270 0 .LX3050
1.01300 0.00040
1.01230 0.00060
1.01210 0.00050
1.01310 0.00050
1.01210 0.00040
1.01160 0.00060
1.01230 0.00040
1.01290 0.00080
1.01270 0.00050
1.01260 0. IXM80
1.01300 O.woso
1.01320 0.00040
1.01200 0.00050
1.01230 0.00060
1.01310 0. CKK160
1.01200 0.00050
1.01310 0.00050
1.01290 0.00040
1.01230 0.00050
1. 013S0 0.00060
1.01220 0.00060
1.01270 0.00050
1.01190 0.00050
1.01240 0.00050
1.01240 0.00050
1.01220 0.00040

k(trk la) std
---------------

1.01270 0.00040
1.01230 0.00040

1.01310 0.00040
1.01230 0.00050
1.01220 0.00040
1.01230 0 .0W40
1.01280 0.00040
1.01230 0.00040
1.01200 0.00060
1.01250 0.00030
1.01270 0.00040
1.01290 0.00050
1.01250 0.00030
1.01280 0.00040
1.01270 0.00040
1.01210 0.00040
1.01250 0.00030
1.01230 0.00040
1.01260 0.00030
1.01290 0.00040
1.01220 0.00040
1.01250 0.00040
1.01210 0.00040
1.01290 0 .00Q40
1.01310 0.00030
1.01220 0.00040
1.01270 0.00040
1.01300 0.00040
1.01240 0.00050
1.01270 0.00040
1.01160 0.00040
i .01310 0.00040
1.01300 0.00040
1.01270 0.00040
1.01290 0.00030
1.01270 0.00040
1.01270 0.00040
1.01250 0.00030
1.01240 0 .0CX340
1.01240 0.00040
1.01270 0.00040
1.01230 0.00050
1.01190 0.00030
1.01200 0.00040
1.01270 0.00040
i .01280 0.00030
1.01260 0.00040
1.01260 0.00030
1.01270 0.00040
1.012s0 0.00040
1.01270 0 .0W40
1.01300 0.00040
1.01240 0.00030
1.01290 0.00040
1.01240 0.00030
1.01200 0.00040
1.01280 0.00030
1.01300 0.00050
1.01230 0 .0C040
1.01270 0.00050
1.01230 0.00040
1.01270 0.00040
1.01220 0.00040

k(c/a/t ) std
---------------

1.01260 0.00036
1.01234 0.00045
1,01314 0.00041
1.01214 0.00066
1.01222 0.00037
1.01241 0.00038
1.01281 0.00049
1.01242 0.00035
1.01191 0.00050
1.01255 0.00031
1.01272 0.00039
1.01289 0.00046
1.01231 0.00029
1.01279 0.00042
1.01274 0.00040
1.01203 0.00044
1.0i262 0.00032
1.0121S 0.00036
1.01257 0.00033
1.01285 0.00039
1.01224 0.00047
1.01241 0.00043
1.01208 0.00039
1.01294 0. W050
1.01307 0.00028
1.01223 0.00039
1.01271 0.00039
1.01284 0.00039
1.01240 0.00042
1.01272 0.00036
1.01183 0.00043
1.01314 0.00040
i .01332 0.00035
1.01235 0.00035
1. 0130s 0. C0034
1.01273 0.00037
1.01279 0.00042
1.01265 0.00036
1.0i242 0.00034
1.01241 0.00037
1.01274 0.00041
1.01221 0.00042
1,01202 0,00036
1.01219 0. CQ036
1.01268 0.00043
1.01281 0.00038
1.01265 0.00044
1.01291 0.00033
1.01290 0.00036
1.01236 0.00039
1.01280 0.00033
1.01300 0. C0045
1.01237 0.00040
1.01288 0.00042
1.01258 0.00030
1.01216 0.00039
1.01283 0.00040
1.01279 0.00056
1.01230 0.00037
1.01248 0.00053
1.01237 0.00039
i .01273 0.00048
1.01230 0.00043
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64
65
66
67
68
69
70
71
72
73
74
76
76
77
76
79
60
81
82
83
84
65
66
87
88
89
90
91
92
93
94
95
96
97
98
99

