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FLUX AT A POINT IN MCNP—-

E. D. Cashwell and R. G. Schrandt
Group x-6

Monte Carln, Applications and Transport Data Group
Theoretical App!.ications Division
Los Alamos Scientific Laboratory

Los Alamos, New Mexico

ABSTRACT

The current state of the art of calculating flux at a
point with MCNPis discussed. Various techniques are touched
upon, but the ❑ain emphasis is on the fact Improved version
of the once-more-collided flux estimator, which has hen
modified to treat neutrons thermalized by the free gaa
❑odel. The method is ceated on several problems of interest
and the reeults are presented.

—— —

INTRODUCTION

The next-event estimator (NEE) used in a normal Monte Carlo game
for the flux at a detector em~dded in a scattering medium euffer~
a (l/r*)-singularity. Consequently, the variance of the estimator
infinite even thoush the mean ie finite.

In 1977, Kalli and Cashwelll proposad and evaluated three
●stimation echemea for flux at a point. A new, once-more-collided
estimator (OMCFE) was proposed, which differed from those proposed
Kales in his ori~inal paper. 2 The scheme has a (1/r)-singularity,
leading to finite variance and (1/~N)-convergence. It is tetaed on
very eimple p.d.f. of the path lengths in the eampling of the
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intermediate collision points. In addition, this simple p,d.f, for the
path length was used in two echemee with Imunded estimators eimilar to
those proposed by Steinberg an? Kaloe3 and by Steinberg.4 Tbe three
schemes were evaluated in a realistic problem using the continuous
energy Los Alamos Monte Carlo code MCNG, the forerunner of MCNPD5

Once-More Collided Flux Entimator (OMCFE)

In the present diecuosfon we wish to focus on the OMCFE referred to
above. This echeme has hen incorporated into MCNPand, although come
work still remains to be done, we wieh to diecuss this method in
cmjunction with other techniques available in MCNP,



The details of the OMCFE as it exists in MCNPare, for the most
part, given in Ref. (l). Without repeating the treatment given there,
we wish to touch on the main points of the method, as well as mention
generalizations of the method to a wider class of problems. The OMCFE
is superimposed on the particle history without affecting it. At each
collision (or source point), a nonanalog game is played whereby a next
collision point A is chosen, from which a contribution to the detector
is made. That is, from every real collision point of the particle
history, a once-more-collided contribution is tUSde to the detector.

The two main features in determining the intermediate point A of
the once-more-collided scheme are:

1. A directional reselection procedure based on the reselection
technique of Steinberg and Kalos;3 and

2. A nonanalog p.d.f. p*(s) which was used by Kalli6 in 1972.

In Fig. 1, consider a collision at S with the resulting scattered >
directionfio in the cone described. Suppose that a new direction fll is
chosen by stimpling a new angle @l uniformly in ([’,Pn) and a Gll uniformly
in (0,211). The result is a concentration of scattered directions closer
to the line from S to the detector D than would normally occur. Of
course, an adjustment factor must be applied to the weight of the
particle due to the reselection.

Once the direction Q1 is chosen. suppose the intermediate point A
is selected along this direction from the p d.f. p*(s), where

p!k(~) . .-J-L.—__ (Cf. Fig. 2)0 (1)
(71/2 - ul)rz

This density function corresponds to d being chosen uniformly in
(al,l(/2). Une of P*(s) leads to another weight adjustment pap*,
where p(s) is the analog p.d,f. for sampling distance to collision,

In the normal OMCFE, the point A is not A real collision point of
the particle history. When these calculations involve reselection of
direction and the distance to A using p*(S), as well as the normal
next-event estimator, Ehey tend to be time-consuming. In order to 8p@Cd
up calculations using the OMCFq:

1. Draw an imaginary sphere around the detector;

2. If the collision poirit Si is outside the sphere ht the
direction after the collision is within the cone defined by Si and he

~phere, calculate the once-more-collfded flux contribution by performing
the directional reselection in the cone and calculate the intermediate
poir.t A by using P*(J);



Fig. 1. Geometry in the re-
election of a direction.

?ia. 2. Geometry in the selec-
tion of the intermediate col-
lision point A.

3. If the collieio:l point S1 ia in the sphere and the direction 50
after collision IS in a 7-,-cone (i.e., 130 < nj2) about the line from Si
to D, the once-more-coll:ded point IS calculated by reselection of fil
and using p*(e) to determine the intermediate point A; if the direction
fio after colli~ion ia such that 00 ) T/2, no reselection is performed
hut the intermed~ate point A is chosen from p*(e); and

4. Otherwise, calculate the no’:mal next-event contribution from
the following collision point S1+l.

The recipe as outlined above works very well in ❑ost problems
containing mdinary ❑aterials. However, in non-thermal problems
containing H, the for~~ard scattering off H In the laboratory eyatem of
coordinate lead to some modification of the recipe bcauee of the
directional reselection procedure, Furthermore, the random motion of
the target stoma combined with the motion of the neutron in the thetmal
routine using the free gas model in MCNPleads to rather extenstve
modifications for the came reaeeil. The imaginary ephere around the
detector may have to b reduced in size in the c~uree of the
calculation, as rn remult of ueing the reeelecticn procedure,

With the neceueary modificatio,lm, MCNPi~ able tti treat problems of
the types mentioned &mve, as illustrated by Lhe sample calculations
below. Several comfderations led to the implementation of the OMCFF
rather than one cf the schcmeo leadins to a tmunded eatim~tor in Ref.
(l). Firot of all, the OMCFEwas judged to b the simplest to insert
into MCNP. Furthermore, th~ ●stimation of flux simultnr.eoualy at
several points causeo no problemn in the OMCIfEachemei Finally, sil,ce
the OMCFEdoes not alter the particle hiotoriea, its une :.as no effect
on other talliee which may I.m required in a particular problem.



