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MONTE CARLO ELECTRON/PHGTON TRANSPORT

Joseph M. Mack, J, E. Morel, and H. Grady Hughes
Applied Theoretical Physics Division

Los Alamos National Laboratory
Los Alamos, New Mexico

A review of nonplasma coupled electron/photon transport using the Write Carlo
method is presented. Remarks are ❑airilyrestricted to linearized formalisms
at electron energies from 1 keV to 1000 MeV. Applications involving pulse-
height estimation, transport in external ❑agnetic fields, and optical Cerenkov
production are discussed to underscore the importance of this branch of co!npu-
tational physics. Advances in electron rnultigroupcross-section ujenerationis
reported, and its impact on future code development assessed. ?rogress toward
the transformation of MCNP into a generalized neutral/charged-particle Mo.lte
Carlo code is described.



MONTE CARLO

The continuing rapid 2dvance of
the capability of computational

ELECTRON/PHOTON

INTRODUCTION

TRANSPORT

~omputer technology has dramatically improved
physicists to address important problems in

applied theoretical physics. One active area of computational physics is sim-
ulating coupled electron/photon transpol”t. Space and reactor environments
contain electron and photon sources ranging from 1 keV to several tons of MeV
(and GeV energies for cosmic rays). The need to detect and control such rzdi-
atlon fields has resulted in a wordwide scientific effort to develop better
methods of electron/photon transport. Diagnostic particle physics often fo-
cuses on the detection of primary or secondary charged particles. Detector
dwelopment and design of higher quality diagnostics have provided impetus
toward betteh’understanding of electron/photon transport processes. Complex
theoretical models must be used to mtiic the material interaction of electrons
and photons. The ~dded complexity of the electron/photon cascade can result
in a computational nightmare that can now be modeled effectively using ❑any
commercially available computers.

Tne basic problem is calculating the transport and penetration of electrons
(and their attendant cascades) through matter. Typically, one att9mpts to
solve an app;’oprlateform of a linearized Bcltzmann-like equation, for which
analytic solutions are generally not available. Numerical ❑ethods ❑ust b~
used, and the Monte Carlo method applied to electronlphoton transport has
become the traditional and most comprehensive approach. Conventional sin-
gle-scltterlng !lonteCarlo to describe electron Coulombic collisions is pro-
hibitively eup~nsive even on the latest generation computers. This difficulty
is effect,’~’1~ circumvented using ccndelised-historyMonte Carlo (CHMC), where
multiple..~:~!l’actionformulas are smpled to obtain a net energy loss and
direction,ll‘llangeat the end cf u macroscopic electron step (path length).
Thus, fcr thousands of collisions along a path length, the cumulative dir~c-
Lional and slowing-down effeot on an electron tradmtory is computed at the
path-length end point resulting in enormous time savings. The oondensed-
history approach providnd a breakthrough for doing realistic electron/photon
tranport problems in many areas of science and engineering.

Treatment of electrons diffusing through matter is only a subset of high-
energy (multiGeV) aascade generation, which inoludes the “zoo of strange
partioles.’l This extremely complex problem is also being simulated using
Monte Carlo. As re96arOh in l~igh-energyphysics grows, simulation of related
high-ener~,yoqacadea w,llltake on a role of Lnareaaing importance,

The oondellsed-historyapproach requires eleotrot,cross sectlona to be gen-
erated in the multiple-interaction uontext for all relevarltinteractions,
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ELASTIC NUCLEAR OK COULOMB SCATTERING

Nuclear Coulomb scattering is an important interaction ❑echanlam causing elec-
trons to scatter (change direction) with very little energy loss. The long-
range Coulomb potential provides the physical basis for the exigtence of this

- ‘1 has resulted in a comprehensiveinteraction, and ❑uch ❑odel development
crosg-section data base. Cross sections developed and tabulated by Spencerla
are valid for a wide range of materials and electron energies.