100

1.01360 0.00080
1.01290 0.00060
1.01240 0.00060
1.01340 0.00050
1.01220 0.00040
1.01200 0. 0W40
1.01190 0.0W60
1.01400 0.0W40
1.01180 0.00050
1.01270 0.00050
1.01230 0.00050
1.01240 0.00060
1.01160 0.00060
1.01150 0.00060
1.01250 0.00060
1.01210 0.00080
1.01240 0.00050
1.01240 0. 000S0
1.01310 0.00060
1.01220 0.00050
1.01220 0.00050
1.01230 0.000s0
1.01320 O.O@MO
1.01140 0.00050
1.01270 0.00050
1.01180 0.000so
1.01280 0.00060
1.01300 0.00050
1.01310 0. 000s0
1.01260 0.00060
1.01110 0.00040
1.01220 0.00060
1.o12m 0.00060
1.01180 0.00050
1.01220 0 .000s0
1.01260 0 .000S0
1.01280 0.00040

1.01360 0 .00s0
1.01290 0.00060
1.01240 0 .@3050
1.01340 0. 000s0
1.01220 0.00040
1.01200 0.00040
1.01190 0.00060
1.01400 O.oomo
1.01190 0.00050
1.01270 0.00060
1.01230 0. 000S0
1.01240 0.00080
1.01160 0. 000S0
1.01150 0. 000s0
1.01240 0.000S0
1.01210 0.00060
1.01240 0.00050
1.01240 0.00050
1.01310 o. C0060
1.01220 0.00050
1.01220 0.00050
1.01290 0 .000S0
1.01320 0.00040
1.01140 0 .000s0
1.01280 0.00050
1.01170 0.00050
1.01280 0 .000S0
1.01300 0 .Oooso
1.01310 0.00050
1.01250 0.000S0
1.01110 0.00040
1.01220 0.00050
1.01200 0.00060
1.01180 0. IX)OSO
1.01210 0.00060
1.01260 0. 000S0
1.01280 0.00040

1.01340 0.00040
1.01280 0.00040
1.01260 0.00040
1.01310 0.00040
1.01190 0.00040
1.01280 0.00040
1.01200 0 .om40
1.01270 0.0C030
1.01250 0.00040
1.01220 0.00040
1.01230 0.00040
1.01230 0.00040
1.01190 0.00040
1.01190 0.00040
1.01290 0.00040
i .01260 0.00050
1.01240 0 .0C@40
1.01210 0.0W40
1.01270 0.00040
1.01220 0.00040
1.01210 0.00050
1.01310 0.00040
1.01300 0.00030
1.01230 0 .0W40
1.01260 0.00040
1.01210 0.00040
1.01230 0.00030
1.01320 0.00040
1.01320 0 .0CQ40
1.01260 0.0W40
1.01160 0.00040
1.01230 0.00040
1.01190 0.00040
1.01220 0.00040
1.01240 0.00040
1.01230 0.00040
1.01310 0.00030

1.01344 0.00042
1.01283 0.00045
1.012S8 0.00040
1.01320 0.00038
1.01197 0.00037
1.0125S 0.00043
1.01204 0.00042
1.01294 0.0003?
1.012340.00050
1.01211 0.00043
1.01222 0.00036
1.01228 0.00043
1.01174 0.00037
1.01179 0.00037
1.0128s 0.00046
1.012S3 0.00049
1.01246 0.00040
1.01216 0.00043
1.01274 0. CCI038
1.01218 0.00034
1.01216 0.0004S
1.01298 0.00038
1.01307 0.00029
1.01219 0. CQ041
1.01276 0.00041
1.01198 0.00038
1.01237 0.00036
1.01323 0.00041
1.01312 0.00037
1.01259 0.00037
1.01146 0.00035
1.01232 0.00034
1.01181 0. CM040
1.01218 0.00037
1.01236 0.00040
1.01226 0.00040
1.01291 0.00033

--------------- --------------- --------------- ---------------
mean 1.01249 0.00050 1.01249 0.000S0 1.01252 0.00039 1.012S2 0.00040

sigma 0. CXM550.0W07 0.000s6 0.00007 0.00037 0.00006 0.00039 0.00005
std Of atd 0.00009 0.00009 0.00008 0.00010
difforanca

in V=ianca -O .4822E-07 -0.6244E-07 0. 1842E-07 O.7276E-08
difforance

in stnd dar -O .4S92E-04 -0. 4977E-04 O.2153E-04 O.9256E-05

the r.suits of the w test for normalit7 appliad to tha collision, absorption,
track-length, and comb ined kef f values are:

the k( collision) values appear normally distributed at the 9S percent confidence larel
the k(absorption) values appear normally distributed at the 95 percent confidenc. lawal
the k(trk length) values appear normally distributed at the 95 percent confidanca lavcl
tha k(co/aba/trl) ralues appear noxmally distributed at the 95 percant confidence 10WO1