DXTMIJ

Let us descri~ briefly a subroutine, DXTRAW,which has been used
in Los Alamos for some years and is an option availnble in t4CNP.5 We
shall indicate j.ts usefulness in our examples below. DXTRANla of value
in sampling regions of a problem which may be insufficiently visited by
particle histories to yield adequate statistical accuracy in a given
tally. To explain how the scheme works, let us consider the
neighborhood of interest to lx a spherical region surrounding a
designated point P. in space. In fact, we consider two spheres of
arbitrary radii about the point Po(xo,yo,zo). We assume that the
particle having direction (u,v,w) collides at the point (x,Y,z), as
shown in Fig. 3. The quantities L, 61, flo, ~1, no, RIO and R. are
clear from the figure, Let us acmehow choose a point P8 on the outer
sphere and as~ume that a scattered particle (let us call it a
“pseudo-particle” for the umment) is placed there. We give this pseudo-
particle a weigt.t equal to the weight of the incoming particle at PI
multiplied by the ratjo of the p.d.f. for scattering from PI to l’s with
no collision to the p.d.f. for choosing the point P~ in the first place.

If we sample directions Isotropically in the cone defined by Pi and
the outer sphere, the number of directions falling inside the inner cone
and the number falling in the outer cone will be proportional to l-TI1
and qI-tlo8 respectively. Let Q be a factor which meaqures the Wejght
or importance which one assigns to scattering in the inner cone relative
to scattering in the outer cone. We now proceed by the following steps:

Pl(x,y,

incomln~ pnrtlrle (u,v,w) ,, - co

a)

FiEO 3. The geometry of DXTRAN.



1. Sample T-Iuniformly in (vT,l) with pro~bility Q(l-TI1)/[Q(l-TI1)
+ nT-no]; and with prolxability (TIIWo)/[Q(lzfI1) +~l-~o] sample TI
uniformly in (rIomTII);

2. Having chosen 9 from rI = cos 0, we use the scattering formulas
in the code to scatter through an angle R (and an azimu~hal anGle @

(x

)~-x YO-Y Zo-z

chosen uniformly in (0,2?T)) from the initial direction —’Y-’T ‘L

determining a new direction (u’,v’,w’). Advance the pseudo-particle in
the direction (~1’,v’,w’) to the point P~ on the surface of the outer
sphere. The new coordinates are saved;

3. The weight attached to the pseudo-particle is the wetght of the
particle at collision multiplied by

{}

P

j

s

P(Ii){Q(l - rll) + nl - rIO] CxP - :t(6) dF

‘1
v*

Q
, r, <r,<]

I

and

{}

P#

v ● P(l,)(r!(l - 111) + r-l, - rIO) exp -
!

!t(~)ds,~o<n<hl ,

“1

whc re
]1 - Uul + !/V! + VW”

p(]l) - p.d.f. for scattering through the angle COB‘lIJ in the lab
system for the ev~nt sampled at (x,y,z).

v m number o= neutro,~~ emitted from the event.

Since a colli8ion 13upplte:: a particle (let UB now drop the term
pseudo-particle - these particles are aa real aa any others) to the
outer DXIRAN sphere, the particles from the collieio’.i at P1 are picked
up and followed further, but they are killed if they attempt to enter
the sphere. It Is apparent from the discussion above that this routine
has certain features in common with a point detector routine.

This routine is used in a couple of the probleme diecuaeed below.
In one problem, it is used to obtain the average flux in a small volume
as a check againat the result obtained from the OMCFE. In another, it
is uoed to help get particles in the vicinity of a detector. While
DXTRANcan be useful in many problems, it must ~ pointed out that the
❑ethod is time-consuming, ~ing similar in nature to a point detectcr
routine, Further, attention must k paid to the problem of obtaining a
~ufficient number of histories in the vicinity of the DXTRANsphere, not
just inside the sphere.



CALCULATIONS

The problems discussed &low were chosen to demonstrate the
behavior of the OMCFEin a variety of ~ttings, with some emphasis on
the treatment of H and, in particular, ita behavior in the presence of
neutrons thermalized according to the free gas amdel. Illustrations of
how DXTRANcan be useful, either as an aid to the OMCPEor as an nid in
computing the average flux in a region with a track-length estimator,
occur in two of the problems.