INELASTIC ELECTRON-ELECTRON SCATTERING

Inelastic electron-electron scattering is generally understood to be the pri-
❑ary energy-loss ❑echanism for electrons of a few ❑illion electron vol+,s. As
a result.of thlg interaction, the atomic electrons can find themselves in an
excited or ionized state. The ior?tzedstate ia chzracterlzed by a free atomic
electron commonly called a delta ray. Excitation of atomic electrons to bound
states results in usually negligible soft x-radiatim, as the excited electron
relaxes to a more stable state. If there is enough energy available, however,
an inner-shell electron can be ejected, leaving vacanciea deep within the
aLVLuiG a~I”uC~”G7C. ~-~ m.in-at.lnn of the reMaininR atomic eleCtrOng to a more.-—.

stable state releases charact.eristlcradiation in the form of x-r&y lines at
several kiloelectron volts. For some applications, characteristic x rays can
be a very important component of the cascade. The theory of MdllerlS is reli-
able and widely used to provide cross sections that yield basic stopping-power
data, as fomnulated in the continuous-slowing approximation (CSDA) by Bethe.i*

INELASTIC NUCLEAR SCATTERING

Beyond a few million electron volts, another energy-loss ❑echanism usually
dominates, that being inelastic nuclear scattering, which results in brems- ‘
strahlung production. The basic process involves an inelastic free elect,ron-
nucleus collision accom~anled by the emission of an appropriate quanta of
radiation. The theory of Bethe a~d Heitlerl: is commonly used to provlae a
data base for cross sections describing inelastic nuclear scattering, but the
most comprehensive review of the subjee: 1s given by Koch and Motz.7

ELECTRON MULTIPLE INTERACTIONS

As an electron traverses a small fraction of its range, it undergoes an enor-
mously large number of interaotiorlsof th,eaforementioned types. Becau3e of
this approximately continuous behavior, it is possible to describe the net or
cumulative effect of these Interactions on the electron t~a.jectoryby applying
multiple-interaction theorieg to phenomena associated with eiec~ron energy
loss and directional ohange~.

The continuous slowing-down approximation of Bethel* (CSDA) is often used to
construct collisional,stopping powers for eleotrcns in various media. Gen-
erally, stopping powers describe the average e,lergyloss that an electron
experlunces upon moving a prescribed diatanae (path length). Stopping powers
based on collisional eneruy loss due to i~elaatio eleotron-e!ectjronmattering
were later modified by Rohrllch and C.arlson*sto inulude the effeots of energy
loss f’rombremsstrahlung production--tho so-called radiative stopping power.
The total stopping power of an eleotron in a Eiven mater~al ia componed of a
collisional and radiative component that establishes the averag~ energy loss



These include elastic nuclear scattering, inelastic atomic electron scatter-
ing, and the production of secondary photons (for example, annihilation quan-
ta, fluorescence, and bremsstrahlung). The ❑eans exist for computing all the
required random-walk cross sections in a continuous-energy framework; however,
the interaction physics is currently in need of overhaul. As the need for
electron-tranport simulation rises, increased ❑otivation for improving the
cross-section generators will result.

Ideas ❑entioned previously have been evolving since the early 19609s and are
at a sophisticated stage of development and usefulness. There are interesting
new directions under investigation that will lead to even ❑ore flexible pro-
blem-golving capability. Continuous-energy electron Monte Carlo has been the
traditional method, but there is a significant, relatively new effort toward
generating multigroup electron cross sections. Not only will the multigroup
formalism yield increased computational speed for ❑any problems but also will
facilitate the development of an adjoint electron/photon transport capability.
Often electrons transport through matter under the influence of externally
imposed or self-consistent electromagnetic fields. Transport of electrons ~,n
external magnetic fields is currenLly being treated with generality; the non-
linear problem of electron transport within self-consistent fieldg is ~n the
research ~t.age. Mer~in~ elaet.rnnMnnt.eCarlo trsmzport phj’zicstu a ticlf-
consistent field, particle-in-cell approach is currently under Investigation.

Pr!.orhowledge of photnn-interaction physics is assumed; however, relevant
physics of electron-material interactions is mentioned for continuity. The
essential ideas of CHMC are presented along with Impartant applications. Fu-
ture directions including ❑ultigroup electron transport, adjoint approaches,
and generalized neutral/charged-particleversion of’MCNP are indicated.

