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In manual computing methods today random control call for these numbers as needed. The real
numbers are probably being satisfactorily obtained objection to this procedure is the practical need
from tables. When random numbers are to be for checking computations. If we suspect that a
used in fast machines, numbers will usually be calculation is wrong, almost any reasonable check
needed faster. More significant is the fact that, involves repeating something done before. At
because longer sequences will be used, one is that point the introduction of new random num-
likely to have more elaborate requirements about bers would be intolerable. I think that the direct
what constitutes a satisfactory sequence of random use of a physical supply of random digits is abso-
numbers. There are two classes of questions lutely inacceptable for this reason and for this
connected with high-speed computation about reason alone. The next best thing would be to
which I should like to make some remarks: produce random digits by some physical mecha-
(A) How can one produce a sequence of random nism and record them, letting the machine read
decimal digits-a sequence where each digit them as needed. At this point we have maneu-
appears with probability one-tenth and where vered ourselves into using the weakest portion of
consecutive ones are indeE~ndent of each other in ~~ently designed machines-the l'eading organ.
all combinations? (B) How can one produce Whether or not this difficulty is an absolute one
random real numberS according to an assigned will depimd on how clumsy the competing processes
probability distribution law? turn out to be.

On problem (A), I shall add very little to what Any'one who considers arithmetical methods of
has been said earlier in this symposium. Two producing random digits is, of course, in a state of
quantitatively different methods for the produc- sin. For, as has been pointed out several times,
tlOn of random digits have been discussed: there is no such thing as a random number-there
~hysical processes and arithmetical processes. are only methods to produce random numbers,
The main characteristics of physical ~rocesses and a strict arithmetic procedure of course is not
have been pointed out by Dr. Brown. There are such a method. (It is true that a problem that
nuclear accidents, for example, which are the we suspect of being solvahle by random methods
ideal of randomness, and up to a certain accuracy may be solvable by some rigorously defined
you can count them. One difficulty is that one is sequence, but this is a deeper mathematical ques-
never quite sure what is the probability of occur- tion than we can now go into.) We are here
rence of the nuclear accident. This difficulty has dealing with mere "cooking recipes" for making
been overcome by' taking larger counts than one digits; probably they can not be justified, but
in testing for either even or odd. To cite a human should merely be judged by their results. Some
example, for simplicity, in tossing a coin it is statistical study of the digits generated by a given
probably easier to make two consecutive tosses recipe should be made. but exhaustive tests are
independent than to toss heads with probability impractical. If the dig-its work well on one prob-
exactly one-half. If independence of successive lem, they seem usually to be successful with others
tosses is assumed, ~e can reconstruct a 50-50 of the sarne type.
chance out of even a badly biased coin by tossing If one nevertheless considers certain arithmetic
twice. If we get heads-heads or tails-tails, we methods in detail, it is quickly found that the
reject the tosses and try again. If we get heads- critical thing about them is the very obscure, very
tails (or tails-heads), we accept the result as heads imperfectly understood behavior of round-off errors
(or tails). The resulting process is rigorously in mathematics. In obtaining y as the middle
unbiased, although the amended process is at ten digits in the s<I,uare of a ten-digit number x,
most 25 percent as efficient as ordinary coin- we are really mappmg x onto y by a certain saw-
tossing. toothed discontinuous curve y-.f(x), for O~x~l,

We see then that we could build a physical O~y~1. When we take xl+t.-:.i(xj) for i=l, 2,
instrument to feed random digits directly into a 3,..., this curve will gradually scramble
high-speed computing machine and could have the the digits of Xl and produce something fairly
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pseudo-random. A simpler process suggested by
Dr. VIam is to use the mapping function
!(x)=4x(1-x). If one produces a seque~ce {XI}
in this manner, XI+! is completely determmed by
XI, so that independence is lacking. It i<s, however,
quite instructive to analyze the nature of ran
domness that exists in this sequence. One can,
by an incomplete argumentation, apparently
establish one kind, and then see that in reality a

