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MEAN ESTIMATION IN HIGHLY SKEW ED SAM PLES

By
Shane P. Pederson

ABSTRACT

The problem o f inference for the mean o f a highly asymmetric distribution 

is considered. Even with large sample sizes, usual asymptotics based on norm al 

theory give poor answers, as the right-hand tail o f the distribution is often under­
sampled. This paper attempts to improve performance in two ways. First, 

modifications o f the standard confidence interval procedure are examined. 

Second, diagnostics are proposed to indicate whether or not inferential pro­

cedures are likely to be valid. The problems are illustrated with data simulated 

from an absolute value Cauchy distribution.

1. Introduction

When data arise from an asymmetric population, and the center o f  such a population is o f 

interest, many techniques are available for estimation. M ost involve either developing an estim a­

tor robust to the asymmetry, or transforming the data to create a more symmetric distribution. In 
these cases, the true m ean o f the underlying population is not preserved; rather, quantities such as 

the median are estimated. There are situations, however, in which the m ean really is the quantity 

o f interest. For example, in neutron transport the energies o f individual particles are measured. 

Primary interest is often in total energy o f the collection o f particles: litis is merely a rescaling of 

mean energy per particle. This report details preliminary efforts to develop mean estimation 
techniques in large samples of highly .skewed data.

2. Background

Standard theory states that with a sample o f size n from a normal distribution with unkitown 

mean and variance p  and a^, the statistic t, where

t =  , (1)

and J  and are the sample mean and sample variance, will have a S tudent’s t-disiribution with 
n-1 degrees o f freedom. With n iargc, this distribution is very' close to that o f a standard normal 

(Gaussian) random variable. In cither case, these distributions can be used to obtain confidence 
intervals for p, via appeal to the Central Limit Theorem. It states that the sample m ean from any



distribulion (with at least tlic first two momcnLs existing and sufficiently regular), will converge 

to a standard norm al random variable.

This result arc frequently misapplied to cases in which data are not normal, a  is not known, 
or both. If moments exist the distribution of t eventually becomes normal, but this may require 

an enormously large sample. In neutron transport problems, the data are commonly very skewed 

to the right. This has two effects on mean estimation. First, x  and have a high positive corre­
lation; botli tend to be large or small together. Second, these estimates are biased in finite samples 
and highly variable, introducing additional noise in the estim ation process. Both adversely alTcct 

the standard normal approximation o ft.

We use the absolute value o f a Cauchy random variable to mimic actual distributions that 

arise in neutron transport problems. The associated probability density function is

2 1f ( x )  =
7t 1-fX "

(2)

No moments exists for this distribution. However, if  we truncate it at some point p > 0, all 
moments exist but can be made arbitrarily large. The m ean o f a truncated absolute value Cauchy 

random variable is

M- = log(l-hp2 ) + p(7^_2 tan *(P)) (3)

(l-a )x iO ()%  confidence intervals for j.t are o f the form x' ±  , where zo_(j(./2 ) is the

(l-(x /2 )x 1 0 0 th percentile of the standard nonnai.

At this point, a pair of illustrations may be helpful. Figure 1 indicates the jo in t distribution 

o f X and for 1000 Gaussian samples o f size 1000. The diagonal lines are the boundaries o f the 

95% confidence interval t'or p.. Note that the principal axis o f the ellipse formed by the data is 
horizontal, indicating zero correlation between x  and s . Confidence intervals that cover p  arc 

represented by points above the "V".
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F igu re  L  Sample mean vs. sample standard deviation, Gaussian.



Meanwhile, Figure 2 indicates the same plot for data arising from the censored absolute 
value Cauchy distribution. The differences are obvious. Because o f extrem e values, both axes 

are in logarithmic scale, resulting in curved envelope lines. The jo in t distribution is no longer 

elliptical (indicating non-normality), and the estimators are biased, highly correlated, and highly 

variable. Hence, the coverage percentage is no longer the nom inal 95% but a value far less. In 

particular, most confidence intervals that m iss p. are too low. This indicates that not enough rare 

events are being sampled to provide consistent estimates o f p  and o , and sample sizes m ust be 
increased. M onitoring the stability of x  alone is not enough to indicate when inferences are 

valid, because it is likely that x  will be fairly stable long before 5 ^ is, or at least before s'^ is close 

to cP-. Both estimates must be stable and  close to the true population values for nom inal coverage 
rates to be attained.
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F ig u re  2. Sample mean vs. sample std. dev., absolute value Cauchy, truncated at 10000,

To improve the coverage rates o f mean estimators in these cases, two remedies were con­

sidered. 'fhc first consists o f modifications of the estimation or inference procedure to correct for 
invalid assumptions. The second is the development of diagnostic procedures to indicate when 

inferences are or are not likely to be valid. Several methods were tried, with varying degrees of 

success, and they arc recounted here. One important thing to rem em ber about corrections like 

these is that they are by necessity data dependent, and hence often exhibit the same behavior as 

the original data.