ELECTRON PHYSICS

Extensive reviews of electron physics are presented elsewhere;l-a however, a
synopsis of relevant eleotron processes 19 given. Whereas photon interaction
is not presented, th6 gtrong coupling that can exist between electron and pho-
ton fields in cascade is of fundamental importance.

The passage of high-energy eleatrons through matter involves a number of in-
teractions such as elastic nuclear scattering, inelastic atomic e~ectron
Ssatteringp inelastic nualear scattering, and the production of gecandary pho-
tons (for example, fluoresaense and bromsstrahlung). Of course, the photons
can further produce secondary electronz by photoelectric, Compton, and pair-
production proces~es. The repetition of this cycle ultimately results in an
electron/photon cascade. At high energies, electron/photon couplizg is quite
strong but very forward peaked, thus allawing some simplifying approximations,
particularly as regards the angular distributions required. As electrons
assume lower energies, tkleooupling beaomes weaker, but the required peculiar-
ity found in coupled electron/photon trarlsportis that the casoade oan aarry
substantial amounts of primary eleotron energy to spatial locations at much
greater than the primary electron ranges as a consequence of the diverso rela-
tive mean-free paths for electrons and photons. The solutions to many practi-
oal problems lie in the ability of the computational physicist to asoort.ain
the type and nature of dominant prooesses,



of the electron per unit path length. There is, however, an added complexity
in that some electrons lose substantially ❑ore energy than the average, as
definsd by the CSD.’Imodel. Such a deviation from the CSDA average energy loss
is termed the energy-straggling problem.1’ Through the efforts of Landaul-
and Blunck and lde,~tphali’a energy-loss distribution function has been estab-
lished that includes broaden,,. (or straggling) due to both collisional and
radiative energy losses.

As electrons diffuse in ❑atter, energy is lost and energy straggling is possi-
ble; analogously, they also suffer ❑any bxall-angle deflections, and angular
straggling can also occl<r. A number of ❑ultiple-scattering theories exist,
but most cf them suffer from compromise In an attempt to treat small- and
large-angle scattering, ag well as lateral displacement. Palatable reviews of
this subject are found in Thompsong and Zerby.g The optimal approach for
accurately descrl.bingall important aspects of ❑ultiple scattering is a con-
troversial subject. In general, electron-interactions cross sections are
reviewed and tiproved in rather piecemeal fashion. For details on the current
status of such data, refer to papers by Peek,q Seltzer and Berger,20 Berger
and Seitzer,al Scott,zz and 13evaney.2s

The National Bureau of Standards, under the leadership cf Martin J. Berger,
has developed Into a single package the most comprehensive computational mod-
els of the aforercentionedelectron physics. This package, under the generic
name DATPAC,2* is available wordwtciefrom the Radiation Information Shielding
Center (RSIC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Cross sections produced by DATPAC are tabula;ed or a preselected get.of loga-
rithmically spaced electron-energy grid points, which can be accurately inter-
polated to intermediate energies.

CONDENSED-HISTORY MONTE CARLO

The problem of simulating the transport of electrons in mattei”basically is
one nf 9olving an appropriate transport equation. The transport of electrons
in, in some respects, similar to that of neutrons. Through a variety of ln-
terac~lons (mentioned in the previous section), electrons experience a slow-
ing-down process and the production of various components of secondary radia-
tion, such as bremsstrahlung and knock-on electrons. The primary distinction
from neutron tra:]sportis a consequence of charge and its manifestation in the
form of long-range Coulombic interactions, including small ~ large energy/
angle changes. Many thousands more collisions are required for an electron to
slow down to a given energy than for a neutron at similar initial energy. The
important effecis of charge ❑ust be included in the transport formalism.

The transport equation In its linearized form is taken from Bergetozs

,1a$l(E,F,it)
v at

+ h“V$(E,;,ii,t)+~(E)$(E,;,i,’L)
a

(1)

where



t= time,

v= particle speed,

E = electron energy,

+
r= electron spatial vector,

6 = electron direction vector,

O(E,~,fi,t)dEdfi= p~rticle flux at t,r in intervals (E,
dfi),

2a(E) = interaction probability per unit path

K(E”+E,fi4+fidEdfi)= probat lity per unit path length that

E+dE), (r,fi+

length, and

a particle at E“,h’
after collision will move to the interval (E, E + dE),
(;,; + d;).