. very different kind holds. First, let the relations
a:l=sin2 ?Tat define the sequence {a/} (each modulo
1). Since XI+1 =4xl(l-xJ, one sees that aHI = 2al
(modulo 1). The sequence {all is thus obt~ined
in binary representation by shifting the bmary
number al=·13dkf3a13, ••• as follows: a2=
·13213313, ···.l •.. , al=·13113t+I13IH ••• l
. .. . It fOllOWS from the theorem of Borel
about the randomness of the digits of real
numbers that, for all numbers al except those
in a set of Lebesgue measure zero, the numbers
at are uniformly distributed on the interval (0,1).
Hence, the Xl are distributed like the numbers x=
sin21r1/, with equidistributed 11, i. e., with the
probability distribution (2r)-I[x(l-x)]-Jidx.

However, any physically existing machine has
a certain limit of precision. Since the average
value of 11'(x) 1 on (0,1) is 2, in each transforma
tion from Xl to XI+1 any error will be amplified on
the average by approximately two. In about 33
steps the first round-off error will have grown to
about 1010. No matter how random the sequence
{xd is in theory, after about 33 steps one is really
only testing the random properties of the round-off
error. Then one might as well admit that one
can prove nothing, because the amount of the
oreti('..al infonnation about the statistical proper
ties of the round-off mechanism is nil.

As Dr. Hammer told us, sequences {Xl} obtained
from the squaring routine have been successfully
used for various calculations. By the very as
sumption of randomness, however, one is exposed
to the systematic danger of the appearance of self
perpetuating zeros at the ends of the numbers XI'
Dr. Forsythe's remark that in some cases the zero
mechanism is the major mechanism destroying
the sequences is encouraging, because one always
fears the appearance of undetected short cycles.
I fear, however, that if we used one of Dr. Brown's
ingenious tricks to overcome the zero mechanism,
we might just bring out the next most disastrous
mechanism. In any case, I think nobody who is
practically concerned will want .to use a sequen~e
produced by any' method WIthout testmg It
statistically, and it has been the uniform ex
perience with those sequences that it is more
trouble to test them than to manufacture them.
Hence the degree of complication of the method
by which you make them is not terribly im
portant; what is important is to carry out a
relatively quick and efficient test. Personally
I suspect that it might be just as well to use some
cooking recipe like squaring and taking the middle
digits, perhaps with more digit,; than ten.

Let me now consider questions of the class (B).
If one wants to get random real numbers on
(0, 1) satisfying a uniform distribution, it is
clearly sufficient to juxtapose enough random
binary digits. To avoid any bias it is probably
advisable always to force the last digit to be a 1.
If, however, the numbers are to satisfy some non
uniform probability distribution }(x)dx on (0, 1),
some tricks are possible and advisable. Suppose

one lets t=F(x)=f: j(u)du, and lets x=<I>(t)

represent the transformation inverse to F. If
the random variable T is uniformly distributed on
(0, 1), then the random variable X=4> (1') obeys
the distribution law F(x). Now the human com
puter can obtain the inverse function reasonably
efficiently by scanning, with or without the aid
of the rotatmg drum mentioned in Dr. Wilson's
paper earlier in this symposiUlIi. A machine scans
poorly, but might be instructed to calculate each
X from T. This calculation is, however, likely
to be quite cumbersome in practice, and I should
like to mention some other methods that are often
more efficient when they are applicable. .

One trick is to pick a scaling factor a such
that aj(x):51, and then to produce two random
numbers, X and Y, from a uniform distribution on
(0, 1). If y>a}(X)l we reject the pair and call
for a new pair. It Y:5aj(X) , we accept X.
Since the acceptance ratio is proportional to
j(X), the accept.ed numbers X will have the
probability distributionj(x)dx. One can see that
the efficiency of the method depends on the ratio
of the average value of}(x) to its maximum value;
the smaller the ratio, the more difficult it will
be to use the method. One characteristic of this
method is that one can often make the test "is
Y>aj(x)?" implicitly, without ha.ving to calculate
j(X) explicitly. For example, if

aj(x)=(l-x2)Ji,

one may make the test "is r+P> I?" and
only elementary operations are needed.