3. M odifications

The first modification attempt deals with inflation o f the variance estimate. (Recall s'^ is 
more variable than x .)  By adding an arbitrary constant to aU nonzero data, the resulting aug­

mented distribution (and hence the augmented distribution o f x )  becomes m ore symmetric, while 

still enabling recovery o f the original mean. Unfortunately, the am ount o f shift needed to reduce 

the skewness to approximately zero depends on the higher, unknown moments o f the distribution.



Too much shiil results in overly conservative error bounds. Because the higher moments are 
poorly estimated, no reliable estim ator o f the amount o f shift necessary to achieve nominal cover­

age was found.

A second method considered batching means and developing variance estimators from, tliese 
quantities. In highly skewed samples, the variance estim ator from a collection of batched means 

may be less correlated with the sample mean than is the original sample variance; the tradeoff is 

that this variance cstim.ate is more variable. Simulations have indicated that for sufficiently large 
batch sizes, coverage rates ai'c improved. Batch sizes o f  at least m -  20,000-50,(XX) appear to 

work, but the improvement is m ost marked in cases where the initial coverage is very low (e.g., 
50% in a nominal 95% situation). A heuristic rule may be to use the maximum of the two vari- 

tmcc estimators, if  the validity o f the procedure is in doubt, although asymptotically this will bias 

the estimate.

The third modification examined approximations to the joint distribulion o f J  imd s^, or 

equivalently to the distribulion o f t. Direct density estimation docs not appear to be feasible, 
again because of the poor representation of the right-hand tail of the distribution by a finite sam ­
ple. Alieniatively, the distribution o f t can be represented by the inversion of an Edgeworth 

expansion (Hall [3]). In this method, cumulative probabilities (of the t-statistic, for example) can 

be represented as a weighted sum o f standard nonnai distributions and density functions; tlic 

weights depend on mom ents of the l.ruc underlying distribution. Problems arise in practice, 

because the moments again must be estimated from the available data. Also, it is not clear hovv 

many terms o f expansion need to be utilized for the representation to be valid. Simulations indi­

cated that adding die third m om ent correction term improved coverage rates up to 2 0 %; again, 
the biggest improvement occurred in cases o f poor initial coverage. Higher order correction fac­

tors did not appreciably improve this perfomiance. These factors will not improve 50% coverage 
to a nominal 95%, and Uicir biggest value may be in fine-tuning an estim ator with nearly nominal 

coverage rates. The refined confidence interval, using the first correction factor, is

^  ~  +  6 n  + 2 z ( i - « /2 ) )  . (4 )

wlicrc p.3 is the third moment o f the parent distribution and is estim ated by the third sample 

moment [1 3 .

In summary', modification procedures appear to be of limited usefulness, for the same rea­

son tlic usual inference procedures arc invalid; they use cslim alors based on assumptions Lha.t do 

not hold for die sample sizes considered. In the next section, diagnostics for determining whether 

these assumptions arc violated will be examined.



4. D iagnostics

We now turn to diagnostics for detecting when inferences are valid. Initially, tests o f sym ­

metry or normality were considered. Some o f these are com putationally intensive, and none were 
found to have strong power in predicting when inferences are valid. Cases in which normality 

tests (such as the W ilk-Shapiro test) indicate normality do correspond to approximately valid 

inferences; however, in simulation, tests such as these rarely indicated norm ality (Beckman [1]). 
Correspondingly, visual examination o f histograms o f batched m eans m ay be a useful graphical 

technique but is difficult to quantify.

A more fruitful result was found by considering an expansion o f the distribution o f t. 

Rather than an Edgeworth expansion, as in Section 3, a Taylor series expansion was com puted to 

determine approximations to the first few moments o f t. From G eary’s [2] expressions for the 

semi-invariants o f t, the first four (central after the first) moments o f  t are, to o(n-^),

v a t O *  + (6)

= 3 +  (8)

Note that in the case of standard normal data, the first four moments o f t become, to o ( r ’), 0 ,1  -i- 

2/n, 0, and 3 -f- 18/n, respectively.

As noted before, sample moment estimators o f these quantities are not reliable - they tend 
to underestimate the true param eter values and are highly variable. In simulations, however, a 

strong correlation was observed between the coefficient o f variation o f (i.e., cv(s'^) =

Vvar(5 ^)/E(s^) and the observed coverage rate. To utilize this, it w ill be useful to rewrite the

expressions for the m oments of t.

The first two moments o f the jo in t distribution o f  x  and s'^ are E (J )  = p., E (j^) = cfi, v ar(J) 

= oVn, var(s^) = (p 4 -cf*)/n, and cov(x,5 '^) = ps/n. From these we can obtain the the squared 

correlation between x  and as

The squared coefficient o f  variation o f is

y = C V \ S ^ )  =  (10)

The correlation can hence be written as



P =  - S - T - I -  ( 1 1 )Vrt cv(x,s^)

This allows us to write the moments o f  t, to o(n“ ’), as

 pj'yl/2
E(t) =  (12)

var(t) = 1 + ^  + (13)

E(t-E(t))3 =  - 2 py ’ ^2 (14)

E(t-E(t))4 =  3 +  ^  + -X (4 5 p M ). (15)

The dependence o f these terms on the coefficient o f variation of is now obvious. In highly

skewed data, p is near 1. W hen y  is sufficiently small, the variance of t will be near 1, the skew­

ness near zero, the kurtosis near three, and inferences can proceed with the standard normal as a 
reference distribution. In practice, it was found that 10.4 /.?^ is a poor estim ator o f 114/ 0 ^; as in other 

m om ent estimators, it is biased low in finite samples. Hence, these m om ent expansions are not 

useful, at least in the censored absolute value Cauchy problem, in developing correction factors to 
be used in confidence intervals; however, they may be o f use as diagnostics.