Equation (1) is the usual description of a collision-by-collision phase-space
balancing. The first term on the left-hand side represents the time-rate-of-
change of flux; the second, leakag%; and the third, i~teraction losses. The
right-hana sida indicatcz thz ph~:~-~pa~= sc4LLeK”irlgur Colliaiwll ;)al=iiC~.

In principle, single-scattering Monte Carlo can be used to solve Eq. (1) in
integral farm. This is accomplishedby tracking electrons from collision Lo
collision and can be illustrated by the following colllsion array

E E,,E2, .... En....0)

;., ;,,;2, .... fin....

+ +
‘oj~,t;z) .... ‘n (2).....

where En, fin,~ are the energy, direction, and position of the particle at
n

the nth coliis!ionlocation. The transport equation defines the probabilities
of phase-space transitions from one column to the next.

This single-scattering approach is effective when dealing with neutral parti-
cles (for example, neutrons and photons) whone mean-free paths are relatively
long. Long-range Coulombic interactions cause electrons to experience an
~ number of collisions while traversing an equivalent mean-free path of
a neutron m photon. For example, on a~erage, ~bOLlt 18 collisions of a neu-
tron in hydrogen will reduce its energy from 2 MeV to thermal; whereas, an
electron requires many thousands of ~olllsions for equivalent energy loss.
Therefore, simulation of explicit electron collisions, even on modern high-
speed computers, is impractical in t?nns of time and cost.

CllMC,2sas developed by Berger, provides the necessary breakthrough for cir-
cumventing this difficulty. Essentially, CHMC aocounts for the cumulative
effect on cileotrontrajectories of numerous collisions along a macroscopic
path length (small fraction of an electron range). Thus, we include the path
length, S, in ~he collision-array description (Eq. 2),



o, s,, Sl, .... Sn ....

E E,, E2, ....En ....OF

rio,;,, lia, . . . ..n ... .
+ +
rO, ;l, ;rz, .... * .....

where E ill,;
n’

are the electron
n

versing a macroscopic path length

(3]

energy, direction, and position after tra-

Sn. Particle transition from column n to

column n + 1 is defined by Monte Carlo sampling of appropriate multiple-
interaction theories, which are formulated in terms of path length. Because
of these considerations a,ldnoting that path length is the time integral of
velocity and electron energy, E, is related to the path length, S, by the
stopping power dE/dS, the transport operation (Eq. 1) can be put in terms of
path length. Zerby and Moran20 and Bergerz7 were the first to successfully
implement the condensed-history scheme Into a usable code framewrrk in the
early 1960~s. Berger concentrated on cross-section generation as applied to
one-dimensional CHMC. Using essentially the same physics cross sections,
others20-’z extended the dimensionality of the random walk to three-dimen-
sional generalized geometry.

SIGNIFICANT APPLICATIONS

There are numer@us applications that use coupled electron/phot,onMonte Carlc
transport codes. We choose to concentrate on three: (1) pulse-height tal-
lies, (2) simulation of gas Cerenkov detectors, and (3) ❑agnetic-spectrometer
de~ign. These items serve to establi9h the versatility and general usefulness
of the method, particularly in terms of diagnostic development.

PULSE-HEIGHT ANALYSIS

Electron CHMC coupled to photon single-scattering particle tracking provides a
detailed energy-loss record of all cascade particles. We take advantage of
this by noting direct similarity to the energy-loss accounting scheme of Mul-
tichannel analyzers (MCA). MCAS count the number of source particles that
lose specific amounts of energy, AE, within an active detector region. The

. Monte Carlo analogy to MCA particle counting is tallying weight in appropriate
energy-loss bins. The Monte Carlo tally actually defines the spectrum of
absorbed energy, which is converted to pulse-height spectrum b,yfolding with
the instrument,response. Obviously, such information is ideally suited for
investigations of detector efficiency and response.