Suppose one wants to produce random numbers
e in (-1, 1) according to the distribution

r-I(l-(fl'r~d(J.

The obvious procedure is to take a uniformly
distributed random variable T in (-1, 1) and
calculate

8=sin ?TT.

I have a fepling, however, that it is somehow silly
to take a random number and put it daborately
into a power series, and in this case one can employ
a trick related to the last one. Select two random
numbers X, Y from a uniform distribution on
(0, 1); the point (X, Y) lies in the unit square. To
make sure that its angle,

cP=arc tfl,n (X/y),



but as

is

is uniformly distributed on (0, 7:12), we first reject
the pair if X'+Y'>1. If X'+Y'::S;I, we accept
the pair and form ±X/(X'+Y')H (±random),
which will have the desiI-oo distribution. The
efficiency of the process is clearly 7:/4. The onl;V
d~eable feature is the square root, and even It
may be eliminated by forming e not as

±sin ,,= ±X/(X2+YJ)H,

sin (2"-7:/2)=-cos 2,,=(X2-YJ)/(X2+YJ),
which has the same distribution.

Let me give one final example, the generation of
nonnegative random numbers X with the distribu
tion e-Z dx. As you know: such numbers X repre
sent free paths In the slaD problems discussed in
this symposium. The normal procedure is to pick
T from a uniform distribution on (0, I) and com
pute X=-log T, but, as before, it seems objec
tionable to compute a transcendental function of a
random number. Another method for getting X
resembles a well known game of chance--Twenty
one, or Black Jack. We select numbers Yj from a
uniform distribution on (0, I) as follows. Pick Yt
and Y 2• If Yt::S; Y 2, we stop. If Yt>Y2, we select
Ya. If Y 2 :::;; Ya, we stop. Otherwise Yt>Y2>Ya,
and we select Y., etc. With probability ODe there
will be a least 11, for which

Y1>Ya> ... >Y., but Y .. :::;;Y..+!.

Now if 11, is odd, we acceJ)t Y1as X, but if 11, is even,
we reject all the Y~. To analyze this process, let
E.. represent the event

Y1>Ya> ... >Y".

It is easily shown by induction that

Prob (E..)=(nQ-l,

while

Prob{z<Y1<z+dx I givenE..}=nx·-1dz.

Hence the probability that we simultaneously
have

z<Yt<z+dz, E", a·nd not-Ell+!

[z..-t/(n-l)l-z"/n!] dz.

Summing over all odd n, we see that

Prob{z< Yt<z+dz} =e-sdz.

We have therefore generated the portion O:::;;z::S;1
.of the desired distribution; to get the complete
distribution we must do something with the
rejected fraction (e-1) of the trials. Since

e-Sdz=e-1e-s+1dz,

what we do is repeat the rejected trial but interpret
the new Yt differently. If Yt from the retrial is
accepted, take X = Yt+1. If the retrial is re
jected." but the Yt from a second retrial is ac
ceptea, we take X=Yt +2. Each time a trial is
rejected, the range of values of X is increased by
unity. A calculation shows that one may expect
to choose about

(I +e) (l-r1)-1,.,. 6

values of Y for each X j selected; the process effi
ciency is thus about one-sixth. The machine has
in effect computed a logarithm by performing only
discriminations on the relative magnitude of
numbers in (0,1). It is a sad fact of life, however,
that under the particular conditions of the Eniac
it was sli2htly quicker to use a truncated power
series for log (1-1') than to e&r!'Yout all the dis
criminations. In conclusion, I should like to
mention that the above method can be modified to
yield a distribution satisfying any first-order
ilifferential equation.
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