For 100 values Of the collision ●stimator with average 1.01249 the data were:
confidence level % of the time
----------------- -------------

0.630 63. 00CQ
0.950 93.0000
0.990 97.0000

Largest deviation = 3.77268

For 100 m.lues of the absorption estimator with average 1.01249 the data wera:
confidence level X of the time
----------------- -------------

0.680 62.0000
0.950 94.0000
0.990 97.0000
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Largest deviation = 3.78619

For 100 ralues of the trk length estimator with average 1.01252 the data sere:
confidence level % Of the time
----------------- -------------

0.660 71.0000
0.960 97.0000
0.330 Ioo.000o

Largast deviation = 2.31236

For 100 values of the 3-combinad aatimator with average 1.01262 the data were:
confidence level % of the time
----------------- -------------

0.660 70. Oolxl
0. 9s0 9s .00M
0.990 99.0000

Lergnst deviation = 3.03643
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xv. APPENDIX H: MCNP INPUT DECKS

A. U-233/Water Sphere, Implicit Capture

U-233 mixture

1 1 .099791850 -1

2 2 .100087941 1 -2

I 30 2

1 so 10.868779 $ aa = hh/2

2 so 26.068779 $ bb = aa + 1s.2

imp:n 1 1 0

kcode 2000 1 10 110

ksrc O 0 0

ml 100I.5OC .066355625 8016.50c .033177812 92233.50c .000258413

mtl lwtr.Olt

m2 1001.50c .066725294 8016.50c ,033362647

mt2 lwtr.Olt

print

B. U-233/WaterSphere, Analog Capture

I Add the following card to the implicit input after the mt2 card:

phys :n 20. 20.

c. U-233/WaterMixtureinInfinite Medium, Implicit Capture

k-infinity for u-233 mixture

i 1 .1 -1

20 1

*I so 1.e7

irnp:n I O

kcode 2000 1 10 110

ksrc O 0 0

ml 1001 .0666 8016 .0333 92233 .00003

mt 1 lwtr.Olt

dbcn 7j 3e6

print

D. U-233/WaterMixture in Infinite Medium, Analog Capture

This also contains a track length flux tally.
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k-infinity for u-233 mixture

1 1 .1 -1

20 i

*1 so 1.e7

imp:n 1 0

kcode 2000 1 10 110

ksrc O 0 0

ml 1001 .0666 8016 .0333 92233 .00003

mt 1 lwtr.Olt

dbcn 7j 1

phys:n 20 6.25-7

f4:n 1

sd4 1.

fm4 -1 1 -6 -7

e~ 1-8 1-7 6.25-7 1-6 1-5 1-4 1-3 1-2 .1 1. 5. 20,

print

E. Godiva, Implicit Capture

godival

11 -18.74 -1

20 1

1 SO 8.741

kcode 1000 1.0 10 110

ksrc O. 0. 0.

imp:n 1 0

ml 92235 -93.71 92238 -5.27 92234 -1.02

dbcn 7j 1

F. Godiva, Analog Capture

Add the following card tothe endof the implicit input file:

phys:n 20, 20.

G. Jezebel, Implicit Capture

nominal jezebel

1 1 -15,61 -1

20 1

1 SO 6.384928
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kcode 2000 1.0 10 60
ksrc o. 0. 0.
ml 94239 1.

imp:n 1 0

H. Jezebel, Analog Capture

Add the following card to the end of the implicit input file:

phys:n 20. 20.

I. Two-Component System: Jezebel and Godiva

“jezebel” sphere & godiva sphere, 80 cm center-center
1 2 -18.74 -10
2 1 -15.61 -20
21 0 10 20 -21
22 0 21

10 SX 40.000 8.741

20 Sx -40.000 6.384928

21 so 49.0

kcode 5000 1.0 20 820
ksrc 40.000 0. 0. -40.0 0. 0. 38. 0. 0.

-42.0 0. 0. -38. 0. 0. 42. 0. 0.
ml 94239 1.

m2 92235 -93.71 92238 -5.27 92234 -1.02

imp:n 1 1 1 0
dbcn 7j 118900001
print
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