We present one typical example of such a Monte Carlo simulation as it compares
to experiment. A bismuth germanite (BGO) scintil]ator geometry, bombarded by
a ‘]7C,gphoton sourr,e,is shown in Fig. 1. The geometry is cylindrically
symmetric about the “dashed line.” The 7.6-cm by 7.6-cm BGO crystal has an
aluminum case (0.05-cm thick) surrounding the front and lateral sides of the
crystal cylinder. Internal to the aluminum at tho~front of the detector are
layers of sponge rubber and polyethylene (0.1-cm thick) that we have assumed
to be 100% polyethylene. Finall;”,thcro js also a magnesium oxide reflector
(0.2-cm thick) adjacent to the front end and la~eral 9ides of the crystal.



Also indicated in Fig. 1 is a point iotropic source at some representative
distan~e from the frcnt face of the detector. Pulse-height distributions were
calculated at different source-to-detectordistances. The photomultiplier
tube is shown for completeness; however, because it contributes less than 20%
to the 180° backscatter, it was not explicitly modeled in the Monte Carlo
simulations. Similarly, the concrete walls of the room in which the empirical
data were acquired were not included in the Monte Carlo simulations. The
pulse-height s~ectrum was measured and computed (with Monte Carlo) by HSU33 et
al., and the results compared in Fig. 2. Me find excellent agreement (t3$) at
the photopeak and Compton edge, and quite respectable correlation exists ever
the entire energy range. The discrepancy between computation and experiment
in the 0.6- to 0.65-MeV region is a consequence of instrumental broadening in
the measurement and poor statistics in the Monte Carlo. Clearly, the pulse-
height tally yields an accurate computational means to investigate BGO detec-
tor design. Furthermore, it is natural and correct to extend this conclusion
“o an Impressive variety of other detector designs.

CERENKOV RADIATION

Recently, the production and
been implemented’” ‘s in the
series (ITS) code package.”

generalized ray trace of Cerenkov radiation has
three-dimensional member of the ~ntegrated ~iger
Once again, the condensed-history approach is

used to generate Cerenkov along a path length. Directionality is given by the
Cerenkov relation

C09 e = *
? (4;

where t3is the ratio of electron speed in the ❑edium to the speed of :ight in
vacuum, n is the ❑aterial refractive index at wavelength A, and 0 the Ceren-
kov-emissior,angle relative to the electron direction. Cerenkov photon number
production along a path length is given by

g= 2Tlcl
‘2

‘{

1-

}

~m ,(A2>A1) P

‘1
B2n2(A) A2

(5)

where a is the fine-structure constant.

Cerenkov production coupled to detailed Monte Carlo electron/photon transport
yields a powerful tool in the study of Cerenkov-detection schemes useful in
❑any areas of physics. In the new ❑odel, once a Cerenkov photon is generated,
a photon ray trace is activated; the Cerenkov photon is then followed through-
out the general 3-D geometry. Each Monte Carlo cell has an associated aet of
bulk optical properties, which act as bouflda.ryconditions ag the photon
reaches a given cell. These properties include refractive Index (Snell’s
law), specular and diffuse reflection, and extinction and transmission coeffi-
cients. Uith these zonal bulk properties Cerenkov production and complex
optical-system aalysis can proceed on line during the Monte Carlo simulation.
A typical example’s of a COZ gas Cerenkov detector studied using the new model
is illustrated in Fig. 3. Threshold-productioncurve computations for this
geometry are plotted in Fig. 4. The behavior of the production (Fig. 4) is
anticipated through Eq. (5) in that a sharp producti,~nincrease is found near
the threshold energy followed by saturation, as the beam energy is increased.



The lower curve indicates the number of Cerenkov photons reaching ~he detector
(through optics) for each produced within the gas volume--hence the overall
system efficiency. This example illustrates the power of incorporating other
specific cascade components into the general simulation scheme.

TRANSPORT IN EXTERNAL MAGNETIC FIELDS

The capability to treat electron tranaport under the influence of externally
im~~sed, spatially general ❑agnetic fields now exists in the ITS package.sC
This ❑odel utilizes all of the previously mentioned electron physics in the
condmsed-higtory frameuork. The effect on the electron trajectory of the
magnetic fisld along a macroscopic path length is computed by numerical inte-
gration ~f equations of ❑otion (in vacuum) as derived from the relativistic
Lorentz-force equation:

F ❑ m &
Y dt

=q[E+;x3] . (6)

The ❑agnetic field, ele,.brlCfield, and charge are giv’e.l by fi,~, and q, re-
spectively. The nass, m , in Eq. (8) is the relativistic ❑ass. Yransport in
magnetic fields involvesy~irectional changes only, which are s~’.perimposedon
the colllsional effects of electron direction at the end of each ❑acroscopic
path length; whereas, electric fields produce directional U energy changes.