From given values o f p and y, approximate moments o f t can be computed. These can be 
com pared to moments o f a standard normal to determine the proxim ity o f the two distributions. 
Calculations based on Pearson curves (Johnson et al. [4]) indicate that y values o f less than about

0.4 correspond to reasonable m atching o f t percentage points with standard normal ones up to the 
1% point. Simulations conducted on the censored absolute value Cauchy distribution indicate 

that for y values of less than 0.2, matching o f the percentage is good up to the 5% point. The 

discrepancy in  the two results is due to the approximate nature of the Pearson curve calculation. 

A con.servativc recommendation is that once y is in the 0.1 - 0.2 range, inferences on the mean 

based on t-slalistic confidence intervals are approximately valid, if the third-m om ent correction 

term from Section 3 is used.

As mentioned previously, knowing the value of y for which valid inferences occur may not 

be useful in practice, unless y is well estimated. In simulations on the Cauchy problem, these 

estim ates were often biased for y until roughly the point at which y is  less than 0.25; y is  underes­

timated, sometimes severely, until then. Table 1 contains results o f a sim ulation for a specific 

censored Cauchy model (censoring point equal to 10,0(X)). 800 replications at each stunple size 

were simulated and tabled values are averages o f those replications. Coverage rates for upper 

confidence intervals using the standard and 3rd-moment corrected intervals are given, as well as 

corresponding average values for y and y. Sim ilar results were observed for other values o f the 

censoring point p.



Table 1
Observed coverage rates and average y values for 800 replications 

(upper confidence interval, nominal level = 0.95) 
n  Standard Corrected y  y

1 0 0 0 0.59 0 . 6 6 5.23 0.49
5000 0.74 0.79 2.63 0.44

1 0 0 0 0 0.82 0.84 0.52 0.36
2 0 0 0 0 0.87 0.92 0.26 0 . 2 1

35000 0.90 0.94 0.15 0.15

50000 0.93 0.94 0 . 1 1 0 . 1 0

1 0 0 0 0 0 0.93 0.94 0.05 0.05

For values o f y less than 0.2, confidence intervals based on t do an adequate job  o f covering 

the m ean the proper fraction o f the time; the 3rd-moment correction factor does im prove perfor­
mance. However, y is not as valid an indicator as y of performance. To use as a diagnostic, the 

following procedure is suggested. For y  less than 0.1, we wiU assum e that inferences based on 

the standard nonnai distribution arc valid (using the correction factor). If  sample statislics arc 

sequentially computed as sample size incrca.scs, then the rale o f decrease o f y e a n  be monitored. 

If  the decrease in y is primarily due to increase in sample size, this indicates that estimation o f y 

has stabilized and y is  approxim.alely unbiased for y. Thus, if  y is  less than 0.2, tmd it appears y is  
a good estim ator o f y, inference for p  should be valid. As an example (using the parameters for 

Table 1), increasing n from 250(X) to 50000 decreases y by one-half. If the ratio ycsooo/ysoooo is 
near 2, this indicates a decrease in y mainly due to sample size. If this ratio is considerably less 

than 2 , however, this is an indication that estimation o f y has not yet .stabilized. In this instance, 

the validity o f inferences on y may be in doubt. This is an ad hoc procedure and more exam ina­

tion is needed to determine its efficiency, but is offered as a possible suggestion wlicn y  lies 

between 0 1 and 0.2. Values greater than 0.2 may correspond to acceptable cases, but there is not 

currently a method to verify this.

5. Conclusions and ReconirnenduJons

It is clear that drawing inferences about the m ean is difficult when using standard methods 

in situations in which usual assumptions do not hold, e.g., highly skewed data. Most 

modifications o f these procedures are themselves o f  limited utility, as they are based on estimates 
which share the same properties as those being modified. A diagnostic was found that indicated 

when inferences could proceed by using norm al probability points, but it is less useful in indicat­

ing when inferences are o f questionable validity.



Recommendations to use,rs faced with this sort o f data are the following; If it is possible to 
focus on quantities other than the mean, for which more robust techniques are available, do so. If 

not, several things may be done. First, the third-moment correction factor should be utilized. 
Second, estimates o f y  = varCv^yE^Cs^) should be monitored, with values o f y  less than 0.1 indi­
cating probable correctness o f nominal confidence intervals. Values in the range (0.1-0.2) may be 
tracked to indicate the appropriateness o f normal theory confidence statements. It should be 

noted, however, that these diagnostics are not foolproof, and are only a representation based on 

the data at hand. If the tail region has not been sampled sufficiently, inference procedures may 

not perform at nominal levels.
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