The geometries displayed in our problems are deliberately kept
simple, partly so that we can display the so-called “exact flux”, which
is calculated very acc~rately (to a fraction of a percent) using a
surface c!roasing estimator in the spherical geometry. In the schematic
showing the geometry used, not every eurface appears. Frequently,
additional aurfacea were added for the purposes of spl?tting and Ruesian
roulette, or fcr the purpose of obtaining average flux in a region, but
few titirfaceb’ were added in any one calculation.

In each problem, the source at the center of the sphere was chosen
to be ❑onoenergetic ani isotropic in direc~ion. As easily anticipated,
it was faund useful to u~e an exponential biaaing to direct more
particles toward the detectors. The lntter were always placed on a
radiua of the sphere - say the positive x-rxis. The initial flight of a
neutron was chosen by sampling u , the coainc of the angle the starting
direction makes with the x-axis, from a p.d.f. ~ ek~, with k a fixed
parameter. The value of k used in each 7roblem is listed on the
schematic for that problem.

A feature of MCNPwhich waa used in these calculations has to da
with contributions to the detector D from collisions several free paths
from the detector. E.g., when collisions occur more than x free paths
from D, by playing Russian roulette one can permit, say, only one in ten
collisions on the uverage to contribute to D, with weight enhanced by a
factor of ten. The number x IS aet by the user and in these
calculations waa usually set to four. This feature of the code can save
apprec~able amounts of machine time in large systems.

Other information on the schematic which is of interest include the
number density of aioma in the mater+.al used; the thermal temperature of
the prob~em (if any;; the average m,f.p. ~ , computed by MCNPover the
course of the problem ; the source energy and energy cut-off (if say);
the tinle on the CL)C-7600 for a given sample of starting neutrons; and
the imaginary sphere radii used in the OMCFEand in DXTRAN.

Figs. 4-12 display the geometries and a~aphe of the results for
four problems. Table 1 giveu a comparison of the final flux values at
the end of each run with the “exart values”. The errors in the final
fluxes aloo dppear.
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TABLE I
Comparison of Calculated Flux with Lxact Flu:p

Thermal H: Detector 1
Detector 2

Thermal CH2: Detector 1
Detector 2

BeO - 1: Detector 1
Detector 1

BeO - 2: Detector 1

Flux
(n/cm2/source particle)

%xac t OMCFE
‘Surface Cro9sing

Eetimator)

3.462 X 10-2
1.230 X 10-2

2.086 X 10-1
6.259 X 10-2

1.703 x 10-2
1.703 x 10+

7.207 X 10-4
—— -—. —

I30486 x 10-2
1.231 X 10-2

I2.122 x 10-1
6.378 X 10-2

1.697 X 10-2

1-7.412 X 10-4
—.. .-

Ave, Flux
:Track length

Estimator)

1.687 X 1(’)-2

Error
(1 Standard
Deviation)

.056 x 10-2

.032 X 10-2

.052 x 10-1

.357 x 10-2

.015 x 10-2
.022X 10-2 I

J
.185 X 10-4



In Problem 1 the fiuxea at two detector points in thermal H are
calculated using the OMCFE. Problem 2 1s a eimilar calculation in
thermal CH2. In Problem 3, the flux is calculated at a single detector
in a sphere of BeO (non-thermal) for a source of 1 tieV neutrone at the
center. The flux is first obtained using the OMCFE, and this is
compaled with an estimate of the average flux in a sphere about the
detector of 1 cm radiue. The htter estimate is obtained with the help
of DXTRAN. Problem 4 finds the flux at a point in a BeO sphere eituated
approximately 6 free paths from the source using the OMCFE, hut with the
aid of a large DXTRANsphere which encloses the detector. The
error-bars (one standard deviation) on the points plotted indicate the
etati~tical accuracy of the calculation in progress, as printed out by
the code. The final results are, in every case, within a few percent of
the value of the “exact flux” - in fact, the agreement appeara somewhat
better than expected in at least one case. For example, in the BeO-l
calculation the ttgreement between the exact flux and that obtained from
the average flux in a sphere of l-cm radiuo using DXTRAN18 surprisingly
good . Perhaps that is iortuitcue - experience daes not lead one to
expect it in the average problem. The amount of computing time used
could have been reduced in some cases without altering the results
appreciably, but in dealing with estimates of flux at a point, it pays
to be reasonably cautious. Quite frequently, the calculation la
sensitj.ve to the various parameters set in a problem - the size of the
imaginary sphere in the OMCFE, the source bias. etc. Some care is
essential in setting up a problem and a faw short runs can be invaluable
in making the neceapdry decisions, particularly In the case of a
difficult problem.

Concluding Remarks-—

A very important method of estimating flux at a point in a problem
!.ith axial symmetry is through the use of a ring detector. MCNP
contains a ring detector option and, although we did not use it in the
present calculations, it should & mentioned as one of the tools
avnilable.

While the OMCFE in 14CNPcan deal with neutrons thennalized
according to the free gaa model, there remains the tack of modifying the
flux ●stimator to b compatible with neutrono thermalized with the
S(a,@) treatment. It is hoped that this defect can b rectified in the
not too distant future.
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