~“hereare many impu~.iaI!Lapplica~iurlsincluding bremsstrahiung-corlv~l’teropti-
❑ization” and magi~etic-spectrometerdesign. The graphical results of a Monte
?arlo spectrometer simulation’a are shown in Fig. 5. Two-dtiensional prajec-
tlons of three secondary eletron trajectories (14-17 MeV) are plotted as they
leave the lead converter foil and ❑ove through an inhomogeneous ~-field region
shown b the rings in Fig. 5.

i
The curvature of the trajectories is dependent

on the -field intensity variati$n, where the intensity increases from outer
to inner rings. Because of the B-field strength, electrons turn through 1800
to intersect the A-A plane. This interaction point thus defines a spectrom-
eter-detector channel location for 14- to 17-MeV energies. Similarly, other
energy-channel detector locations can be defined, and the spectrometer design
optimized,

NEW DIRECTIONS

Approximately 30 years have elapsed in the development of computational ❑eth-
ods for electron/pnoton transport. The ?Ield has reached a juncture where new
trends may raise it to greater levels of problem-solving capability. ~t ig

entertaining and beneficial to contemplate some future possibilities--particu-
larly that of a new method involving multigroup electron cross sections.

HYBRiD MULTIGROUP/CONTINUOUS-~NERGYELECTRON/PHOTON MONTE CARLO

The CHMC method is a continuous-energy ❑ethod used in essentially all produc-
tion-coupled electron/photon transport codes.~7~#2 Continuous-energy methods
are accurate for forward calculaticms, bkt they are not easily applied to
adjoint calculations. It is ~robably for this reaaon that a production capa.
biliLy for continuous-energy coupled electron/photon ad.jointtransport calcu-
lations has been difficult to realize.



Unlike continuous-energy methods, the ❑ultigroup Monte Carlo method is easily
applied to ad.jointcalculations. For instance, production multigroup Monte
Carlo codes can perform both forward and ad.jointcalculations with the same
cvoss-section input.” Such a dual capability is obviously very powerful.
The mul,tigroupmethod Is known to give adequate engineering accuracy for pho-
ton-transport calculations, but the accuracy Gf this method for electron-
transport calculations is still beirlgexplored. In general, the ❑ultigroup
❑ethod is only appropriate for treating energy losses that are greater than or
equal to the average width of a group. Uhen traveling through ❑atter, an
electron (on the average) has an enormous number of Coulombic interactions in
which only a very small fraction of its energy is lost. These “small” energy
losses are far too ❑inute to be resolved with ~ reasonable number of groups.
One possible approach for circumventing this difficulty is to use a Fokker-
Planck operator-o to ❑odel the “small” energy losses while retaining the full
Boltzmann dest?riptionfor the “large” energy transfers. The central idea of
this hybrid BoltzJrann-Fokker-Planckapproach is that the multigroup method is
only used to treat those transfers that can be adequately resol~ed with a rea-
sonai)lenumber of groups. A rigorous simulation of the Fokker-Planck operator
requires a continuous-energy treatment, but tne standard multigroup ❑ethod
assigns only a discrete energy group index to each particle. This index does
not correspond to a unique energy, but rather a continuum of possible energies
within the group. If a rigorous stimulationof the Fokker-Planck operator is
to be performed In conjunction with a multigroup treatment for the Boltzmann
operator, the multigroup method must,be modified to accommodate particles with
contin~ously varying energie9. The purpose of this discussion is to propose
such a method.

The central idea of our approach can be demonstrated in terms of the following
hybrid Boltzmann-Fokker-Planck transport equation:

(7a)

where

Pa = P“IJ - [(1 - IJ-2)(1 - !J21”2 Cofl(0-) , (7b)

p denotiesthe cosine of the polar angle defining the particle direction with
respect to the z-axis, E denotes the particle energy, 4 denotes the angular
flux, citdenotes the total cross section, U5(E”+E,IJO)denotes the scattering

cross-section differential in final energy and scattering cosine, and E de-
notes the stopping power. Equation (7) is a hybrid equation because it con-
tains bcth the continuous-slowing-down Fokker-Planck operator” and the stan-
dard Boltzmann-scatteringoperator. Our hybrid multigroup-continuous-energy
algorithm for solving Eq. (7) follow d!.rectlyfrom two assumptions. First, we
assume that the cosine dependence in the scattering cross section can be ex-
pressed in terds of a Legendre polynomial expansion. Second, we assume that
the energy dependencies of the cross sections and stopping power appearing in
Eq. (7) can be approxin!atedwith piecewise-constant basig functions. In par-
ticular, we first us? a stand’rd Legendre polynomial’.i?osineexpansion fcr the
scattering cross section:



L
~~(E”+E”uo) = E (2L + 1) a:(E-+E)?@J ,

t.o Ulr

where

+1

u~(E”+E) =%$ aJE%, uo)PL(uo)cho j L = O,L ,
-1

<f3a)

(8b)

PL(uO) denotes the Legendre polynomial of degree II,and L denotes the degree

of the expansion. Next we partition the energy domain into a total of G con-
tiguous intervals or “groups.!’ The g’th group has an upper boundary energy
Eg-1/2, a ❑idpoint energy E

13’
and a lower boundary energy E

g+l/2” A corre-

sponding set of piecewise-constant basis functions is defined as follows:

Bg(E) = 1.0 , if E
g-1/2 > ‘2 ‘g+l/2 ‘ (9)

= 0.0 , otherwise .

Defining the efiergy-e~pansi~flcoefficients to obtain integral weighted-least.
square fits, we obtain:

c
GL(E) = z u~ gBg(E) ,

g=l ‘

❑ [f CIt(E)Wg(E)dS1/AEg ,‘t,g ~E

!3

G
?(E) = X tgB5(E) ,

g=1

Cg = [:E t(E)Wg(E) dE]/AEg ,

g

GGL
;~(EO+E,Po) = z z z (2L + 1) a: ~+gPL(uo)Bk(E-,g(E) ,

g=l k=l 1=0 ~A~ ‘

9.
0 = [rS,k+g f u:(E-+E)Wk(E”)Wg(E) dE” dE]/AEk ,

AEg AEk

(lOa)

(lOb)

(Ila)

(Ilb)

(12a)

(12b)

where Wg(e) denotes an arbitrary normalized weight function for the g’th



energy interval, and AE =E Substituting these expansions into
g g.-l/2-Eg+l/2”

Eq. (7), we retain an approximate equation that becomes equivalent to Eq. (7)
in the limit as the Legendre expmsion degree is increased, and Lhe group
widths are decreased:

l.laQ = 211+1
+;$=

az t rIJ ~#-+E,vo)Y(u-,E”) dv-d@”dE-
000

t is straightforward to develop a Monte Carlo algorithm

~[t$:
‘3E”

fo” rigorously

(13)

Solv-.
inr Eq. (13), which is independent:of the particular Value’ of the expansion
coefficlerits. Irrprinciple, one could use this approach to solve a wide vari-
ety of transport problems by supplying the expansicn coefficients appropriate
to the problem of interest (t’”lcis, fcr neutrons, coupled electrons and pho-
tons, etc.). The versatility ui the standard ❑ultigroup method is retained.
Although this appronch is a continuous-energy method for an approximate equa-
tion, we refer to it as a hybrid multigroup-continl:,ous-energy❑ethod because
it is closely related to the staadard ❑ultigroup ❑ethod.
we integrate Eq. (13) over all energies:

To demonstrate this,

+ ~g-145-l/2 - ~g+l/2$g+l!2 ‘ R ❑ “G ‘

where

+g = J $gdE ,
AE
8

(lUa)

(14b)

(14C)

Although our expansion coefficients were derived to provide piecewier-constant
fits in the energy variable for ths croaz sections and stopping power, they
are ~ic~l to the stanc!ard❑ultigroup-Legendre coefficients generated with
the weight functions used in the fits. Thus, if the stopping power is zero
for all groupy, Eq. (14) is rigorou,alyequivalent to the standard Boltzmann-
multlgroup approximation to dqc (7). This means that our ❑ethod can be used
to provide gtandard Doltzmann-multigroup solutions in addition to Boltzmann-
Fokker-Planck solutions. Furthermore, standard multlgroup cross-sectior?data
can be used in both types of calculations, and our method represents a gen-
eralization rather than a variation of the standard multigroup method.

The adjoint of l$q,(13) is



, @J+- @+l
aE aE “ (15)

The MonSe Carlo algorithm for solving Eq. (15) differs only slightly from that
for solving Eq. (13) in that Wunctons (ad.jointparticles) ❑ay be created or
destroyed in both the scattering and sLowing-down processes. One can, how-
ever, devise a generalized Monte Carlo algorithm for solving both Eqs. (7) and
(g) using the same expansior:coefficients previously defined. As a result,
our hybrid scheme retains the powerful adjoint capability associated with the
stand~rd-multigroup❑ethod. We know of only cne serious attempt at modeling
the adjoint of the electron-transport equation. The NOVICE code’z stiulates
the adjoint e?.ectron/bremsstrahlungprocess in a continuous electron energy
format. Comparisons are currently underway between NOVICE and ITS for se-
lected problems; the re.”ults’swill be >dblished in the open literature by
midlg85.

We intend to computationally tent our ❑ultigroup approach for solving both
forward and adjoitltcoupled electron/photon tranport problems. Considering
recent results rogardine the accuracy of the ❑ultigroup/discrete-ordin~tes
method for roupled elecLl(-,n/photontransport,qk we fully expect that cur hy-
brid multigroup-continuous-energyMonte Carlo algorithm will be adequate for
our purposes.

GENERAL PARTICLE CODE

The need to simulate systems consisting of many types of neutral and charged
particles is increasing. This originates primarily from diverse current and
future applications in many branches of physics. Manageability of a r~umberof
simulation codesP each to treat specific particle coupling, becomes a Hercu-
lean task. (In fact, ❑otivation for combining various electron/photon codes
Into one ITS package stems from the management difficulties of eight separate
codes.) Thus, the drive to develop a general-particle Monte Carlo transport
code appears justified.

The transformation of the MCNP code into a general-particle code is in prc,-
gress, The initial task is to lnpL9ment electrons into MCNP, with a further
plan to merge the high-energy cascade particles, as treated in the HETC”
code. A procedure of particle fLaggLng wIIL he established to allow the user
to be selective in cascade characterization. Improved ❑anageability of the
general-particle code will promote more efficient ❑aintenance, clearer code-
developrnentdirection~, better code portability, and higher quality docu-
mentation.

MISCELLANEOUS

The versatility and success of Monte Carlo techniques in simulating relati~-
Intic electron/photon transport have generated the intriguing posgibl.lity
of including macroscopic and self-consistent electric and magnetic fields
in multidimensional geometry. External field calculations have already been
menLi~ned with Bornefiucces~using Monte Carlo”! *O and discrete-ordinates;’7



self.cansistentifields have been Included in stiple geometry.’” Of course,
the ultimate goal is to obtain a goad self-consistent field in a 3-D Mcilte
Carlo framework. One likely poemibility Is coupling Monte Carlo simulation to
a particle-in-cell structure. As electron/photon electromagnetic-field codes
evolve, many new computational challenges will be exposed that, once ❑et,
shall provid9 a means to address other tiportant classes of problems, hereto-
fore inaccessible.

To reduce the time devoted tc electron-collision tracking, multiple-inter-
action theories are usually implemented. Therefore, a variety of vartance-
reduotion techniques are needed that reflect the context of CHMC. Further
most of the codes in use adequately address primarily only one ensrgy regime;
serious attempts should be ❑ade to extend tho energy coverage, both to higher
~ lower energies.

In summary, the discipline of computational elecLron/photon transport-methods
development is and will be enjoying incredible stimulation. The outcome of
such activity is predictable: substantial progress will be forthcoming that
will greatly extend our understanding of basic transport prucesses, and our
capability will be improved to ❑et? new challenges in diagnostic physics and
radiation protection.
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